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Abstract

Portable electronic devices are increasingly becoming indispensable parts of everyday
life. Driven by the digital revolution, consumer electronics are becoming increasingly
smaller and less expensive. In this light, there is an enormous demand for low-cost
transducers. Unfortunately, the low-cost/miniature loudspeakers are a major source of

nonlinear distortion effects.

In a hands-free communication environment, nonlinear distortion not only impairs the
speech intelligibility but also degrades the performance of speech enhancement algorithms
like acoustic echo canceller which work on the assumptions of linearity. Acoustic Echo
Cancellation (AEC) has been a very active area of research for many decades. Because
of the nonlinearities in the acoustic echopath, the AEC problem is now become more
challenging and reformulated as Nonlinear Acoustic Echo Cancellation (NAEC), which
is today an active research area. This thesis focuses on the analysis, identification and

characterisation of nonlinear distortion in loudspeakers and its application to NAEC.

This thesis is primarily divided into two parts. The first part aims at finding a reliable
nonlinear model that emulates the loudspeaker response for the purpose of predicting and
preventing the nonlinear distortion. First the nonlinear loudspeaker system identification
problem is addressed. After discussing the exponential sine-sweep excitation based
nonlinear convolution technique for identifying the nonlinear loudspeakers, we focused on
empirical loudspeaker modeling. We compared the synthesized outputs of two loudspeaker
models to empirically measured, real loudspeaker outputs. The work suggests that the
generalized polynomial Hammerstein model (GPHM) approximates more reliable practical

nonlinear loudspeaker behavior.

Another study reveals that the Echo Return Loss Enhancement (ERLE) performance of
a NAEC algorithm can be inflated using the nonlinear echo signals synthesized using
power-series model (PSM), a common practice followed in the literature for NAEC
performance evaluation. In contrast, the results generated with the GPHM model better
reflect practical measurements and is thus an appealing alternative model for future

evaluations of NAEC performance.
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Abstract

The second part of the thesis is majorly devoted to the NAEC problem. After discussing
the state-of-the-art NAEC solutions, we have presented a comprehensive performance
and stability analysis of the widely used NAEC algorithms. The results demonstrated
that the popular NAEC solutions perform better only in a few idealistic environments
and are less competent in most of the practical acoustic environments. We then proposed
a novel approach to NAEC based on Empirical Mode Decomposition (EMD), a recently
developed technique for nonlinear and nonstationary signal analysis. EMD decomposes
any signal into a finite number of time varying sub-band signals termed intrinsic mode
functions (IMFs). The new approach to NAEC incorporates this multi-resolution analysis
with conventional power filtering to estimate nonlinear echo in each IMF. Comparative
experiments with a competitive baseline approach to NAEC (based on pure power
filtering) show that the new EMD approach achieves greater nonlinear echo reduction
and faster convergence. However, EMD induced delay and the computational complexity

of this approach are major limitations.

The next part of the work is our first step to align the analysis of nonlinear distortion
in loudspeakers to its physical origins. We consider the application of Hilbert-Huang
Transform (HHT) to the analysis of nonlinear distortion in miniature loudspeakers.
Based on EMD and the Hilbert Transform (HT), HHT offers a new time-frequency
analysis method (referred as Hilbert-Huang spectrum) with instantaneous time and
frequency resolution unlike the conventional methods. Instantaneous amplitude (IA)
and frequency (IF') parameters give more detailed and enhanced representation of the
underlying nonlinear behaviour of the distorted signals. On the basis of the results of
this work, we reported an alternative interpretation of loudspeaker nonlinearities through
the cumulative effects of harmonic content and intra-wave amplitude-and-frequency
modulation. These new findings may stimulate and reshape the future direction of NAEC

research.

Although this thesis mainly focuses on the nonlinear distortion in the context of hands-
free telephone systems, similar techniques and practices can also be applicable to other

hands-free consumer devices.
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Résumé

Cette these porte sur I'analyse, 'identification et la caractérisation de la distorsion
nonlinéaire dans les haut-parleurs et son application a 'annulation d’écho acoustique

nonlinéaire (ou NAEC, pour "Nonlinear Acoustic Echo Cancellation").

La premiere partie de la these vise a la dérivation d’'un modele de haut-parleur plus
précis et empirique. Celui-ci émule la réponse fréquentielle du haut-parleur dans le but de
prédire et d’empécher la distorsion nonlinéaire. Les travaux de recherche suggerent que
le modele de Hammerstein généralisé se rapproche plus fiablement d’un comportement

de haut-parleur nonlinéaire.

Dans la partie suivante, aprés avoir discuté les études avancées de development des
algorithms de NAEC, nous présenterons ’analyse des performances des algorithmes
les plus utilisés. Les résultats ont démontré que les solutions populaires n’obtiennent
de meilleurs résultats que dans quelques conditions idéales et sont moins performants
dans la plupart des environnements acoustiques réels. Nous proposons ensuite une
nouvelle approche de NAEC basée sur la décomposition modale empirique (ou EMD,
pour "Empirical Mode Decomposition"), une technique récemment développée pour
I’analyse de signaux nonlinéaires et non-stationnaires. Des expériences comparatives sur
des techniques de reference montrent que la nouvelle approche (NAEC basée sur la EMD)
permet d’obtenir une plus grande réduction d’écho nonlinéaire et une convergence plus

rapide.

Dans I’étape qui suit, les travaux mis en place sont le commencement sur 1’établissement
de la correspondence entre I’analyse de la distorsion non linéaire dans les haut-parleurs a
ses origines physiques. Nous considérons 'application de la transformée d’Hilbert-Huang
(ou HHT, pour "Hilbert-Huang Transform") & I’analyse de la distorsion nonlinéaire
dans les haut-parleurs. Sur la base des résultats de cette étude, nous avons rapporté
une interprétation alternative des nonlinéarités des haut-parleurs a travers les effets
cumulatifs du contenu harmonique et de la modulation en amplitude et en fréquence. Ces

nouvelles conclusions pourraient stimuler et renouveler la direction future de la recherche

sur la NAEC.
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Chapter 1

Introduction

Mobile communications technology has evolved substantially in the past decade. Accordingly,
the consumer electronic devices intended for mobile communications have been experi-
encing an explosive growth in the recent years. These devices range from smart-phones
to tablet PCs to voice-activated speakers to wireless smart ear-buds to huge range of

hands-free car kits, etc..

One of the most important reasons for this trend could be the evolution of hands-free
technology that has yielded significantly better sound quality. If the recent growth of the
hands-free communication devices market is any indication, many people understandably
prefer hands-free communication. In any hands-free communication environment, acoustic
echo cancellation (AEC) and noise cancellation play an increasingly important role in
ensuring satisfactory speech quality. In this thesis, we focused on the acoustic echo
cancellation problem. Many different devices are equipped with loudspeakers and
microphones for a variety of different purposes and often these transducers are mounted
in close proximity to one another. This acoustic coupling between the loudspeaker
and the microphone along with subsequent additive reflections causes acoustic echo.
In the case of mobile telephony, this acoustic echo will be transmitted to the far-end
user and the conversation can be annoying to unbearable depending on the round-trip
delay of the system. In the case of voice-activated assistant speakers (typical examples:
Amazon Echo and Google Home), this acoustic echo is a source of interference for the
automatic speech recognition engines affecting its performance (wake-word detection
and/or speech recognition rate). Thus, the acoustic echo degrades the quality of the
voice communication by degrading speech intelligibility and listening comfort. In order
to combat the acoustic echo phenomenon, it is often necessary to employ an acoustic

echo canceller.
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1.1 Acoustic Echo Cancellation

Acoustic echo cancellation (AEC) is a decades-old problem in signal processing since the
introduction of full-duplex voice communications, and it is still an active field of research.
AEC is based on a well-established system identification approach. The acoustic echopath
(from the loudspeaker to the microphone) is highly dynamic and subjected to variation
in time, as a consequence of the modification of the acoustical characteristics of the
Loudspeaker Enclosure Microphone System (LEMS). Hence, AEC generally uses a linear
adaptive transversal filter to estimate the digital replica of the transfer function of the
LEMS. A typical adaptive AEC system is illustrated in Fig. 1.1, where d(n), s(n) and
v(n) represent the echo signal, near-end speech signal and noise respectively. Most of the
scenarios in this thesis assume microphone signal contains echo only, that is y(n) = d(n)
and s(n) = v(n) = 0, unless it is specified. The far-end signal z(n) is passed through the
adaptive filter h(n) to synthesize the echo signal §(n), which is then subtracted from the
microphone signal y(n) to cancel the acoustic echo. If the adaptive filter impulse response,
h(n), matches with that of LEMS, h(n), (convergence) then the echo will be eliminated
without any artefacts. However, achieving a perfect convergence is a quite challenging
task especially while handling highly nonstationary signals like speech. Besides there are
many other factors like near-end background noise, double-talk period (period at which
both the near-end speech and the echo are present at the same time) and nonlinearities
impair the performance of echo canceller. In the following, we examine the performance of
few popular adaptive algorithms in terms of their convergence and Echo Reduction Loss
Enhancement (ERLE). ERLE is a quantitative measure which represents the reduction
in energy (in dB) of the microphone signal (d(n)) achieved by echo reduction. ERLE is
given by:

2
ERLE = 10log§{d ()}

(2(n)} (1)

where e(n) is the AEC output signal to be transmitted to the far-end user.

Simulation Environment

The LEM system is characterized by the combination of a loudspeaker, the room and
the microphone impulse responses. For the simulations considered in this chapter, the
LEM system is modelled with the help of an empirically measured loudspeaker impulse
response, hi(n) of size Ly = 128 taps, and a room impulse response h,i(n) of size

L = 256 taps, selected from the Aachen RIR database [1]. Microphone impulse response
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x(n)
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e

Figure 1.1 — System model illustrating the acoustical coupling in the LEMS and a general
approach to adaptive AEC.

is ignored. A 5 second speech signal sampled at 8kHz is concatenated 12 times to produce
the far-end test signal x(n) of sufficient duration to ensure the convergence of each

algorithm. The loudspeaker output signal, z,,:(n), is synthesized according to:

Li—-1

ZTout(n) = Z x(n —i)hy(7) (1.2)

1=0

The microphone output signal or the linear echo signal y (n) is generated according to:

L-1
Yy (n) = Z $out(n - Z)hrzr(l) (1.3)
i=0
Following are the well-known linear adaptive algorithms considered for this study:

o Least Mean Square (LMS) algorithm with = 0.16
e Normalized-LMS (NLMS) algorithm with g =1

e Frequency Block-LMS (FBLMS) algorithm with g = 0.5 and the block length
B = 256
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Figure 1.2 — ERLE test results to compare the performance of linear AEC algorithms

e Discrete Cosine Transform-LMS (DCTLMS) algorithm with p = 0.5

e Affine Projection Algorithm (APA) algorithm with © = 1 and order 2

Details of these adaptive algorithms are well described in the literature (for example, [2,3]),
and shall not be repeated in this thesis. The step size u of each algorithm is chosen
such that it achieve maximum ERLE after convergence. The linear AEC was operated
in equal modelling scenario, that is the length of the adaptive filter is considered as
L1+ L —1 = 383 taps. Figure 1.2 illustrates the behaviour of the linear adaptive
algorithms in terms of ERLE.

The results indicate that the APA algorithm clearly outperforms the rest, both in
terms of the convergence rate and the maximum achievable ERLE. Despite being widely
accepted as fast, simple in implementation and robust in harsh environments, the NLMS
algorithm is inferior to APA of 2"@-order. This is because the NLMS algorithm converges
very slowly in the presence of highly correlated excitation signals like speech. One
way to overcome this problem is to decorrelate (or pre-whiten) the incoming excitation
signals [2]. Regarding the DCTLMS algorithm, there is no noticeable difference between
the performance of DCTLMS and NLMS in terms of initial convergence and the maximum
achievable ERLE. The performance behaviour of the FBLMS algorithm is however
exceptional. Its convergence rate is remarkably high, because of the block-by-block
processing. However, as the time progresses, the FBLMS algorithm became superior to
the NLMS and the DCTLMS algorithms in terms of maximum achievable ERLE. As
expected, the performance of LMS algorithm is poor as its behaviour is highly dependent

4
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on the eigenvalue spread of the input signal’s autocorrelation matrix. The larger the

eigenvalue spread, the slower the convergence speed [2].

Most of the work in the literature assumes linearity of the electronic components in
the LEMS. Under such linear conditions AEC algorithms generally perform well as
seen in Fig. 1.2. However, the trend of miniaturization in electronic devices industry,
particularly in the mobile devices, has forced the characteristic sizes of the electronic
components to shrink accordingly. The miniaturization of the transducers and their
associated electronic components along with the mobile devices enclosures often introduce
non-negligible nonlinear distortion in the acoustic echopath. The linear AEC cannot
handle the nonlinear echo in the LEMS and transmitted back to the far-end user. Further,
the nonlinear distortion degrades the performance of linear AEC leading to high residual
echo in the uplink signal [4,5,6]. Each of the linear adaptive algorithms employed by
linear AEC behaves differently to nonlinear distortion in the LEMS. In order to witness
the same, we examine the performance of above mentioned adaptive algorithms in the
presence of nonlinear distortion. The simulation environment used is similar to the
one above, except that the loudspeaker is assumed as a nonlinear device. To emulate
the nonlinear loudspeaker output signal, z,,:(n), the linear (hi(n)) and the harmonic
impulse responses (the so called higher-order diagonal Volterra kernels) hy(n),p € [2, P]
of a real mobile-device loudspeaker are measured empirically as described in the next
chapter using the nonlinear system identification method reported in [7,8]. The nonlinear

loudspeaker output signal is synthesized according to:

P
Tout(n) = Z ‘ xzP(n —i)hy(i) (1.4)

where x (n) is the downlink/reference signal and the diagonal Volterra kernel hy,(n) is the
L, = 128-tap linear filter corresponding to the p" harmonic. In order to avoid aliasing
while generating the loudspeaker output signal, z,,(n), the input vector, represented by
x(n) = [z(n),...,z(n — L, + 1)]T, is passed through a low-pass filter (or anti-aliasing
filter) with cut-off frequency f,/2p before taken to the p** power. The microphone output

signal with nonlinear echo is generated according to Eq. 1.3.

Figure 1.3 illustrates the behavior of the linear adaptive algorithms in terms of ERLE in
both linear and nonlinear environments. These curves clearly demonstrate the impact of
nonlinear distortion on each linear AEC algorithm. Downlink nonlinearities in the LEMS
reduce the maximum achievable ERLE by each algorithm. The observations are consistent
with the results published by Moctar et.al. in [5]. NLMS and DCTLMS perform similarly
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Figure 1.3 — ERLE test results to compare the performance of linear AEC algorithms in
linear and nonlinear environments.

in both linear and nonlinear environments. FBLMS and APA algorithms are severely
affected by nonlinearities. Despite the fact that the initial convergence is better even with

2"d_grder behaves almost similar to the

the nonlinear distortion, the APA algorithm of
NLMS algorithm in terms of ERLE. Non-intrusive tests confirmed that the performance
of APA algorithm drastically decreases below the level of NLMS algorithm when nonlinear
distortion increases. Even though the performance of LMS algorithm is poor, it stays
robust to nonlinearities (in terms of difference in ERLE) compared to other algorithms.
Refer [5,6] for further details. From this discussion, it is plausible that conventional
linear AEC algorithms alone are insufficient to tackle the nonlinear distortion in the
LEMS. Accordingly, the age-old problem of AEC is now become more challenging and
reformulated as Nonlinear Acoustic Echo Cancellation (NAEC), which is today an active

research area.

1.2 Nonlinear Acoustic Echo Cancellation

Nonlinear distortion redistributes energy within the spectrum and attempting to cancel
nonlinear echo using linear AEC leaves additional residual echo in the uplink signal,
resulting in the degradation in ERLE. This highlights the need for advanced algorithms
that tackles the nonlinear distortion. Nonlinear acoustic echo canceller must be capable
of identifying and tracking not only the linear impulse response of the LEMS but also the

nonlinearities associated with the device components. Loudspeaker and its associated
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components (power amplifier and Digital-to-Analog Converter (DAC)) in the down-link
path are considered the major sources of significant nonlinear distortion in the LEMS
and are most studied in the literature. Much effort has been made by researchers in the
last decade to characterize the nonlinearities of electrodynamic loudspeakers [9]. We

summarize their main results in Chapter 1 of this thesis.

Unlike the conventional linear AEC system, the reference signal from the downlink
channel alone is not sufficient for use in a NAEC system, but prior knowledge and
models of the nonlinearities in the loudspeaker system are also required. There are three

fundamental approaches to tackle the nonlinear distortion in the LEMS echopath:

e Nonlinear pre-filtering
e Nonlinear post-filtering

e Nonlinear adaptive filtering

The first approach aims at a linearisation of the loudspeaker and its associated components
through nonlinear pre-filtering of the far-end signal. In case of ideal pre-filtering of the
loudspeaker signal, the entire LEMS could be safely assumed as linear and thus a linear
adaptive filter is sufficient to achieve better echo cancellation performance. Note that, in
this case, an exact model of the nonlinear loudspeaker system is of primary requirement
and any misapprehensions can result in major gradient noise. The second approach is
based on nonlinear post-filtering to suppress the residual nonlinear echo using a post-filter
preceded by a conventional linear adaptive filter. However, the nonlinearities have an
adverse effect on linear filtering which impacts upon nonlinear post-filtering and thus
degrades the global performance. The third approach, which is more general, is based on
nonlinear adaptive filtering in the AEC in order to adaptively learn the behaviour of the
nonlinearities along with the linear impulse response of the LEMS. The main drawback
of this method is the lack of an alternative reference signal to adaptively determine the

nonlinear loudspeaker model coefficients independent from the RIR.

1.3 Goal of the Thesis

Several methods have been proposed in the past to address NAEC problem as discussed
further in this thesis. However, the current state-of-the-art solutions generally accomplish
only modest reductions in nonlinear echo besides their limitations. First, the stability of
nonlinear systems is not guaranteed. Next, low convergence rate and high computational

complexity prevent these methods from being widely used in practical applications.
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In this thesis, we particularly investigate the nonlinear adaptive filtering approach to
achieve robust NAEC performance. Approaches to NAEC based on nonlinear adaptive
filtering depend fundamentally upon a discrete-time model of the loudspeaker. Several
nonlinear loudspeaker models have been reported in the literature [10,11,12,13,14,15].
The most popular are based on Volterra series [16]. The more closely the model reflects
the reality, the better the performance of NAEC in practice and better the simplifications
and trade-offs that can be made. Thus the goal of this thesis can therefore be summarized
as (i) the derivation of the more accurate and empirical loudspeaker model, (ii) to study
the exact phenomenon of loudspeaker nonlinear distortion, and (iii) to propose new

solutions to improve the performance of NAEC approaches.

Although this thesis mainly focuses on the nonlinear distortion in the context of hands-
free telephone systems, however similar techniques and practices can also be applicable

to other hands-free consumer devices.

1.4 Thesis Outline and Contributions

This thesis is mainly divided into two parts. Part 1 defines the main sources of nonlinear
distortion in the LEMS, and presents an approach to their empirical identification and
modeling. Overall, the first part aims at finding an accurate nonlinear model that
emulates the loudspeaker response for the purpose of predicting and preventing the
nonlinear distortion. Part 2 introduces the state-of-the-art NAEC solutions before
proposing a novel NAEC algorithm. This work leads to an alternative interpretation of
loudspeaker nonlinear distortion using a relatively new time-frequency analysis technique
known as the Hilbert-Huang Transform (HHT). Thus the thesis begins with a traditional
interpretation of nonlinear distortion in loudspeakers and ends with a novel and accurate
interpretation of nonlinear distortion, which marks a new beginning of NAEC research.

Both parts of the thesis contain original contributions to the field.

Part-1

Chapter-2

It is known that the linear and time invariant (LTT) systems are well studied, but those
properties are generally not applicable to nonlinear systems. This chapter explains the

theoretical background on the nonlinear systems. The first part of the chapter focuses
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on the properties of the nonlinear systems. Next, the focus shifts toward understanding
and adequately modeling the complex behaviour of nonlinear systems. The discussion
includes the introduction to the popular Volterra series expansion and the block-oriented
models (example: Hammerstein model). The last part of this chapter covers different

ways of quantifying nonlinear distortion.

Chapter-3

After a brief overview of the nonlinear systems and modeling in the previous chapter,
the emphasis in Chapter 3 switches to identify a suitable loudspeaker model to emulate
the nonlinear behaviour of the loudspeakers. The chapter starts with an introduction
to the general sources of nonlinearities in the LEMS, including a detailed study on

electro-dynamic loudspeaker nonlinearities.

The next part of this chapter focuses on three different nonlinear models suitable for
comprehensive modeling of a nonlinear loudspeaker: Volterra series (with memory),
power series (Volterra series without memory) and generalized polynomial Hammerstein
model (GPHM).

There is a significant necessity to know the nonlinear dynamics of the loudspeaker to
achieve a better NAEC performance. Thus the last part of this chapter investigates a
well-known nonlinear system identification technique, referred to as nonlinear convolution,

first proposed in [7,17].

Chapter-4

This chapter focuses on the empirical and experimental research and aims to complement
the theoretical study covered in the previous chapters. First we report the experimental
approach to identify the nonlinear behaviour of a real mobile phone loudspeaker. Then
as a first contribution, we investigate the suitability of Volterra series based models
in modeling the real nonlinear loudspeakers by comparing the synthesized outputs to
empirically measured loudspeaker outputs. This work indicates that the GPHM model
resembles (both statistically and perceptually) stable and reliable practical nonlinear
dynamics of the loudspeaker. Hence throughout the thesis we used GPHM model to

synthesize the nonlinear loudspeaker output wherever applicable.

After identifying an appropriate nonlinear model, determining its optimal model pa-
rameters is one of the challenging issues in real-time applications. Therefore, as a next

contribution, we choose to investigate further the accuracy of the GPHM model as
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a function of its key parameters, namely the number of filter taps and the order of
nonlinearities. This work highlights the challenges involved to model accurately the

distortion introduced by nonlinear loudspeakers.

Part of the work in this chapter has resulted in the following publications:

e L. K. Gudupudi, C. Beaugeant, N. W. D. Evans, M. 1. Mossi, and L. Lepauloux, “A
comparison of different loudspeaker models to empirically estimated nonlinearities,” in
Proc. HSCMA, May 2014.

e L. K. Gudupudi, C. Beaugeant, and N. W. D. Evans, “Characterization and modelling
of nonlinear loudspeakers,” in Proc. IWAENC, Sept. 2014.

Part-2

Chapter-5

The aim of this chapter is to present a state-of-the-art review of the existing methods for
the nonlinear acoustic echo cancellation and/or suppression. Several NAEC algorithms
have been proposed in the literature to handle nonlinearites in the acoustic echopath and to
maintain stable echo cancellation performance. However, their evaluation methodologies
are not as compelling as their key design idea because most of them had never been

tested under both real nonlinear echoes and real mobile phone loudspeaker data.

Most of the NAEC algorithms are developed based on two different rationales, parallel
and cascaded approaches, each possessed its own merit and claimed outperforming the
other. The claim has prone to subjectivity because the algorithms are compared only
in few idealistic situations. Therefore, in the last part of the chapter, we conduct an
in-depth performance analysis and comparison of the two typical NAEC structures under

various and more practical situations.

Part of the work in this chapter has resulted in the following technical report:

e L. K. Gudupudi, M. I. Mossi, C. Beaugeant, and N. W. D. Evans, “Comprehensive
performance and stability analysis of NAEC algorithms,” Technical report, EURECOM,
Sophia Antipolis, France, 2015.
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Chapter-6

The next part of the work is our first step to align the analysis of nonlinear distortion
to its physical origins. Data analysis plays an integral role in scientific research and
understanding any unknown system and/or signals. Traditional Fourier-based data
analysis methods such as the discrete Fourier transform (DFT) and the short-time
Fourier transform (STFT) dominate the signal analysis field. These methods all assume
linear, (short-term) stationary signals. Wavelet analysis designed to handle nonstationary
data still assumes linearity. Accordingly, Fourier and wavelet methods may not be the

most suitable approaches for the analysis of nonlinear loudspeakers.

Huang et al. proposed a new approach called Empirical Mode Decomposition (EMD)
which is well-suited to the analysis of nonlinear and nonastationary signals [18]. The
work aims to provide an alternative approach to signal analysis which goes beyond
Fourier-based approaches. Unlike traditional approaches, EMD adapts the bases to the
signal itself and can therefore yield more physically relevant results. In this thesis, we
have studied the application of EMD to the problem of nonlinear distortion in hands-free
communications. The theory of the EMD and our novel solution to NAEC based on
EMD are discussed in Chapter 6.

Part of the work in this chapter has resulted in the following publication:

e L. K. Gudupudi, N. Chatlani, C. Beaugeant, and N. W. D. Evans, “Non-linear acoustic

echo cancellation using empirical mode decomposition,” in Proc. ICASSP, Apr. 2015.

Chapter-7

Since the traditional data analysis methods rely on a priori defined bases for data
representation, Fourier-based approaches are ill-suited to the analysis of nonlinear and
nonstationary signals; they assume a [inear superposition of different signal components.
As a consequence, the energy of a nonlinear signal is spread across a number of harmonics.
nonlinear distortion is then represented traditionally as harmonic distortion, even if the
link to a physical source is questionable. Chapter 7 reports our first attempt to apply
EMD in combination with Hilbert transform (Hilbert-Huang Transform) to the analysis
of nonlinear distortion produced by mobile phone loudspeakers. The results demonstrate
that the real nonlinear loudspeakers distortion is more complex. On the basis of the
results, we reported an alternative interpretation of loudspeaker nonlinearities through
the cumulative effects of harmonic content and intra-wave amplitude-and-frequency

modulation. This work calls into question the interpretation of nonlinear distortion
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through harmonic distortion and points towards a link between physical sources of

nonlinearity and amplitude-and-frequency modulation.

Part of the work in this chapter has resulted in the following publication:

e L. K. Gudupudi, N. Chatlani, C. Beaugeant, and N. Evans, “An alternative view of
loudspeaker nonlinearities using the Hilbert-huang transform,” in Proc. WASPAA, Oct.
2015.

Chapter-8

This chapter presents a summary of the findings, the conclusions of the thesis and offers

recommendations for further research.
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Part 1 begins with a general treatment of nonlinear systems and modeling which is
presented in Chapter 2. Chapter 3 discusses the major sources of nonlinearity in the
acoustic echopath of hands-free telephones. The downlink path is shown to be more prone
to nonlinear distortion, with miniature loudspeakers being a major source. Approaches
to the nonlinear modeling of electrodynamic loudspeakers are then presented. Chapter 3
also reviews a well-known nonlinear system identification technique which provides an
empirical approach to estimate model parameters. An experimental procedure to identify
real mobile phone loudspeakers is discussed later in Chapter 4. The quality of different
loudspeaker models is assessed through both objective and subjective tests. Finally, a

reliable nonlinear model is thoroughly validated as a function of its key parameters.
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Chapter 2

Nonlinear Systems and Modeling

The main problem tackled in this thesis involves nonlinear distortion in the context of
acoustic echo cancellation. Before discussing this complex phenomenon, we present an
overview of nonlinear systems and related concepts from the literature. We start with
the fundamentals of nonlinear systems in Section 2.1, followed by a review of the trends
in nonlinear systems modeling and characterization in Section 2.2. Section 2.3 presents
the common distortion metrics which are used to measure/quantify nonlinear distortion.
The material presented in this chapter also serves as an introduction to loudspeaker

modeling which is discussed later in Chapter 3.

2.1 Linear vs. Nonlinear Systems

2.1.1 Linear Systems

A system is a machine that performs a transformation between the instantaneous and
past inputs to yield an output. A system is either linear or nonlinear depending on the
nature of the transformation. Mathematically we say that the transformation is linear if

the system satisfies the following two properties:

1. Homogeneity: f(ax) = af(z), Va € R
A loudspeaker is driven with a pure tone sine wave and the output is exclusively a
sine wave of the same frequency, and if the magnitude of the output sine wave is
directly proportional to the magnitude of the input sine wave scaled by «, then the
loudspeaker is said to be linear. See Fig. 2.1.

2. Superposition: f(x1 + x2) = f(x1) + f(x2), Va1, 20 € R

The input to a loudspeaker consists of two sine waves at different frequencies. The
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Linear System

f(x:)

Figure 2.1 — Homogeneity property of linear systems

Linear System
.
Linear System
oo R
e 1 TR v+

Figure 2.2 — Superposition property of linear systems

loudspeaker output due to each input is independent and the combined output is

equal to their sum. See Fig. 2.2.

Both of these properties are necessary for a system to be linear. If the system is linear
then it is said to be characterized uniquely by its Impulse Response (IR). The output of
such a system is determined by convolving the input with the impulse response. Most
signal processing applications are well understood within a uniform theory of discrete
linear systems. However, many physical systems exhibit some nonlinear behavior, and in

such situations the linear assumption is a poor approximation of the real system.

2.1.2 Nonlinear Systems

Nonlinear systems are those that do not satisfy the above mentioned properties. Al-
ternative nonlinear models and methods have therefore been developed to design and
analyze physical systems. Nonlinear systems are those whose outputs are a nonlinear
function of their input [19]. Nonlinear systems are rarely well defined, and are an often
misunderstood field of signal processing. As we move from linear to nonlinear systems, we
shall face a more difficult situation. The superposition and the homogeneity properties
no longer hold, and hence we can no longer relate the input and output of the system
using simple linear convolution. Nonlinear system analysis tools necessarily involve more

advanced and complex mathematics.
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2.1.3 Memory Effects

A system (either linear or nonlinear) has memory when its output at any time t = ¢
depends not only on the input at that time, but also on past inputs and outputs (¢ < tp).
Equivalently, if a system has memory then such systems are called frequency dependent
(or dynamic) systems, that is the system does not have a flat magnitude response! . A
system is said to be memoryless (or static) if its output at time ¢y depends only on the

input at time tg, such systems exhibit a flat magnitude response.

Note that linearity does not mean the system magnitude response is flat. Linearity or
nonlinearity is a property of the system (either dynamic or static), independent of the
input signal type. Taking advantage of the superposition principle, linear systems can
be modeled in time domain using Auto-Regressive Moving Average (ARMA) models,
adaptive digital filters, and the like. On the other hand, nonlinear systems do not
obey the principle of superposition, hence their response depends on the input signal
amplitude. Amplitude-dependent systems are synonymous with nonlinear systems and
are interpreted as dynamic or static nonlinear systems based on with or without frequency
dependency respectively. Linear system models are inadequate to represent the complex
behavior of nonlinear systems and hence we have to consider nonlinear system models in

this case.

2.2 Modeling Nonlinear Systems

In this Section we describe the popular nonlinear models and illustrate the ways in which
they can be integrated into the current research in order to gain a better understanding

of the complex behavior of nonlinear systems.

2.2.1 Taylor Series

As discussed in the previous section, a linear dynamic system or a linear system with

memory can be described by the convolution operation

y(n) = Z h(i)z(n — i) (2.1)

where h(n) is the impulse response of the system of size L-taps and, x(n) and y(n) are

'The case of all-pass filters are an exception here. All-pass filters can have memory and still exhibits
a flat magnitude response
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input and output signals respectively. We initiate our discussion of nonlinear system
models with the static nonlinear systems. The static nonlinear system or the memoryless
nonlinear system is usually presented in the form of a Taylor series expansion [20]. The
Taylor series is a representation of a function F[z]| as an infinite sum of terms that are
calculated from the values of the function derivatives at a single point, z = a (assuming

F[z] has derivatives of every order) [20]:

y = Flz] = Fylz] + Fi[z] + Falz] + - - + Fpx]

_ f(a)—l—f/(a)(:v—a)+f;ﬁ)(x_a)Q_i__“_’_f’;(!a)

(x_a)P+...

(2.2)

where F'[] denotes any unknown nonlinear functional operator taking input z to output y;
fP(a) is the p**-order derivative of f(a) and f°(a) means f(a). In Equation 2.2, if a = 0
and provided the function f(z) can be differentiable at x = a = 0, then the expression
is known as the Maclaurin Series [20]. In practice a memoryless nonlinear system is
presented in more general form of Taylor/Maclaurin series referred to as the Power series

expansion or the Polynomial expansion:

o0
y=ao+ax+agz® + - +apa’ +- = apfz]? (2.3)
p=0
where ag, a1, as, - - - are scalar coefficients of the Taylor series? . Since in practice we can

never use the whole infinite series, we always truncate to a limited order, say P*-order,
thereby obtaining an approximate value. Such a truncated system is referred to as
Pth_order memoryless (or static) nonlinear system. For example, a P*"-order memoryless
nonlinear system with an input sinusoid of magnitude A, and frequency f will generate
at the output a fundamental (first harmonic) as well as higher order harmonics (integer
multiples of the fundamental frequency) and a constant component (ag) which represents

the DC offset of the system. This phenomenon is called Harmonic Distortion. The

2These coefficients, ay,, p € [0, 00|, should not be confused by "a" of Taylor series expansion in Eq.2.2
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magnitude of each output component is dependent on the input signal magnitude A. If
the excitation signal has multiple tones then the output contains not only the harmonics
of all input tones but also the subharmonics, which are the combination tones with
frequencies equal to the sum or difference of harmonics. This type of phenomenon is

called Inter-modulation Distortion.

2.2.2 Volterra Series Expansion

Memoryless nonlinear systems are often considered as the simplest and most commonly
implemented form of nonlinear system. Furthermore, complex nonlinear systems are the
nonlinear systems with memory or dynamic nonlinear systems. A dynamic nonlinear
system is difficult to describe. The most common method for modeling dynamic nonlinear
systems is the Volterra series. The Volterra series is a generalization of the classical
Taylor series expansion which includes a time dispersive element (memory). Since this
thesis concerns dynamic systems, the output of the nonlinear system not only depends on
the instantaneous input but also on the past inputs. To model such a dynamic nonlinear
system, the Volterra series takes the following form [16,21,22]:

y(n) = Flz(n),z(n—1),2(n—2),---] = F[x] = Fy[x]+ Fi[x]+ -+ Fp[x] +---
= hO + Z hl(n;il)x(il) + Z Z hg(n; il,ig)l'(il)l'(iz) =+ -
i1=0 i1=0i2=0

S Z Z Z hp(n;iy, iz, - ip)x(iy)z(is) - z(ip) + - - - (2.4)

i1=0i3=0  ip=0

where, x = [2(0),z(1),x(2),- -] is the input signal vector and hp(n;iy, i, - ,ip) are
the coefficients of the P**-order nonlinearity. Equation 2.4 provides the ability to capture
the memory effect of the nonlinear systems. Again this Volterra series is an infinite
series and for the practical purposes we always truncate to a limited order, say P**-order,
thereby obtaining an approximate value. Also, the summation limits in Equation 2.4 are
limited to finite values, say NN, which correspond to the memory length of the pth-order
nonlinearity. Often, nonlinear systems are considered as time-invariant, where the input-
output relation does not change with time. While modeling a nonlinear time-invariant
system with memory, the coefficients in the truncated Volterra series expansion only

depend on time differences, so the expansion in Equation 2.4 then takes the form:
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Npy—1Np—1  Np—1

P
y(n) = ho+>_ Y. > o > hyplinyia, e ip)a(n—ir)-x(n —ip)  (2.5)
1 41=0 i3=0

p= ip=0

where hy(iq, 42, ,ip) are the ph-order Volterra Kernels, which approximately charac-
terize the nonlinear system. The constant term hg can be safely neglected without any
loss of generality [22]. It is worth mentioning that the first order Volterra kernel, hj(i1),
corresponds to the linear impulse response of the system. The higher order Volterra
kernels, h,(i1,d2, - ,ip),p € {2,---, P} , are p-dimensional matrices of size NN, and
are usually assumed symmetrical in the indices 41,42, - ,7,. For example, the second
order Volterra kernel, hy(i1,72), has two input arguments and can be expressed as a

symmetrical function of its arguments:

ha(i1,i2) < ha(iz,i1)

Similarly hy (i1, 2, - - ,4p) is left unchanged for any of the possible p! permutations of the p
input arguments. By chance, if a nonlinear system has an asymmetric kernel, it can be sym-
metrized according to the techniques proposed by Wiener in [23]. It is worthwhile to note
that, if the Volterra kernels are dirac delta functions (hy(i1, 2, -+ ,ip) = apd(i1) - -~ 8(ip))
then the Volterra series in Equation 2.5 becomes ordinary power series (shown in Equa-
tion 2.3). We can also express the output of a causal P"-order dynamic nonlinear system

by the sum of the outputs of all Volterra functionals up to order P:

y(n) =3 yp(n) (2.6)

By taking the advantage of the symmetric property for a causal nonlinear system, the

output of the p'-order Volterra functional, y,(n), can be approximated without any loss
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Nonlinear system

4 F[x(n),x(n-1),...] N

hy (i1)

x=[x(n),x(n-1),...] RS y(n)
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—

y1(n)

- *‘hp(il,...,ip) 1)
N J

Figure 2.3 — A block diagram representing the P**-order Volterra kernel

of generality by taking the triangular form:

Np—1 Np—1 Np—1

yp(n) = Z Z Z hp(ilvi%"' >ip) H*’E(n_lk) (2.7)

1=0 do=i1  ip=ip_1 k=1

The symmetry property leads to a reduction in the number of coefficients required for
a Volterra series representation [19]. Equation 2.6 emphasizes the parallel structure of
the truncated Volterra series as shown in Fig. 2.3. Note that the output of a nonlinear
system modeled by a Volterra series can be interpreted as a linear combination of
the inputs to each Volterra kernel. Equivalently, the output of the Volterra nonlinear
system is linear with respect to the kernel coefficients. This fact highly simplifies the
theoretical performance analysis of dynamic nonlinear systems represented by Volterra
series. Hence Volterra series have been successfully employed in a wide variety of
applications including nonlinear system identification [8,19,24,25], nonlinear detection
and parameter estimation [21], communications [26], adaptive filtering [22], loudspeaker

linearization [27,28] and echo cancellation [4,29, 30].

2.2.3 Limitations of Volterra Series

Although there are advantages of modeling nonlinear systems with Volterra series, there

are a number of limitations. The most common limitations are [19]:

1. The number of coefficients required to model a system determine its computational

complexity. Volterra series require many coefficients to model a nonlinear system.
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24

The computational complexity increases exponentially with the increasing order
of nonlinearity P even for modest memory length N,. If N, = N,Vp then a pth.
order Volterra kernel contains N¥ coefficients. Taking account of symmetry, the
computational complexity of a P*-order Volterra kernel can be reduced to the

combination:

<N+P—1>:(N+P—1)! (2.8)

P PI(N —1)!

In order to limit the computational complexity, the nonlinear system model is often
truncated to 2" or 3" order. However, the number of coefficients can still pose a
problem and 2™ or 3"¢ order models can only describe the system nonlinearities
in a very limited operating range. For example, a truncated 3"%order nonlinear
system with memory length of 50 requires 125000 coefficients without exploiting
symmetry property and 19600 coefficients otherwise. These numbers illustrate
the computational burden of employing Volterra series to model dynamic Volterra

systems and is prohibitive for most practical applications.

. Consider developing adaptive filtering algorithms using truncated Volterra series for

nonlinear system identification applications. We call such adaptive nonlinear filters
as Volterra filters throughout this thesis. In such applications, if a system is to be
identified is "strongly nonlinear", then the truncated Volterra filters are impractical
and often diverge. Besides, the Volterra filters involve cross products between the
input signal elements (because of memory) which are not mutually orthogonal,
even for white Gaussian inputs. This kind of situation is not uncommon and makes
the eigenvalue spread of the auto-correlation matrix of the input signal very large.

This leads to poor convergence.

. Another major drawback of the Volterra series expansion is its inability to model

nonlinear systems with subharmonics and/or nonlinear systems with discontinuities.
The nonlinear phenomenon may take different forms and Volterra series cannot
be applicable in all situations. In particular, Volterra series cannot model strong
nonlinear systems that generate limit cycles, subharmonics and other perturbations.
For example, the signum function (sign(z)) which is discontinuous at z = 0, and
neither Volterra series nor Taylor series expansion exists for such types of nonlinear

phenomenon.
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2.2.4 Alternative Block-Oriented Models

Based on the limitations it is not surprising that there is always a trade-off between the
Volterra model performance and computational complexity. The inclusion of higher order
nonlinearity terms without the need for thousands of coefficients necessitates structural
changes. Although the Volterra series is impractical for the modeling of strong nonlinear
systems it has proven to be successful for the modeling of systems that exhibit weak
nonlinearity [19,31]. The term weak nonlinearity means that the off-diagonal values of
the higher order Volterra kernels (hg, hs, -+, hp) are weak compared to the significant
diagonal values. The nonlinear behavior of such weak dynamic nonlinear systems can be
represented by using only the diagonal terms of higher order Volterra kernels (i.e., one
dimensional vectors) instead of large multi-dimensional matrices. Such one dimensional
Volterra kernels are referred to as simplified (or diagonal) Volterra kernels or higher order

impulse responses.

Block-oriented structured approaches are popular nonlinear system modeling techniques
that make use of simplified Volterra kernels to describe adequately the nonlinear behavior
of the systems over the entire operating conditions. Block-oriented nonlinear models
consist of the interaction of dynamic linear and static nonlinear time-invariant systems.
In other words, block-oriented models contain multiples blocks connected in cascade
form in which the nonlinear system is always memoryless and the linear system is with
memory. The simplest and the most popular block-oriented approaches are classified into
four nonlinear models based on the interconnection of the linear and nonlinear system
blocks. They are the:

Hammerstein model;

e Wiener model;

Hammerstein-Wiener model;

Wiener-Hammerstein model

Hammerstein Model

The Hammerstein model is composed of two blocks, a memoryless nonlinear block and
a linear time-invariant block, as shown in Fig. 2.4. The input to the first memoryless
nonlinear block is the signal xz(n). Its output, w(n), is fed into the second linear block
whose impulse response is h(n), which has L-taps. Its output is y(n). Since the nonlinear

block is memoryless it can be represented using P**-order power series expansion of
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x(n) w(n) y(n)

Figure 2.4 — A block diagram of the Hammerstein model

Equation 2.3.

P
w(n) =) aplz(n)]? (2.9)

According to Fig. 2.4, the output of the Hammerstein model is therefore given by:
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where a,, are the scalar coefficients of the power series expansion and hy(i) = h(i).a,
Vp =1,---, P are the simplified (or diagonal) Volterra kernels. Equation 2.10 is popularly
known as Nonlinear Convolution as proposed in [7]. The Hammerstein model can be seen
as a special case of generalized Volterra series expansion with simplified (or diagonal)
Volterra kernels in the place of multi-dimensional Volterra kernels. Despite its simplicity,
the Hammerstein model is successful in modeling a variety of nonlinear systems such as

power amplifiers [32, 33], resonant converters [34] and miniaturized loudspeakers [35].

Wiener Model

The transposition of the linear and nonlinear blocks in the Hammerstein model leads
to what is commonly known as the Wiener model, illustrated in Fig. 2.5. In this case,

the relation between the input xz(n) and the output y(n) by means of an unknown

26



2.2. Modeling Nonlinear Systems

x(n)

Figure 2.5 — A block diagram of the Wiener model

Figure 2.6 — A block diagram of the Hammerstein-Wiener model

intermediate signal w(n) is given by:

where

(2.11)

-+ ap[h(n) * z(n)F

(2.12)

and where x denotes linear convolution and h(n) is the L-tap impulse response of the

linear block.
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x(n) K(n y(n)

Figure 2.7 — A block diagram of the Wiener-Hammerstein model

Hammerstein-Wiener Model

The Hammerstein-Wiener model is composed of three blocks, where a linear block is
sandwiched in between two memoryless nonlinear blocks as illustrated in Fig. 2.6. The
first nonlinear block is represented using a (P;)**-order power series expansion with scalar
coefficients a, whereas the second nonlinear block is represented using a (P)"-order
power series expansion with scalar coefficients b,. The input-output relationship of the

Hammerstein-Wiener model is given by:

Py
y(n) = Y bp[k(n)]"*
p2=1

P2 (2.13)

P> P L
= Z bp, Z thl (@) [z(n — @)

p2=1 p1=1i=1

where k(n) is the output of the Hammerstein model as shown in Equation 2.10 and
hp, (i) = h(i).ap, Vp1 =1,--- , P; are the simplified (or diagonal) Volterra kernels of the
first nonlinear block.

Wiener-Hammerstein Model

The Wiener-Hammerstein model, as depicted in Fig. 2.7, is composed of a memoryless
nonlinear block sandwiched between two linear blocks. Let the impulse responses of the

two linear blocks be hi(n) and ha(n) with memory lengths L; and Lo respectively. The
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output of the Wiener-Hammerstein model is represented by:

Lo
y(n) = ha(j)k(n — )
=1
JLz P I p
=2 ha(i) Y ap |Y_ h(i)z(n—i—j) (2.14)
j=1 p=1  |i=1

Ly P Ly
=> > h(j) zhl(z’)x(n—z‘—j)

j=1p=1

where k(n) is the output of the Wiener model as shown in Equation 2.11 and hy,(j) = ha(j).a,
Vp=1,---, P are the simplified (or diagonal) Volterra kernels of the nonlinear block.

The block-oriented methods have all been employed successfully for characterizing different
nonlinear systems in various areas, including signal processing and digital communications.
This thesis skims over the foundation of Volterra series in favor of applying them to
Nonlinear Acoustic Echo Cancellation (NAEC) problem.

2.2.5 Wiener Series Expansion

This chapter has thus far discussed the Volterra series expansion to represent nonlinear
systems for all its simplicity and intuitive appeal. However, there are many limitations
of Volterra series, as discussed in Section 2.2.3. Another major disadvantage of Volterra
series expansion is its lack of orthogonality in the statistical sense. The output of
two different Volterra functionals in Equation 2.6 is usually not orthogonal, therefore
their respective output time series are correlated. This non-orthogonality makes the
measurement of Volterra kernels very difficult as there is no exact method to separate
the individual Volterra kernels [19]. Norbert Wiener resolved this limitation by using
an orthogonal form of the Volterra series, called the Wiener series. The Wiener series
expansion is another class of polynomial representation of nonlinear systems and is

represented in the form:

ym) = 3 Gylky, ()] (2.15)
p=0

where Gpkp,z(n)] is a p'"-order Wiener operator, given by:
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o) p
Gplkp, z(n)] = ZZ Zk‘p 11,09, - H x(n —ij)
11=012=0 ip=0 j=1
nt(5) [ o0 oo 0o —2m
+ D12 D D kpamplinsiz, s ip—om) H z(n—1i;)| (2.16)
m=0 |i1=0i3=0  ip=0 j=1
where ky(iq,12,-- - ,ip) is the pth-order Wiener kernel and kp—omp(i1,i2, - ,ip—2m) is a

(p— 2m)th—0rder Wiener kernel produced by the pt"-order Wiener kernel. Unfortunately,
Wiener series expansion also requires thousands of coefficients to model a nonlinear
system. Even if the Wiener functionals in Equation 2.16 are orthogonal and even if
nonlinear systems may be identified more efficiently by a Wiener representation than
Volterra representation, Wiener kernels are difficult to interpret. Hence in this thesis
different versions of the Volterra series expansion are used to represent nonlinear systems.
It is not the purpose of thesis to discuss more details about Wiener series expansion

which has been analyzed in detail elsewhere [19].

2.3 Quantifying Nonlinear Distortion

The theoretical concepts of nonlinear systems and different approaches to their mathe-
matical modeling have been discussed in the previous sections. In this section we examine
the common distortion metrics to evaluate the signals with the same amount of nonlinear
distortion. It is understood from the complex behavior of nonlinear systems that the
wave-profile deformation caused by the nonlinear distortion is primarily the result of
accumulated harmonic content. Stronger harmonic content leads to more distorted output
signal waveform. Therefore it is important to gauge the total effect of the harmonic

content.

2.3.1 Total Harmonic Distortion

Total Harmonic Distortion (THD) is a popular metric for measuring the degree of
harmonic content in a nonlinear distorted signal. The THD of a given signal y is defined

by the following equation:

\ ; 2y
THD = Y="=2"" 4 100% (2.17)

Y1
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where y; is the fundamental component and y; is the root mean squares (RMS) of
successive harmonics in the output signal. THD is generally expressed as a percentage.
The higher the percentage, the more the harmonic distortion. The individual harmonic

distortion can also be determined individually for each harmonic component p:

HD, = %100% p=2,3,-- P (2.18)
1

Unfortunately, the correlation between the THD scores and the subjective evaluation
of sound quality of nonlinear distortion is very poor and hence some other alternatives

were proposed in [36, 37].

2.3.2 Linear-to-NonLinear-Ratio

Linear-to-NonLinear-Ratio (LNLR) gives the degree of nonlinear distortion in a signal.
LNLR is defined as a ratio of the power of linear content to the power of all nonlinear
content in the signal. Similar to the segmental signal-to-noise ratio (SNRseg), LNLR is
computed over short frames during speech activity, and then averaged as shown below.

Just like THD, we have considered two different LNLR’s for a given nonlinear signal

ZTout(n):

1. The linear-to-total-nonlinear-ratio (LN LRy ), which is computed according to the

following expression:

1 J
LNLRio = 5 > LNLRy,(i) (2.19)
=1

where J is the number of segments and the segmental LNLR, LN LR4(1), is given
by:

Ls—1_2 )
Zn:O J;out,l,z(n)> (220)

LNLRseg(i) = 10log10 (ZLSI 2

n=0 xout,p,i (n)

where Ly is the length of each segment, which is generally 256 samples for a 8kH z
sampling frequency signal. oy 14(n) and Tyt p,i(n) = Tout,2,:(N) + -+ - + Tour, Pi(1),
p € [2, P] are the linear and the nonlinear components respectively for segment i.
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2. The linear-to-individual (p"-order)-nonlinear-ratio (LNLR,) is computed as:

1 J
LNLR, = 5 > LNLRyeqp(i) (2.21)
=1

where LNLRgeqp(i) is given by:

Ls—1 2
0 X (N
LN LRy, (i) = 101%0( =0 Tout,1,i(")

Ls—1
Znszo ‘Tgut,p,i (n)

) ;p € (2, P (2.22)

Unlike the previous case, here Z,uz (1) is the individual p**-order (p € [2, P]) nonlinear
component. We believe that if two signals have the same LN LR;,; and LNLR, then
they have equal amounts of nonlinear distortion. This criteria is especially useful when
comparing the empirical and the mathematically modeled nonlinear signals as discussed
in later chapters.

2.4 Summary

Most physical systems are nonlinear in their behavior and are vastly more difficult to
analyse. For this reason, an ever increasing proportion of modern mathematical research
is devoted to the analysis of nonlinear systems. This chapter has been a brief introduction
to the theoretical concepts of nonlinear systems and nonlinear modeling. The concepts
discussed in this chapter are an essential prerequisite to handle nonlinearities and can be
widely applicable in the areas such as engineering, physics and biological systems. As
discussed we are particularly interested in applying the underlying nonlinear foundations
in the context of AEC.

Next, in Chapter 3, we discuss the sources of nonlinearities in the Loudspeaker Enclosure
Microphone System (LEMS). We examine in more detail the topics of loudspeaker

modeling and system identification.
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Chapter 3

Nonlinear Distortion in a LEMS

This chapter provides valuable insights into nonlinear loudspeaker modeling and system
identification. Section 3.1 discusses the general sources of nonlinearities in the acoustic
echopath. Section 3.1 argues that miniaturized loudspeakers are prone to nonlinear
distortion and hence the theory of loudspeaker nonlinearities is discussed in detail. Next,
Section 3.2 introduces the concept of loudspeaker modeling for the purpose of predicting
and preventing nonlinear distortion. Finally, in Section 3.3 we review a well-known

approach to nonlinear system identification.

3.1 Nonlinear Sources in the Acoustic Echopath

As mentioned earlier, standard approaches to Acoustic Echo Cancellation (AEC) strongly
rely on the assumption of linearity everywhere in the Loudspeaker Enclosure Microphone
System (LEMS). Any deviation from the linearity assumption leads to significant perfor-
mance loss [5]. Before discussing the impact of nonlinearity on the performance of AEC,
this section discusses the more common sources of nonlinearity in the context of Acoustic
Echo Cancellation (AEC). A general approach to acoustic echo cancellation together
with the sources of nonlinearity in the acoustic echopath is illustrated in Fig. 3.1. The
assumption of linearity in the acoustic echopath is a poor approximate of reality where
nonlinearities are introduced in almost each and every block of the LEMS. The latter
is divided into three main blocks as shown in Fig. 3.1 the downlink path, the acoustic

channel and the uplink path.

e The major sources of nonlinearities in the downlink path are:

— The Digital-to-Analog Converter (DAC), which converts the incoming far-end

signal in the digital domain (binary data) into an analog signal. The analog
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Figure 3.1 — System model illustrating a general approach to acoustic echo cancellation
and the nonlinear sources in the LEMS.

signal can either be a current signal or a voltage signal which drives the analog

power amplifier.

— The power amplifier, whose input is the low-power audio signal from the DAC,

and whose output drives the loudspeaker.

— The loudspeaker is an electro-acoustic transducer, which converts the high-

powered electrical audio signal into a corresponding sound signal.

e The acoustic channel or the acoustic space from the output of the loudspeaker to
the input of the microphone is usually considered as linear time-invariant and is

characterized by a Room Impulse Response (RIR), hyir(n).

e The nonlinear sources in the uplink path are:

— The microphone is an electro-acoustic transducer, which converts the sound/a-

coustic signals into corresponding electrical signals.

— The microphone pre-amplifier, whose input is a weak analog signal from the
microphone and whose output amplifies to a desired input level (or line level)

of the rest of the circuit.

— The Analog-to-Digital Converter (ADC), which converts the amplified analog
signal from the microphone pre-amplifier to digital data. After treatment
by several speech enhancement blocks, this digital signal will be sent to the

far-end user.
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Figure 3.2 — A block diagram representing the process of ADC and DAC operation.

e Besides the ADC/DAC blocks, two transducers and their associated amplifiers,
another subtle source of nonlinear distortion in the LEMS is the mobile phone
enclosure. The mobile phone enclosure, which is often constructed with plastic or
metal, acts as a physical coupling between the loudspeaker and the microphone.
These enclosures sometimes cause chaotic rattling and vibration effects. This
nonlinear phenomenon is extremely difficult to predict or model and often considered

to be uncorrelated noise [3]. Enclosure distortions are not considered in this thesis.

3.1.1 ADC/DAC Distortions

The process of Analog-to-Digital Conversion consists of three main stages as illustrated
in Fig. 3.2. The first step in the process is sampling, where the analog (or continuous)
signal is sampled at discrete points in time. The time interval between any two successive
points is usually constant, and is referred to as the sampling interval. The inverse of the
sampling interval is the sampling rate. In the next stage, referred to as quantization,
discrete sample values are typically rounded to their nearest integer. The last step in
the ADC process is encoding, where typically quantized samples are transferred from
integer values to binary codes. The binary representation of the discrete-time signal
is referred to as the digital signal. An ideal ADC uniquely maps a large set of analog
signals within a certain range to a smaller set of digital binary codes. A typical ADC
exhibits many physical imperfections, for example the quantization process involves many
irregularities which cause nonlinear distortion referred to as quantization noise [38]. For

the ADC/DAC, the nonlinear distortion refers to the input-output functional relationship.

A functional diagram of the Digital-to-Analog Conversion process is also shown in
Fig. 3.2. The first stage of the DAC process is the decoder, which takes the binary codes
as input and which converts them to corresponding integers. The next stage is the more
complicated de-quantization process which converts the discrete-time input signal to
an analog (or continuous) signal. Equivalently, this stage creates the electrical signal

(either current or voltage) that possess physical dimensions, i.e., amplitude and time [39].
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Figure 3.3 — Almost all power amplifiers exhibit some type of saturation effects. The
figure shows different types of possible saturation curves for amplifiers.

The last stage of the process is waveform shaping, which uses interpolation filtering
techniques to obtain the predetermined shape for the electrical signal. Digital-to-Analog
Conversion is more susceptible to nonlinear distortion due to the more sensible de-
quantization process. Increased DAC resolution inevitably tends to greater mismatches
during fabrication which cause amplitude, pulse shape and timing errors in the DAC

output signals thereby causing nonlinear distortion.

Additional nonlinear phenomena caused by the ADC/DAC blocks are discussed in [38,40,
41]. The nonlinear distortions due to the imperfections in ADC/DAC blocks are generally

static (or memoryless) and are modeled using a power series given by Equation 2.3 [39].

3.1.2 Power Amplifier Distortion

Audio power amplifiers are designed to amplify the power (voltage and current) of an
input signal to a desirable level sufficient to drive a loudspeaker. The power amplifier
uses the DC power from the mobile phone battery to produce the amplified output power.
Ideally, the only difference between the input and the output signals of an amplifier is the
energy of the signals. However, in reality, to achieve high output power levels with the
low DC power of the mobile phone battery, often means that the power amplifier operates
close to saturation, thus results in nonlinear distortion. The amplifier output signal then
contains additional components that are not present in the input signal. Power amplifiers
exhibit various forms of nonlinear distortion. Harmonic and intermodulation distortions

are typically the most significant.
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Figure 3.4 — Internal diagram of a electro-dynamic loudspeaker

Harmonic distortion occurs when a power amplifier operates close to saturation. The
output signal is then clipped at the maximum capacity of the amplifier, as shown in
Fig. 3.3. If the amplifier is wrongly biased this leads to asymmetrical clipping, where one
polarity of the signal is clipped and the other remains clean. If there is too much bias then
the output waveform exhibits positive clipping whereas low bias leads to negative clipping,
as also illustrated in Fig. 3.3. Asymmetrical clipping produces both even and odd order
harmonics in the output signal. Even with correct biasing, high input signal levels that
can also lead to symmetrical clipping at the output. If the power amplifiers are highly
distorted or over-driven by heavy clipping then the output waveform of the input sinusoid
resembles a distorted square waveform as shown in Fig. 3.3. Symmetrical clipping creates
strong odd order harmonics and weak even order harmonics. Fortunately, harmonic
distortion due to saturation effects can be modeled adequately using memoryless Volterra

series expansion (Equation 2.3).

3.1.3 Distortions in Loudspeakers

The loudspeaker is a major source of nonlinear distortion. This is because of the ever
smaller in size to be sustainable, and operating beyond their natural action. Different
types of loudspeakers are available and depend on different operating principles. Since
they are most widely used in mobile devices, this thesis focuses on electro-dynamic
loudspeakers. Electro-dynamic loudspeakers work on the principle of electro-magnetic

induction. The anatomy of a typical electro-dynamic loudspeaker is shown in Fig. 3.4.

The loudspeaker is composed of a lightweight cone (or diaphragm) which is connected to

a rigid frame via flexible suspension. The spider and the surround together make up the
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loudspeaker suspension system. The spider, usually made of cotton, allows the moving
parts of the loudspeaker to move vertically up and down but not horizontally. The top
of the cone is attached to the surround and allows the cone to move freely. The bottom
end of the cone is attached to the voice coil, usually made of copper, and is suspended in
the circular or cylindrical gap between the poles of permanent magnet. The voice coil
acts as an electromagnet when electricity flows through it. The loudspeaker suspension
system helps to keep the voice coil centered in the gap and also ensures that the moving
cone returns to a neutral position by providing a restoring force. The lower parts of the
loudspeaker, including the magnet and the gap, the top plate and the pole piece, are

responsible for producing motion and are generally referred to as the motor structure.

The loudspeaker is driven by the power amplifier. When the AC electrical (voltage and/or
current) signal from the power amplifier is applied to the voice coil, it is magnetized
and acts as an electromagnet upon the creation of a magnetic field around the coil
(Lorentz force). The magnetic field intensity and the direction are controlled by the AC
electrical signal. The electromagnet and the permanent magnet interact with each other
as would any two magnets. The input AC signal in the voice coil causes the polarity
of the electromagnet to change with respect to the frequency of the AC signal. This
change in polarity of the electromagnet repels with the polarity of the permanent magnet,
and pushes the voice coil back and forth rapidly. Since the narrow end of the cone is
attached to the voice coil, the cone also moves in and out in accordance with the voice
coil. This diaphragm excursion mechanism creates pressure waves in the air in front of
the loudspeaker. The human ears perceive these as sound waves. The amplitude and the
frequency of the input AC electrical signal dictate the moving rate and distance of the
voice coil movement, which in turn determines the amplitude and the frequency of the

sound waves produced by the cone (or diaphragm).

The basic operating principle of an electro-dynamic loudspeaker has not changed since
its invention. Even miniaturized loudspeakers work in the same way. The quality of
the loudspeaker depends on its frequency response. Humans can hear audio between
20H z and 20,000H z. In order for a loudspeaker to produce a 50H z sine tone (50cycles)
the cone diaphragm must move in and out 50 times per second. On the one hand, if
the diameter of the cone is large then it can be too heavy to vibrate quickly enough to
produce high frequencies. Large loudspeakers are thus better suitable to the production
of low frequencies. On the other hand, if the cone is small and light, it is harder to vibrate
slowly enough to produce very low frequencies, at which the cone will deform. Thus
the loudspeaker design (diameter of the cone, size of coil, etc.) determines its frequency
response and dictates quality. The design of loudspeakers reproducing the entire audible
frequency range was the greatest challenge in the loudspeaker. High quality loudspeakers

like the one shown in Fig. 3.5a will typically use multiple speaker units with different
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(a) Studio loudspeaker

(b) Microspeaker (or miniaturized loudspeaker) used in mobile phones

Figure 3.5 — Different sizes of loudspeakers

diaphragm sizes, each optimized to work in a subband of the overall audio frequency
range. In such cases, a separate crossover electronic circuit is necessary in order to
split the incoming audio signal into multiple bands. Such high quality loudspeakers
are capable of reproducing the full sound spectrum and exhibit a near flat frequency
response. Furthermore, the larger the loudspeaker the easier it is to design a high quality

suspension system that can handle any setbacks and remain linear.

Since the beginning of this decade, the mobile device market (cellular phones, smart-
phones, tablets, laptops, etc.) has been the fastest growing category of any technology in
the world [42]. Coupled with the rising demand, the drive towards miniaturization and
convergence has led to the use of ever-smaller transducers. A miniaturized loudspeaker or
a microspeaker is illustrated in Fig.3.5b. Researchers continue to advance the technology
by making loudspeakers smaller, efficient and durable, however with limited success.
Unfortunately, today’s microspeakers are still incapable of producing better sound
spectrum, especially at low frequencies. As loudspeakers get thinner, the diaphragm
excursion becomes smaller, which explains microspeakers inefficiency in producing low
frequency sounds (having longer wavelengths) as they need more space to push the
volume of air. Hence the frequency response of a typical microspeaker appears like a

high-pass filter response with cut-off frequencies close to 1000H z. This explains the
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Figure 3.6 — The complete equivalent electrical circuit of the electro-dynamic loudspeaker

linear distortion phenomenon introduced by microspeakers.

The more critical problem entails nonlinear distortion. In order to understand the sources
of nonlinear distortion, let us consider the complete equivalent electrical circuit of a
typical electro-dynamic loudspeaker, illustrated in Fig.3.6. In this thesis, the terms

microspeaker and loudspeaker are interchangeable.

The electrical domain consists of the voice coil representation with a DC resistance (R,)
and a self-inductance (L.). Uypq is the voltage induced in the electrical domain by the
mechanical domain, U;,q = Blv = Bl‘é—f, where B is the magnetic flux density in the
permanent magnet air gap, [ is the length of the voice coil conductor, v is the voice coil
velocity and x is the voice coil displacement. The product Bl is called the force factor.
The mechanical domain consists of the suspension system and the cone representation,
where R,, indicates the total mechanical resistance due to the suspension system and the
dissipation in the air load, L,, indicates the total mass of the voice coil, the cone and
the air load and K, indicates the stiffness of the suspension system which is given by
the reciprocal of its compliance (C),), K, = é The Lorentz force generated when the
voice coil is traversed by an AC current ¢ is given by F},, = Bli. The electrical and the
mechanical parts interact through the magnetic field. The acoustic domain consists of the
loudspeaker enclosure effects representation and the circuit design varies depending on
the type of the loudspeaker enclosure, e.g., vented cabinet or closed cabinet. Referring to
the electrical and mechanical domains circuits shown in Fig.3.6, when all the parameters

are assumed to be linear, the coupling between the two domains leads to a system of two
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linear differential equations:

i
U.=Rri+0.% g™
dt dt
d?x dx (3.1)
F,,=Bli=L,,— m— + K,
li 7 + R 7 + T

where U, is the voltage at the terminals as shown in Fig.3.6. In reality, it is well known
that a microspeaker is a highly nonlinear system, hence Equation 3.1 does not hold.
There are many causes of the nonlinear distortions in the microspeakers, starting from the
operating principle of the loudspeaker itself and that extends to the main components of

the loudspeaker [9]. The most regular nonlinearities are classified into four groups [9,38]:

e Electrical nonlinearities: caused by the voice coil inductance
e Magnetic nonlinearities: caused by the permanent magnet
e Mechanical nonlinearities: caused by the suspension system and the diaphragm

e Acoustical nonlinearities: caused by the nonlinear propagation of the sound waves

All these type of nonlinearities should take into account in consideration of nonlinear
distortion in microspeakers. Nonlinear distortions in the transducers are well studied by
the researchers over the last decade [9,36,37,38,43,44]. The following summarizes the
main results: Most significant nonlinearities caused by the microspeaker depend on the

displacement of the voice coil and/or the diaphragm.

Electrical Nonlinearities

Electrical nonlinearities arise mainly due to the nonlinear behavior of the voice coil
inductance (Le). Unlike in Equation 3.1, the self-inductance of the coil is not constant
but varies with respect to the voice coil position, x,,. If the voice coil moves away from
the air gap of permanent magnet then the self-inductance is lower and vice versa. This
is due to the fact that, as the voice coil moves away from the magnet, its magnetic
resistance increases and hence the current in the voice coil produces less magnetic field
causing lower self-inductance. The same magnitude of current produces more magnetic

field if the voice coil is inside the air gap of permanent magnet.

In addition to that, the self-inductance also varies with respect to the input AC current in

the voice coil. As discussed above, the AC current in the voice coil produces a magnetic

41



Chapter 3. Nonlinear Distortion in a LEMS

field with flux density B = pu(i)H, where H is the magnetic field strength and pu is the
permeability. As the input current increases, the B also increases in proportionate with
the H until the B reaches certain threshold value where it cannot increase anymore
becoming constant as the H continues to increase. This nonlinear relationship between
B and H is called magnetic saturation. If the relationship between B and H is nonlinear
then the AC current creates hysteresis loop there by increasing inductance at higher
frequencies [9]. Further, the eddy currents induced because of the changes in the B
react with the current in the coil and cause the decrease of the inductance [43]. This

non-uniformity of the voice coil inductance depicts nonlinear distortion.

According to Klippel in [9], the two curves representing the self-inductance of the voice coil
versus the displacement and self-inductance versus current are highly likely asymmetrical
for most of the loudspeakers, causing asymmetrical nonlinear distortion. As discussed
in the previous section, asymmetrical nonlinear distortion deforms the output signal
wave-profile by introducing strong odd-order harmonics and weak even-order harmonics.
This type of nonlinear distortion can be modeled by power series expansion, given by
Equation 2.3 [9].

However, Klippel states in [9] that in most cases, the electrical nonlinearities only has a

minor influence.

Magnetic Nonlinearities

When the loudspeaker is driven with a constant current, the force on the voice coil
(Fy = Bl(zp)) is not constant and is depends on its position (z,,). If the voice coil
moves into the air gap of the permanent magnet then the magnetic flux density (B)
increases and vice-versa. This non-uniform magnetic flux density affects the driving force
on the voice coil causing nonlinear distortion. Since the length of the voice coil (1) is
constant, the nonlinear function between the B and the F,, is static and hence they can

be modeled as power series expansion [9].

Mechanical Nonlinearities

Loudspeakers use a suspension system, comprises of a spider and a surround to center
the voice coil in the air gap of the permanent magnet. The suspension behaves like a
normal spring and may be characterized by the force-displacement curve, which often
show some hysteresis. This is because of the nonlinear stiffness (K,) of the spider which
is not constant but is a function of voice coil displacement (z,,) [9]. The geometry of the

suspension system may also cause a significant asymmetry in the stiffness characteristic,
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which leads to output waveform deformation. Since the nonlinear stiffness is also a
function of voice coil displacement, one can safely model the approximate value of K,
using power series expansion. However, the exact modeling of the nonlinear stiffness is
very complex as a lot of other parameters like the temperature and loudspeaker ageing

may significantly influence the stiffness parameter.

Acoustical Nonlinearities

Acoustical nonlinearities arise due to the nonlinear wave propagation. The Doppler effect
is the most dominant type of acoustical nonlinearities. As we know the diaphragm of
the loudspeaker has to move relatively larger distances at low frequencies compared to
high frequency signals. If a loudspeaker is simultaneously radiating both a low and a
high frequency then the time taken by a low frequency signal is relatively more time to
reach a fixed on-axis listening point compared to a high frequency signal. The difference
in the time arrival is proportional to the diaphragm excursion difference for low and
high frequency signals. Equivalently, this effect can be interpreted as high frequency
signals are frequency modulated with respect to the low frequency signals. This type of
acoustical nonlinearities are generally significant in horn loudspeakers and are potentially
weak in electro-dynamic loudspeakers. Hence, acoustical nonlinearities are not considered

in this thesis.

If the electric, magnetic, mechanic and acoustic nonlinearities are in-phase then one can
use a single joint nonlinear system (either with memory or memoryless) to model these
nonlinearities. If these nonlinearities are not in-phase then it is the worst case scenario,
which makes the loudspeaker a more complex nonlinear system in the downlink path
of the LEMS. In this thesis, we assume that the nonlinear distortion in the acoustic
echopath is solely originated from the downlink path of the LEMS and the multiple

sources of nonlinearities in the downlink path are totally in-phase.

3.2 Nonlinear Loudspeaker Modeling

Accurate and comprehensive modeling of a nonlinear loudspeaker is a very challenging
task. Many attempts have been made during the last two decades to accurately model and
identify the nonlinear loudspeakers. However, conventional loudspeaker models are often
inadequate to represent nonlinear behavior over a wide range of audio frequencies, and/or
at large amplitudes. In fact, nonlinear loudspeaker modeling and system identification

are themselves major and distinct areas of research [35,45].

During the early stages of research, dynamic nonlinear loudspeaker models were derived
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from the first-principles of the lumped-parameter model of the loudspeaker [35]. The
equivalent lumped element circuit diagram of loudspeaker and associated model equations
are shown in Chapter 2, Fig.3.6 and Equations 3.1 respectively. The parameters like
the inductance (L), the force factor (Bl) and the stiffness (K,,) are not constants as
in the linear loudspeaker model, but are functions of the voice coil position, x,,. Such
models derived from the first-principles are called white-box models; they reflect actual
loudspeaker physics. However, white-box models are limited to linear and/or lower order

nonlinear loudspeaker behavior.

On the other hand, black-boxr models are mathematical models that use measured
input/output data to develop loudspeaker models without any physical insight. Such
black-box models can be useful for simulation and prediction or for the design of
loudspeaker systems. Black-box modeling typically involves a model structure which
describes and/or emulates nonlinear system behavior. With a black-box model, we have

a time-domain input/output mathematical relationship of the following type:

Zout(n) = f(x(n)) (3-2)

where = and z,,; are the input and output of the loudspeaker respectively and f(.)
represents a nonlinear function described by a model structure that maps x(n) to gy (n).
Hence, model structure selection is critical and yet there is no standard approach to its
design. The model structure can be designed according to our knowledge of nonlinear
distortion source. The most common nonlinear distortion for miniaturized loudspeakers
is harmonic distortion [46,47,48,49]. This makes the application of Volterra series
expansions particularly well suited to the modeling of nonlinear loudspeakers. Volterra

series expansions are discussed in Chapter 2.

Ambiguity over Memory

The modeling of nonlinear electrodynamic loudspeakers with Volterra series was first
proposed in the early 1960s [50]. From the late 1980s, there has been a continuous effort
in the application of Volterra series to obtain a comprehensive and precise nonlinear
loudspeaker model [51]. The well-known (truncated) Volterra series expansion describing

the modeling of nonlinear loudspeaker is given in Equation 3.3:
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where hy(i1) is the linear impulse response, and where hy(iy, 42, - - ,i,) are the pt"-order
Volterra Kernels, which represent the pt"-order nonlinearity with memory length Np.
Although the interpretation of the Volterra series is straightforward, the measurement of
the Volterra kernels is extremely difficult. Few attempts reported in the literature were

only moderately successful due to complexity and the over-parametrization problem [52].

Coming to scenario of miniaturized loudspeakers typically used in mobile devices, there is
an unresolved ambiguity in the literature over frequency dependent (or memory) behavior
of the nonlinearities. Some researchers considered such miniaturized loudspeakers as
complex nonlinear systems and hence looked at frequency dependent nonlinear behavior,

thereby modeling loudspeakers using Equation 3.3 [9,12,30,53].

On the other hand, assuming the nonlinear distortion in the miniaturized loudspeakers
is mostly due to saturation (or clipping), researchers concluded such nonlinear distortion
is rather weak and frequency independent [46,47,48,49]. Hence they can be modeled as

memoryless Volterra series (or power series) expansions:

P
Pour(n) = 3 aylx(n)] (3.4)
p=1

where a,, are scalar coefficients. However, this representation makes sense only when the
frequency response of the loudspeaker is flat throughout the audible frequency band. In
contrast, our experiments with the real mobile phones loudspeakers re-confirmed their
inability to produce accurate sounds, especially at low frequencies (More details are given
in the next Sections). Hence, miniaturized loudspeakers have a frequency-dependent

response causing what is known as linear distortion.

Consequently, a practical alternative loudspeaker model that takes in to account both the
memoryless nonlinear distortion and linear distortion with memory is the Hammerstein

model, as discussed in Chapter 2. The input-output relationship of the Hammerstein
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model reads:

Tout(n) = Z Z hp(i)[x(n — i) (3.5)

where hy (i) are the simplified (or diagonal) Volterra kernels of the loudspeaker. If these
simplified Volterra kernels of a loudspeaker are identified, then it is possible to reconstruct

the loudspeaker’s output for any given input signal z(n).

Due to the different forms in which nonlinear characteristics occur in real loudspeakers we
also have a diversity of nonlinear model structures accessible in the literature [35,45]. We
concentrate primarily on the above discussed Volterra series based models in this thesis.
For the sake of computational simplicity, we assume that the loudspeaker is a weak or
memoryless nonlinear system. Next Section focuses on the Hammerstein model system

identification from measured input-output data of a real mobile phone loudspeaker.

3.3 Loudspeaker System Identification

In this Section, loudspeaker system identification process is discussed by evaluating the
unknown simplified Volterra kernels (hy, for p € [1, P]) in the Hammerstein model shown
in Equation 3.5. The Hammerstein model is also referred to as the generalized polynomial
Hammerstein model (GPHM) can be viewed as a structure illustrated in Fig. 3.7. The
model is made up of P parallel branches, with each branch consisting of a pt"* power
static nonlinear function followed by a linear filter h,, = [h,(0), hy(1), -, hy(L —1)]T for
p € [1, P] of length L taps. Given both the input and output signals xz(n) and zyy(n),
the problem of system identification consists then of estimating the unknown linear filters
h,, p € [1, P]. h; can be treated as linear Impulse Response (IR) and hy,, p € [2, P] are

(the so-called) higher-order impulse responses of the loudspeaker under test respectively.

For this purpose of loudspeaker system identification, there are a wide variety of iden-
tification techniques and excitation signals available in the literature. Several system
identifications techniques are discussed in [45]. Further in this thesis we adapted a
straight forward identification procedure called "nonlinear convolution technique" as
first proposed in [7,17]. The block diagram illustrating the procedure of the nonlinear
convolution technique is shown in Fig. 3.8. The routine of the nonlinear convolution

technique is:
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Figure 3.7 — The generalized polynomial Hammerstein model.

e First, an exponential sine-sweep signal and its inverse filter are generated.

e Use sine-sweep signal as an excitation signal to the loudspeaker under test and

record its distorted output signal.

e The convolution between the distorted output signal and the inverse filter results
a "full" IR, which is a set of impulse responses g, p € [1, P] corresponding to
the nonlinear distortion of the loudspeaker. (An example of "full" IR is shown in
Fig. 3.13Db)

e The measured impulse responses g, p € [1, P] can be easily separated and post
processed to estimate the desired simplified (diagonal) Volterra kernels h,, p € [1, P]

The following sub-sections describe in detail each of the four blocks shown in Fig. 3.8.

3.3.1 Excitation Signal Generation

As the loudspeaker model identification is carried out from the input-output signals,
the choice of excitation signal plays a key role on the quality of the identification. As
discussed, the so called nonlinear convolution technique employs an exponential sine-
sweep (or a chirp) signal as an excitation signal. An exponential sine-sweep (or a chirp)
signal is a sinusoidal signal of length T" with exponentially varying frequency, ranging

from fi to f2 is generated with the following analytical expression [17]:
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Figure 3.8 — Block diagram representing the process of nonlinear convolution technique.
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where a(n) and @(n) are the amplitude and phase of an exponential sine-sweep signal
respectively. The time-domain representation of an exponential sine-sweep signal is shown
in Fig. 3.9. The spectrogram and the magnitude response of an exponential sine-sweep
signal are shown in Fig. 3.10a and Fig. 3.10b respectively. These plots are generated in
Matlab covering the frequency range between f; = 20H z and fo = 20kH z in 10 seconds
duration and is sampled at a frequency of Fy = 48kHz. As shown in the figure, an
exponential sine-sweep signal does not have a flat spectrum, but the magnitude decreases
by 3dB per octave. As the frequency of the sine-sweep signal increases exponentially
with time, the time duration during which the signal oscillates at a particular frequency

decreases. As the time duration decreases, the area under the signal also decreases, hence

48



3.3. Loudspeaker System Identification

the frequency response plot indicates a drop of 3dB in magnitude per octave.
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Figure 3.9 — Exponential sine-sweep signal in the time domain

3.3.2 Inverse Filter Generation

One of the advantages of employing an exponential sine-sweep signal as an excitation
signal is its ease of generating an inverse filter for deconvolution. The inverse filter or
the inverse sine-sweep signal, x;n,(n), is simply the time-reversal of the input sine-sweep
signal (z(n)), as shown in Fig. 3.11. However, the time reversed sine-sweep signal also
exhibits a drop of 3dB per octave in its magnitude response, as shown in Fig. 3.11 and
this would not result in a much needed flat spectrum after deconvolution with the sweep
signal. To overcome this issue, an amplitude modulation of envelope 6dB per octave
is applied to the time reversed exponential sine-sweep signal such that the convolution

between the z(n) and x;,,(n) gives a Dirac delta function :

n
(%)

Tinp(n) = x(Ng —n — 1) x exp(— .T) (3.7)

where N; = F5 T is the length of the sweep signal. Fig. 3.12 shows the time domain
representation of the inverse sine-sweep signal after amplitude modulation along with
its magnitude response. This plot clearly demonstrates the uprising 3dB per octave

spectrum.
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Chapter 3. Nonlinear Distortion in a LEMS

3.3.3 Deconvolution: "Full" IR Measurement

The major advantage of employing an exponential sine-sweep signal as an excitation
signal resides in the appearance of nonlinear distortion artifacts. Fig. 3.13a illustrates
the spectrogram of a nonlinearly distorted sine-sweep signal, the right most curve is the
fundamental sweep preceded by its 27¢, 3" and 4**-order harmonics respectively. In
general IR measurement techniques, it is relatively difficult to separate the linear IR from
the nonlinear distortion artifacts [54]. The nonlinear convolution technique overcomes
such limitations. Deconvolution of a distorted sine-sweep signal with an inverse filter
results a "full" IR, which is a combination of the linear IR and the higher-order IR’s
as shown in Fig. 3.13b. The rightmost IR is the linear IR, which is preceded by the
2"_order IR and so on. Hence, with a single experiment based on this technique, a near
perfect linear IR is measured without the effect of nonlinearities while nonlinearities of

various orders can be identified simultaneously.

The "full" IR of the loudspeaker under test can be computed according to Equation 3.8,
given by:

P
Z(n) * Tipy(n) = Z gp(n + Atp) (3.8)
p=1

where Z(n) and x;,,(n) are the distorted exponential sine-sweep signal from the loud-
speaker and the inverse filter respectively. gj is the linear IR and g, = [g,(0), gp(1),- - , gp(L—
1)]T, p € [2, P] are the higher-order IR’s occurred in the "full' IR because of any non-
linearities in the loudspeaker are accumulated with the time lag At, from the linear
IR:

(3.9)

where p € [2, P] is the harmonic distortion order. For example, Aty and Ats indicate the
time lag from the linear IR to the 2" and 3"-order IR’s respectively. This time lag is
an important property of the exponential sine-sweep signal and can be understood from
Fig. 3.10. At one instance of frequency, say 1000H z (see Fig. 3.10), the harmonics have
lesser group delay than the fundamental i.e., the time taken by the fundamental to reach
an instantaneous frequency (say 1000Hz again) is high compared to its harmonics. This

time difference is constant irrespective of the frequency and is given by At, [17].
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Chapter 3. Nonlinear Distortion in a LEMS

It is important to note that, if the system under test is linear, for example a high quality
loudspeaker, then Z(n) * iy (n) in Equation 3.8 results in the linear IR of the system

and no nonlinear artefacts or distortion can be noticed in the "full" IR.

3.3.4 Computation of the Simplified Volterra kernels

The measured higher-order IR’s (g, = [9,(0), gp(1), -+ , gp(L — 1)],p € [1, P]) computed
using Equation 3.8 are not directly the expected simplified (or diagonal) Volterra kernels
(hy,p € [1, P]) in Equation 3.5. For a given exponential sine-sweep excitation signal with
amplitude a(n) = 1, the output of a loudspeaker can be emulated using the measured
higher-order IR’s, gp,p € [1, P):

P

Xout = Z gp * sin(pd) (3.10)
p=1

where sin(®) is an exponential sine-sweep signal generated using Equation 3.6 and x
represents linear convolution. However, the response of the polynomial Hammerstein
model to the same exponential sine-sweep in terms of simplified Volterra kernels h,, =
[hp(0), hp(1), -+ hy(L — 1)), p € [1, P, is given by:

P
Xout = Z h,,  sin (D) (3.11)
p=1

The relation between Equations 3.10 and 3.11 is discussed in detail in [7,8] which also
describes a procedure to compute the simplified Volterra kernels h,,,p € [1, P] from the

measured higher-order IR’s gy,,p € [1, P].

Here we discuss the solution for a specific case of calculating the first 5 simplified Volterra
kernels as discussed in [7]. The trigonometric formulas for a sine function can be written

as:
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1 1

sin?(wn) = 5 5008(2&)”)

3 3 L.
sin’(wn) = Zsm(wn) - Zsm(f}wn)

4 3 1
sin*(wn) = 3 icos(an) + —cos(4wn)

.5 5 . 5 1
sin’(wn) = gsm(wn) - Esm(?)wn) + Esm(Bwn) (3.12)

Substituting Equation 3.12 in Equation 3.11 for P = 5 and then transforming Equa-

tions 3.10 and 3.11 into frequency domain gives the following solution [7]:

Hy, = G1+3G3+5G5

Hy = 2jGa+8jGy

Hs = —4G3— 20Gs

Hy = —8jG4

Hs = 16Gs (3.13)

where, H, and G), for p € [1,5] are the Fourier transforms of h, and g, respectively.

After computing the simplified Volterra kernels from the measured "full" IR, the nonlin-
ear convolution can be efficiently implemented using Equation 3.5 for mathematically
reconstructing the loudspeaker nonlinear distortion. This nonlinear system identification
technique has proven to be fast and robust approach for the emulation of nonlinear
distorting systems [7]. Several extensions to the standard procedure of nonlinear convo-
lution technique have been recently developed and interested readers can find additional

details in [45,55].

3.4 Summary

In this chapter, we have focused on nonlinear distortion in a LEMS, loudspeaker mod-
eling and system identification. Sources of nonlinear distortion within a miniaturized

loudspeaker have been discussed in detail. We also presented three nonlinear models
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Chapter 3. Nonlinear Distortion in a LEMS

suitable for loudspeaker modeling: Volterra series (with memory), power series and gen-
eralized polynomial Hammerstein (GPHM) models. Assuming nonlinear signal distortion
generated by the miniaturized loudspeakers as weak, we chose to ignore the nonlinear
memory effects in this thesis. Hence, in the next chapters, we are going to use either
power series or GPHM models for loudspeaker modeling. Unlike power series model,
GPHM model considers the frequency dependent (memory) linear IR while modeling
loudspeaker. Comparison between these two models and the limitations of potentially

applying each model to the loudspeaker modeling are discussed in Chapter 4.

In addition, we have discussed a well-known approach to nonlinear (loudspeaker) system
identification, referred to as nonlinear convolution, first proposed in [7,17]. The method
uses an exponential sine-sweep signal as an excitation signal and allows the simultaneous
identification of both linear and higher-order impulse responses (called as "full" IR in this
thesis) of a nonlinear system. The simplified or diagonal Volterra kernels, computed from
the measured "full" IR, can be used for mathematically reconstructing the loudspeaker
nonlinear distortion. The material in this chapter will be helpful in identifying a real

mobile phone loudspeaker, as discussed in the next chapter.
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Chapter 4

Comparative Studies of
Simulated and

Real-Device Experiments

This chapter aims to present comparative studies of real-device and synthesized loud-
speaker signals. Section 4.1 discusses the experimental design used for the identification
of a real mobile phone loudspeaker. Once the loudspeaker is identified, real-speech test
signals are recorded using the same loudspeaker to compare the outputs of both the

empirically estimated nonlinearities and the different nonlinear models.

Section 4.2 presents the objectively evaluated comparative results, which show that
nonlinear distortion estimated with the GPHM better reflects that measured empirically.
This work was published in [56].

Finally, Section 4.3 reports the validation of the GPHM model and the corresponding
identification technique as a function of its key parameters. This later work was published
in [57].

4.1 Identification of a Real Mobile Phone Loudspeaker

This section reports the application of nonlinear convolution technique to identify the

simplified Volterra kernels of a real mobile phone loudspeaker.

4.1.1 Experimental Setup

The experimental setup used for the identification of mobile phone loudspeakers is
illustrated in Fig. 4.1. A mobile device is placed before a head and torso mannequin
at a distance of 32cm. The device is configured to operate in hands-free mode and at
maximum volume for which nonlinear distortion is assured. A Personal Computer (PC)

is used to store and record all audio data sent to, or received from a mobile device via
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Experiments

a high-quality external sound card and a network simulator [58]. As shown in Fig. 4.1,
an excitation signal is played by the PC, transmitted through the network simulator to
the mobile phone and then played by the mobile phone loudspeaker. The loudspeaker
output is then simultaneously recorded with an independent, high-quality microphone
mounted in the ear of a mannequin. The mannequin is connected to the PC via a high-
quality external sound card and a software called ACQUA (Advanced Communication
QUality Analysis) controls the signal flow between the mannequin and the PC [59]. Some
additional non-intrusive tests confirmed that the nonlinear distortions are specifically
introduced by the mobile phone and that all other elements in the acquisition chain are

purely linear processing.

Network .
Mobile
N . N |
PC Simulator Device —"
+ (CMU)
External
Sound Card

Figure 4.1 — Experimental setup used for the identification of a real mobile phone
loudspeaker

4.1.2 Data Acquisition

The measurements are performed using an exponential sine-sweep signal generated using
Equation 3.6, with amplitude a(n) = 1, frequencies f; = 20Hz and fo = 4kHz. The
sine-sweep signal is 10s in duration and is sampled at a frequency of 8kH z as illustrated
in Fig. 4.2a. In accordance with the sine-sweep signal, the inverse filter or the inverse
sine-sweep signal is also generated using Equation 3.7. The sweep signal is played by the
mobile phone loudspeaker, using the procedure discussed in Section 4.1.1, and recorded
with the microphone mounted in the ear of a mannequin. The spectrograms of the input

signal and the recorded signal are shown in Fig. 4.2.

Fig. 4.2b demonstrates the additional harmonics produced by the mobile phone loud-
speaker and it is clear that the nonlinearities are dominant until 5*-order. Further,
examining Fig. 4.2b the spectrogram indicates the presence of strong odd order harmonics

and weak even order harmonics, implying that the nonlinearity is asymmetric.
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Figure 4.2 — Representation of the input and the output signals of a mobile phone
loudspeaker
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4.1.3 Deconvolution

The deconvolution process is realized in spectral domain by linear convolution' of the
loudspeaker recorded signal with the inverse filter. The deconvolution leads to the "full"
IR of the loudspeaker, a sequence of IR’s clearly separated along the time axis as shown
in Fig. 4.3. The time lag between the linear IR and the p"-order IR can be computed
using the Equation 3.9 and selectively separate each IR of length L from the "full" IR.
The linear and the 3"%order IR are shown in Fig. 4.4. The separation between the IR’s
depends on the duration (7°) of the sweep signal, if 7" is not sufficiently long that would
result in tightly packed (inseparable) higher order IR’s.

Further insight into nonlinear distortion of the loudspeaker may be gained by looking at
the frequency responses of the IR’s, illustrated in Fig. 4.5a. The frequency response of
the linear IR is clearly not flat but frequency dependent, therefore the memory effect

must be taken into consideration while modeling the linear response of the loudspeaker.

Srd 5th

On one hand the frequency response curves of the odd order (3" and 5"*-order) harmonic
IR’s appear similar to the one of the linear IR with only a change in the magnitude
level, confirming memoryless nonlinear phenomenon. On the other hand the frequency
response curves of even order (2"¢ and 4*"-order) harmonic IR’s exhibit a little variation
at certain frequencies, indicating memory effect. However, considering their relative weak
magnitude with respect to the odd order harmonics, one can safely ignore the memory

effect.

4.1.4 Equalization

The recordings described above were collected in a non-anechoic acoustic booth. While
reverberation is low, recordings reflect both loudspeaker behavior and room acoustic
effects. Therefore, the measured higher-order IR’s gy, p € [1, P] are thus equalized in

order to suppress the influence of the room impulse response (RIR):

8eqp = heg * gp; p € [1, P] (4.1)

where hey = [heq(0), heg(1), - -+, heg(Leqg — 1)1 is an RIR equalization filter of length Leg.
It is estimated by inverting the RIR of the acoustic booth. The assumed linear IR of the

acoustic booth was measured using a similar procedure to that described in Sections 3.3.3

'Multiplying an input signal and an impulse response in frequency domain implies circular convolution
in time domain. In order to make it linear convolution, the signal has to be padded with sufficient zeros
before multiplication in frequency domain.
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Figure 4.4 — Time domain representation of the linear IR (left) and the 3"%-order IR of a
mobile phone loudspeaker

and 4.1.1 . Here though, the mobile device is replaced with a high quality loudspeaker
with a flat frequency response in the region of interest (audio frequency range). An
equalization filter h,, which inverts the IR of the acoustic booth, was designed according

to the approach described in [60]. Fig. 4.5 illustrates the frequency response curves
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of the loudspeaker IR’s before and after equalization. The acoustic booth where the
experiments were conducted has a very low reverberation hence the impact of RIR
equalization has minimal effect on the frequency response curves. Acoustically the low
frequencies in the room/acoustic booth are the most difficult to absorb and hence the
frequency response at low frequencies gets a boost [61]. Therefore, after equalization
most noticeable change can be observed in the low frequency region of the curves. Note
that the influence of room effect on the frequency response curves has been treated by
considering only the magnitude response of the RIR but the phase response is beyond

the reach of our Equalization.

The simplified Volterra kernels h,, p € [1, P] of a mobile phone loudspeaker can be
computed as a linear combination of the equalized higher-order IR’s geqp, p € [1, P]
using the method described in Section 3.3.4. Given the simplified Volterra kernels of a
mobile phone loudspeaker, its output can be synthesized according to the GPHM using
Equation 3.5. The choice of filter length L and order of nonlinearity P involves a trade-off

between the accuracy and the computational complexity of the loudspeaker model.

4.2 A Comparison of Loudspeaker Models

Most research in NAEC assumes loudspeaker as memoryless nonlinear system as reported
in later chapters [46,47,48,49]. We have discussed Volterra series based memoryless
nonlinear models in the previous chapters. Modeling loudspeaker nonlinear distortion
with lower complexity power series (or power filter or polynomial series) approach is today
the most popular. Any research in NAEC depends on the accuracy of the loudspeaker
model, be it used for NAEC itself, or to artificially synthesize nonlinear test signals.
While the power series approach typically delivers efficient NAEC performance in well-
controlled simulations, even slight model inaccuracies tend to degrade performance in real
conditions. The generalized polynomial Hammerstein model has thus been investigated as
an alternative model. A question now arises regarding the model accuracy: which model
better reflects the real loudspeaker nonlinear distortion? This section investigates the
suitability of modeling nonlinear loudspeaker distortion with power series approach. Also,
the accuracy of the two models are compared in estimating the empirically measured,

real loudspeaker outputs. The results are published in our first paper [56].

4.2.1 Synthetic Signal Generation

In the following we report the aspects of the synthetic loudspeaker output signal generation
using the PSM and GPHM models. We compare loudspeaker output signals x gy (n)

synthesized from clean speech input signals x(n) accordingly to Equations. 3.4 and 3.5
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for the PSM and GPHM respectively to real empirically measured signals z,¢q;(n). These
are obtained from the same clean speech signals played by the mobile device loudspeaker
and subsequently recorded at the mannequin ear using the experimental set-up described
in Section 4.1.1. This signal is similarly equalized according to he, (see Section 4.1.4) to

remove room-effects.

For the GPHM, we used the simplified diagonal Volterra kernels h,,, p € [1, P] empirically
measured from a mobile phone loudspeaker as described in the previous section for the
signal generation. We have considered the kernels of order P = 5 each of length L = 256
taps, as illustrated in Fig. 4.2b they are more dominating than the other higher order
nonlinearities. Consequently, the GPHM structure has 5 parallel branches as in Fig. 3.7
and using a clean speech signal as input x(n), the output signal has been generated

according to Eq. 3.5.

For the PSM, we set the gain a; = 1. For the comparison purpose, we also used 5"
order PSM here. Weighting components a,, for p € [2,5] are chosen such that the mean
linear-echo-to-total-nonlinear-echo ratio (LN LR;,) and the mean linear—echo—to—pth—
order-nonlinear-echo ratio (LNLR,,) (as discussed in Section 2.3.2) are the same as those
of the GPHM. Once we get the weighting components a,, p € [1, 5], using the same clean

speech signal as input x(n), the output signal has been generated according to Eq. 3.4.

4.2.2 Assessment

The speech signal recorded at the ear of the mannequin (2,¢q(n)) was compared to
the results obtained according to the two models. The spectrograms of the input clean
speech signal, a real mobile phone loudspeaker response, and the two synthesized signals
are illustrated in Fig. 4.6. It is obvious from the figure that the signal synthesized with
the GPHM is more identical to the real recorded (or measured) speech signal. The
power series model assumes a flat frequency response which a loudspeaker linear IR
does not have, that explains the difference in the distortion mechanism compared to the
real recorded signal. Not surprisingly, the signal synthesized with the PSM has more
energy at the low frequencies like the original clean speech signal which are actually not
present in the real recorded signal. The real recorded signal has more energy in the high
frequency region (~> 1500) due to nonlinear distortion which the signal synthesized
using the GPHM better reflects compared to PSM.

Further, these observations are absolutely correlated with the PESQ? scores illustrated
in Fig. 4.7. In Fig. 4.7(a) the PESQ scores of the PSM and the GPHM synthesized

2Perceptual Evaluation of Speech Quality (PESQ) is the ITU-T P.862 standard objective metric to
measure speech quality [62].
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signals are computed by comparing with the real recorded loudspeaker signal (cq(n))
as a reference. The synthesized signal with GPHM attains a higher value, indicating it
is a more accurate estimate of the nonlinearly distorted real recorded signal. On the
other hand, Fig. 4.7(b) indicates the PESQ scores of the PSM, the GPHM and the real
recorded signal by comparing with the input clean speech signal (z(n)) as a reference.
The GPHM and the real recorded signal attains almost similar scores, indicating their
similarity once again. The synthesized signal with PSM attains higher PESQ score when
clean speech signal used as a reference, which indicates it is more close to clean speech
signal than the distorted real recorded signal. Therefore, even though the GPHM and
the PSM signals have equal amounts of nonlinear distortion, the GPHM more closely

approximates the real nonlinear distortion of a loudspeaker.

Besides, the performance is also assessed objectively in terms of the Cepstral Distance
(CD):

CD(m) = Z [ereal (m) - Cﬂvmodez (m)]Z (4‘2)
Ly

where Ly is the length of the frame. Cy, ., (m) and C.

2, oq0 () are the column vectors of

cepstral coefficients from the real recorded signal z,., and the model output x,,o4e; of

the mt" frame respectively.

C

Treal

(m) = IDFT{In|DFT[2req(mLy — 1)+ Zpeqt((m + 1)Ly)][} (4.3)

In all cases measurements come from consecutive frames of 32ms (Ly = 256) in length.
The reason why CD is that, it provides a more perceptually correlated assessment
than alternative approaches based on energy or power differences. The CD profiles
illustrated in Fig. 4.8 show that the difference between the measured signal and that
synthesized with the GPHM model is consistently lower than that between the measured
signal and the signal synthesized with the PSM model. The GPHM model thus better
reflects the behavior of real nonlinear loudspeaker. This result was also confirmed with
extensive informal listening tests which showed that signals synthesized with the GPHM
model sound less artificial and are perceptually closer to the measured signal than those

synthesized with the power series model.
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Figure 4.8 — An illustration of the cepstral distance between real measured loudspeaker
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Figure 4.9 — Application of the nonlinear loudspeaker model. Input signals are processed
according to the nonlinear loudspeaker response (LSR) and a room impulse response
(RIR). The loudspeaker response (LSR) is synthesized using the GPHM model in Fig. 3.7

4.3 Validation of the GPHM

In this section, the GPHM model accuracy is investigated as a function of the key
parameters, namely the number of filter taps L and the order of nonlinearities P. In this
way, we can judge the influence of these parameters on the model performance. The

results are published in our second paper [57].

4.3.1 Device Characterization

This work involves three different mobile phones (smart-phones). First, the simplified
diagonal Volterra kernels hy,p € [1, P| for the three mobile phone loudspeakers are

empirically computed using the procedure described in Section 4.1. Fig. 4.9 shows the
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Figure 4.10 — An illustration of nonlinear characterization and model performance. The
first row illustrates the response of each of three devices to the exponential sine-sweep
input signal. Rows two and three illustrate the performance of the resulting nonlinear
model to sine-sweep and real-speech input signals respectively. Results shown for different
orders of nonlinearity P (vertical axes) and Volterra kernel lengths L (horizontal axes).

practical model topology. Input signals undergo two-fold filtering by: (i) a nonlinear
loudspeaker response (LSR) and (ii) a room impulse response (RIR). Here we equalized
all our responses as discussed earlier in Section 4.1.4 but the latter RIR section allows
the application of the nonlinear model in any acoustic environment different to that
used for practical measurements. In applying the nonlinear model, for all experiments
reported below, we used the same acoustic booth RIR that have been measured in model

estimation. It has a fixed length of 1024 taps at an 8kH z sampling frequency.

Model performance was assessed by comparing model and real loudspeaker outputs for a
common input signal. Two different input signals were used: (i) the same exponential

sine-sweep signal used in the experimental procedure and (ii) a real speech signal. Real
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loudspeaker signals were recorded at the ear of the mannequin using the same experimental

test-bed shown in Section 4.1.1. All signals are pulse code modulation signals sampled at

8kHz.

Performance is assessed objectively in terms of the Mean Cepstral Distance (MCD)

between the real recorded signals and model estimates:

CD(m) - Z [ereaz (m) - Cﬂ?modez (m>]2
Ly
MCD = mean(CD) (4.4)

Lower MCDs indicate that the model more accurately reflects the real measured outputs.

4.3.2 Results

The response of all three devices to the exponential sine-sweep input signal is shown in the
form of spectrograms in the top row of Fig. 4.10. The 1st and particularly the 3rd device
(left and right columns in Fig. 4.10) exhibit significant nonlinear distortion; spectrograms
show additional higher order harmonics in addition to the input exponential sine-sweep
input signal. The nonlinearity is furthermore asymmetric; odd-order harmonics are more
significant than even-order nonlinearities. We note that some independent studies [9,63]
have reported similar observations. In contrast, the second device exhibits comparatively

less nonlinear distortion.

Results for each of the three devices are also illustrated in Fig. 4.10. The middle row
shows results for the exponential sine-sweep input signal whereas the lower row shows
results for the real-speech input signal. In all cases, results are shown for different orders
of nonlinearity P (vertical axes) and different Volterra kernel lengths L (horizontal axes).

Blue colours illustrate lower MCDs whereas red colours indicate higher MCDs.

For satisfactory performance, the order of nonlinearity P should be high enough to
capture the principal sources of nonlinear distortion, i.e. the most dominant harmonics.
The simplified Volterra kernel filter length L should be sufficiently high so as to capture
accurately both linear and nonlinear loudspeaker behavior. Both parameters are however

a compromise between performance and computational efficiency.
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Experiments

Exponential sine-sweep input

The response of each device to the exponential sine-sweep input signal is illustrated in
middle row of Fig. 4.10. For the 1st and 3rd devices, the MCD is higher for lower values
of P, irrespective of the number of filter taps L. The MCD nonetheless decreases with
increasing P. This behavior is not observed for the 2nd device where, in any case, the
level of nonlinear distortion is comparatively low. It is nonetheless reassuring that there
is negligible change in model accuracy for increasing (overestimated) P. For the 1st and
2nd devices, the MCD decreases as the kernel length L increases. However, for the 3rd
device, with a value of P > 2 performance is relatively stable for varying L. One possible
explanation for such behavior is that the highest order of significant nonlinearity exceeds
that of the model (P = 10). Since the 3rd device exhibits nonlinearity greater than 10th
order, P is not sufficient in this case to reduce the MCD. Accordingly, values of P > 10

would be needed where processing capacity allows.

Real-speech input

Results for real-speech inputs are illustrated in the last row of Fig. 4.10. Due to aliasing
caused by the static nonlinearity modeling, MCD values are generally lower for speech
than sine-sweep inputs. For the 1st device, the best performance is obtained for lower
values of P and higher values of L. For the 2nd device, performance is best for higher
values of L but is independent of P. For the 3rd device performance is best in the case
of P =1 and values of L around 64.

These results show that, for the two cases where nonlinearity is significant, the linear
model (P = 1) outperforms the nonlinear model (P > 1) in the case of real-speech
inputs. Despite the estimation of the nonlinearity is based on procedure that permits
advanced analysis of nonlinear system [7,8], our results show that this model does not
match with approximation of nonlinearity observed with speech excitation signal for
mobile devices. This leads to questions about the reasons of the observed mismatch. One
explanation for this behavior lies in the wider variation in amplitude for speech signals
compared to sine-sweep signals; lower amplitude speech signals may provoke significantly
less nonlinear distortion. It is also possible that the model obtained from the system
response to sine-sweep signals is overly simplistic. Whereas the sine-sweep signal consists
in a single sinusoidal frequency at any instant, speech has a far more complex spectral

density whereas the model neglects inter-spectral influences.
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4.4 Summary

This chapter presents an overview of nonlinear loudspeaker modeling and an experimental
way of identifying the nonlinearities of the loudspeakers used in mobile phones. This
chapter also reports our work to assess the suitability of Volterra series derivatives in
modeling the nonlinear distortion introduced by the mobile phone loudspeakers. We
compared the synthesized outputs of two loudspeaker models to empirically measured, real
loudspeaker outputs. The work suggests that the generalized polynomial Hammerstein

model (GPHM) approximates more reliable practical nonlinear loudspeaker behavior.

This chapter also presents the key results of the GPHM model validation for the char-
acterization and modeling of nonlinear loudspeakers. The simplified Volterra kernels,
which characterize the nonlinear system, are empirically measured and then used to
predict the response of three different mobile phones. Whereas validation with the same
sine-sweep input signals used for characterization shows the potential, the model yields
worse performance than a conventional linear model in the case of real-speech inputs.
Benefits and limitations of the GPHM identification technique are discussed along with
requirements for updating this technique to improve the ability to simulate behavior of

complex loudspeaker systems.

The work highlights the challenge to model accurately the distortion introduced by
nonlinear loudspeakers. Further refinements are thus necessary to achieve consistent
practical performance, in particular with respect to inter-spectral influences. Future
work should develop new modeling strategies based on real-speech input signals rather
than specially-crafted, yet artificial inputs such as those used in this work. This will
allow for the full consideration of intrinsic speech characteristics and the response of
nonlinear systems to amplitude variations and the distribution of nonlinearities across

the full spectrum.
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After much of the study of loudspeaker nonlinearities in Part 1 of this thesis, Part
2 is majorly devoted to NAEC. Established state-of-the-art approaches to NAEC are
described in Chapter 5 before a comprehensive performance evaluation and analysis
of selected NAEC algorithms. This work highlights their strengths and weaknesses.
Chapter 6 discusses a nonlinear and nonstationary signal analysis technique known as
Empirical Mode Decomposition (EMD) and also reports a novel solution to NAEC based
on EMD. The Hilbert-Huang Transform (HHT) allows spectral analysis of nonlinear
and nonstationary signals by using EMD followed by the Hilbert transform. Chapter 7
reports our first attempt to apply the Hilbert-Huang Transform (HHT) to the analysis
of nonlinear distortion produced by miniature loudspeakers. The work furthermore
questions the suitability of traditional signal analysis approaches while giving weight to

the use of HHT analysis in future work.
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Chapter 5

State-of-the-Art NAEC Solutions

In this chapter, first we briefly review the existing techniques for the nonlinear acoustic
echo cancellation and/or suppression, which have been developed within the last decade
for mobile telephoney applications. Next, we have reported a comprehensive performance
and stability analysis of widely used NAEC algorithms under various practical acoustic

environments. A part of this work is presented as a technical report in [64].

Literature Survey

There is a considerable amount of literature in the last decade dedicated to the solutions
that can handle nonlinear distortion and to maintain stable echo cancellation performance.

First of all, we can divide these solutions into two main categories:

e Hardware-based solutions

e Software-based solutions

This is shown in Fig. 5.1. We should note that these two types of solutions are mutually
exclusive in the literature till date and there are no solutions that can combine these two
approaches within a single AEC system. In practice, however, AEC systems tend to end
up in one or the other of the categories, for reasons of development and/or computational

cost. We proceed then to the description of these solutions.

5.1 Hardware-based Solutions
Hardware-based solutions to handle nonlinear distortion are two fold:
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Figure 5.1 — Approaches to handle nonlinearities.

e Aim at furbishing up the loudspeaker’s structural faults and resume normal linear

performance levels.

e Choose to use additional hardware changes in the downlink path to get reference

signals related to nonlinear distortion.

while the first option seems simple solution, hardware structural changes to miniature
devices is not at all a cost effective solution. Using larger and high quality loudspeakers
and its associated amplifiers can reduce the maximum amount of nonlinear distortion
in the LEMS. But such a strategy will certainly increase the manufacturing cost and
thereby price of the mobile devices significantly. The second option works on the idea
of using nonlinearly distorted loudspeaker signal as reference signal to the linear AEC
system. The advantage of this kind of method is that the echo canceler would have
to model only the linear acoustic path from loudspeaker output to microphone output
because the reference signal is nonlinearly distorted signal. Echo canceler doesn’t have
to model any nonlinearities. In order to do so, some additional hardware changes in the
downlink path are mandatory to obtain the pure loudspeaker signal without room or
any other acoustic artifacts. In [65], the authors used a sensor (an accelerometer) in the
downlink path attached to the loudspeaker, expected to capture the nonlinear signal.
This sensor signal is used as a reference signal to the NLMS based AEC to model the
linear acoustic path. This approach provides 15dB ERLE improvement compared to
conventional NLMS based AEC with no additional complexity. In [66,67], the authors
proposed to use either the voltage or the current signal that drives the loudspeaker as

the reference signal to linear AEC. These signals capture some or all of the nonlinearities
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in the downlink path. In order to obtain these signals to use as the reference signals,
some hardware modifications based on RC filters are suggested in the loudspeaker cavity.
This approach provides an average of 6dB ERLE improvement compared to conventional
NLMS based AEC with no additional complexity.

Though the advantage of using nonlinearly distorted alternate reference signals is clearly
seen, the usage of additional hardware changes in the downlink path is superfluous.
Such additional hardware changes certainly increase the cost, and may cause additional
distortions. For this reason, researchers believe that digital compensation of nonlinear
distortion by means of Digital Signal Processing (DSP) algorithms may be a realistic

solution.

5.2 Software-based Solutions

As shown in Fig. 5.1, the software-based solutions can be divided in to three categories

depending on the way they tackle the nonlinear distortion in the LEMS:

e Nonlinear pre-filtering
e Nonlinear post-filtering

e Nonlinear adaptive filtering

Further, each category offered solutions in time, frequency and subband domain ap-
proaches in the literature. Hardware-based solutions do not necessarily depend on the
exact nature of the nonlinear distortion, the alternate reference signals are expected
to incorporate the required information. On the other hand, software-based solutions
solely depend on the interpretation and analysis of the nonlinear distortion in the LEMS.
Accordingly, several nonlinear models with and without memory are proposed in the

literature.

5.2.1 Nonlinear Pre-Filtering

This approach aims at linearisation of the loudspeaker and its associated components in the
downlink path through nonlinear pre-filtering of the far-end signal. Figure 5.2 illustrates
the typical nonlinear pre-filtering scheme. The pre-filter is expected to compensate the
nonlinear distortion introduced by the downlink path such that the united effect of this
pre-filter and the loudspeaker behaves like a linear system. In case of ideal pre-filtering of

the loudspeaker signal, the entire LEMS could be safely assumed as a linear system. This
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Figure 5.2 — Loudspeaker linearisation system.

assumption permits the use of conventional linear AEC and is sufficient to achieve better
echo cancellation performance. As mentioned earlier, an exact model of the nonlinear

loudspeaker system is of primary requirement here.

In [68,69], authors assumed the loudspeaker system as a 3"%-order Volterra model with
memory. So, they used a third order nonlinear pre-filter in series with the loudspeaker
to compensate the nonlinear distortion. The kernels of the pre-filter were chosen such
that the linear part of the overall transfer function (pre-filter 4+ loudspeaker) must
be equal to the linear transfer function of the loudspeaker. Since the complexity of
the Volterra kernels increases exponentially with the increase in the model order, it
may not be applicable for real-time processing. Hence, authors proposed a new kernel
decomposition technique called Multi Memory Decomposition (MMD), to decompose
the multi-dimensional quadratic Volterra kernels into a set of linear filters. Using MMD
technique, authors achieved a good approximation of the quadratic Volterra kernels
with less complexity. Further, authors proposed a MMD based pre-filter design with
a flexibility of choosing the filters coefficients either by off-line or by real-time system
identification techniques. This pre-filter design was implemented on a DSP chip followed

by a real loudspeaker and the results are decent.

2"d_grder Volterra model with

In [27], authors assumed the loudspeaker system as a
memory and proposed an off-line identification method to identify the linear and 27?-
order Volterra kernel using multi-tone sinusoidal tones. Their pre-filter design shown in
Fig. 5.3 was in frequency domain, H, is the identified 2"-order Volterra kernel transfer

function (2D DFT) and H; ! is the inverse of the identified linear transfer function of
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Xout(n)
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Figure 5.3 — Block diagram of the Loudspeaker linearisation system for eliminating the
second-order nonlinear distortion.

the loudspeaker and satisfies the following equation:

HH ' =772 (5.1)

where Z~2 indicates pure delay. This pre-filter design together with the loudspeaker

model is expected to eliminate the 2"%-order nonlinear distortion in the following way:

Xowt = H1.Z72.X + Z72 X.(Hy — Hy) — Hy. H{ L. Hy. X (5.2)

where X and X,,; are the FFT of x(n) and x,,.(n) respectively. If Hsy = Hy then the
overall transfer function of the combined pre-filter and loudspeaker is approximately
equal to the linear transfer function of the loudspeaker with some delay. However, this
pre-filter structure introduces a new higher order nonlinear function ﬁg.Hl_ 1.H2 but

authors ignore this element. The simulation results presented are encouraging.

In [28], authors proposed a low complexity realization of the pre-filter design by proposing
a subband version of the work in [27]. The structure is similar to the one shown in Fig. 5.3
but the only change is that the second path of pre-filter design contains the subband
domain processing of the filters. Further, the identified 2"%-order Volterra kernel in the
pre-filter design is decomposed into canonical form using Eigen Value Decomposition
(EVD) and represented as a parallel structure where the coefficients of each FIR filter
are the elements of eigenvectors. Experimental results presented in the paper show that
subband version of pre-filter design can produce the same compensation ability as the

conventional method while reducing the computational complexity.

The solutions discussed so far may not be possible to deal with the variation of the

loudspeaker nonlinear transfer function properties. In order to deal such an issue,
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authors in [70] proposed an online loudspeaker linearisation approach with an adaptive
pre-filter design. They assume the loudspeaker as a third-order memory-less nonlinear
system followed by a linear system with memory, which can be realized as a Generalized
Polynomial Hammerstein Model (GPHM) discussed in Chapter 2. Apparently the pre-
filter design consists of a third-order parallel structure with a delay component in its
first path and linear adaptive filters (ha(n) and hs(n)) preceded by squaring and cubic
terms in the second and third paths respectively. To minimize the second and third-
order nonlinear distortion, the adaptive filters in the pre-filter design must converge to
—hit(n) * hy—s 3(n) with hi*(n) * hy(n) = 6(n) (where h,—123(n) are the linear, second
and third-order responses of the loudspeaker and d(n) is the Dirac function). A NLMS
based linear AEC is tested in the presence of nonlinear distortion with and without
pre-filtering. Certainly, pre-filtering improved the ERLE performance by 5d B even under

noisy conditions.

The major problem with the pre-filtering based loudspeaker linearisation systems is that
the nonlinear distortion in the loudspeaker is not predictable. Model mismatches leads
to great levels of gradient noise. The pre-filter designs involve huge serial arithmetic
calculations which may distort the far-end signal, which is not acceptable in mobile
devices. Moreover, most of the pre-filter designs involve inverse filtering without verifying
the minimum-phase property of the loudspeaker linear transfer function. The pre-filter
design often involves off-line calculation of its parameters which may not be suitable for
dynamically varying speech signals. Most importantly, it is possible to compensate the
nonlinear distortion using pre-filtering only by introducing new higher order nonlinearities.
All these observations demonstrate the ineffectiveness of loudspeaker linearisation for

mobile devices.

5.2.2 Nonlinear Post-Filtering

The second approach to handle the nonlinear distortion in the LEMS is by using nonlinear
post-filtering. The linear and/or nonlinear post-filtering always works in combination
with a linear echo canceler. The basic idea of nonlinear post-filtering is to suppress
the nonlinear residual echo using a post-filter followed by a linear AEC. This scheme is
an extension to the popular linear residual echo suppression and/or noise suppression
techniques [2,71]. The standard methods for designing a post-filter for the suppression
of linear residual echoes also work under the assumptions of linear acoustic path and
hence, they are not useful in the presence of strong nonlinear distortion in the LEMS.
The structure of the post-processing scheme also known as Nonlinear Residual Echo
Suppressor (NRES) is illustrated in Fig. 5.4. The microphone signal y(n) comprises the

desired near-end signal s(n), nonlinearly distorted echo signal d(n) and any unwanted
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Figure 5.4 — Handling nonlinearities in the LEMS using NRES.

noise signal v(n):

y(n) = s(n) +d(n) + v(n) (5:3)

In the design of NRES system, we do not pose any specific constraints on the preceding
linear AEC except its convergence, hence, any linear adaptive algorithm can be chosen
for updating the linear AEC. After subtracting the linear echo estimate j(n), the output
of the linear AEC e(n) represents the near-end speech s(n), the residual echo d,(n) and

the noise v(n).

e(n) = s(n) +dy(n) +v(n) (5.4)

The residual echo d,(n) comprises weak linear and strong nonlinear echo components.
Under this assumption, we can further suppress the residual echo using a NRES system.
Single-input post-filter designs are not applicable for mobile devices because of the strong
nonlinear echo and it has common statistics from those of the near-end speech [72].
Therefore, most of the NRES systems proposed in the literature take in two inputs, one
of them is obviously the output of the linear AEC e(n) and the other input is either the
far-end signal x(n) [73,74,75,76] or the linear echo estimate §(n) [72,77,78]. Irrespective
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Chapter 5. State-of-the-Art NAEC Solutions

of the linear AEC processing domain, the NRES system always works in spectral envelop
space (in frequency domain) and the functionality can be viewed as a famous spectral
subtraction technique [79]. Accordingly, the output of the NRES system Z(k, f) is
obtained as a product of a real-valued spectral gain G(k, f) and the output of linear
AEC E(k, f) as

Z(k, ) = G(k, f)E(k, f) (5.5)

where k is the frame index, Z(k, f) and E(k, f) are the frequency domain representations
of z(n) and e(n) respectively. It should be noted that, multiplying the output of the
linear AEC E(k, f) by the real-valued gain G(k, f), it is expected to undo the variations

of the magnitude/power spectrum caused by the nonlinear residual echo.

Just like spectral subtraction, the NRES system may be implemented in the power
spectral domain [73,74] or in the magnitude spectral domain [75,76,77,78]. Accordingly,
the real-valued spectral gain G(k, f) depends on the power or the magnitude spectra of
either the residual echo signal D, (k, f) or the near-end speech signal S(k, f). However,
they are not always readily available, hence the magnitude spectra of D, (k, f) or S(k, f)
must be estimated using recursive averages (first order digital low-pass filtering) [80] as

follows

|Dr(k, f)] = (1= )| Dr(k = 1, )| + a| Dy (k, f)] (5.6)

where |D,(k, f)| is the smoothed magnitude estimate of the residual echo, D, (k, f) is the
estimated residual echo and « is the smoothing parameter. After the nonlinear residual
echo suppression operation, the magnitude spectrum estimate |Z(k, f)| is combined with

the phase of the linear AEC output e(n) and to inverse transform into the time domain.

In [77,78], authors computed the spectral gain G(k, f) as the ratio of |S(k, f)| and
|E(k, f)|. Since |S(k, f)| is not readily available, it is estimated as follows (assuming
v(n) =0):

1Sk, )] 2= ISk, )12 2 B, ) = Do, )2 = | Bk, )2 = @29 (&, )
(5.7)
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where over-line . means recursive averaging operation and |Y (k, f)| is the smoothed
magnitude spectrum of linear echo replica. The equation indicates that the smoothed

magnitude spectrum of nonlinear residual echo |D,.(k, f)| is estimated using |V (k, f)| as

g = Prk DI _ B, Dl singte—tat
Y (k, f)] Y (k, f)]

(5.8)

The parameters dy, for each frame index k is hardware dependent and have to compute by
additional experimental measurements in quite environments for each and every mobile
device after manufacturing. This parameter computation is the major drawback of this
method; further this parameter dj, is static and does not have control over variations in

the nonlinear distortion.

In [73,74], authors derived the spectral gain G(k, f) by minimizing the contribution of
the nonlinear residual echo D, (k, f) to the post-filter output signal Z(k, f) in the mean

square error (MSE) sense:

SE(ka f) — /B-SDr(k7 f)

Gk, f) = (5.9)

where 3 controls the aggressiveness of the NRES operation, Sg(k, f) and Sp, (k, f)
denote the recursively smoothed power spectral densities (PSDs) of E(k, f) and D,.(k, f)
respectively. In [73], in the place of conventional linear AEC, authors used multi-
channel adaptive filters or parallel/power filters model Nonlinear Acoustic Echo Canceler
(NAEC) [48] to estimate not only the linear echo signal but also higher-order nonlinear
echo signal. The power filters based NAEC is discussed in detail in the next section of
this chapter. Assuming the first channel of power filters NAEC (i.e., linear AEC) attains
to its Wiener solution, we can compute the estimate of the nonlinear residual echo d,. (n)

by summing the outputs of the other parallel channels §,>2:

dr(n) =Y 4 (n) (5.10)
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Accordingly, the PSD of the nonlinear residual echo estimate can be written as

P
Sp,(k, f) =S, (n) (5.11)
p=2
where S’@P is the smoothed power spectrum of the p”* parallel channel, p = 2, ..., P. Once

we compute Sp, (k, f), computing the Sg(k, f) is straight forward and correspondingly,
the spectral gain can be found using Eq. 5.9. This structure seems compromising but
the key assumption of linear AEC (first channel in the power filters) attaining Wiener
solution is not convincing and it never happens in the presence of strong nonlinear
distortion. More importantly the convergence of all the other adaptive filters is also
mandatory to get the proper estimate of Sp, (k, f) and it depends on the lengths of the
adaptive filters involved. Further, this model is relatively too complex because of the

multiple adaptive filters.

In order to solve these issues, authors in [74] estimated the PSD of the nonlinear
residual echo Sp, (k, f) independent of the length of the room impulse response (RIR) by
modeling the loudspeaker nonlinearities as a linear combination of basis functions. This
method outperforms the method in [73] in terms of both convergence rate and maximum
achievable ERLE. However, the results presented involve theoretically synthesized echo
signals and the performance may definitely vary under realistic situations. Moreover, the
PSD estimation involve many assumptions which may not hold true in practice and also

includes an auto-correlation matrix inversion which is computationally expensive.

Another frequency domain NRES approach based on spectral shaping, in particular
to handle harmonic distortion, is presented in [75]. But in this method authors used
the Modulated Complex Lapped Transform (MCLT) (refer [81]) instead of Fourier
transform claiming MCLT allows for perfect reconstruction to transform the time domain
signals to the frequency domain. This approach uses the regression coefficients to
estimate the magnitude spectrum of the nonlinear residual echo Sp_(k, f) from the
far-end signal X (k, f) but these regression coefficients are not fixed as in [77] but instead
computed adaptively. The algorithm appears to be fairly robust especially in case of
noisy environments but suffers a drop in ERLE if there is a mismatch in the assumed

order of harmonic distortion.

The main attraction of nonlinear post-filtering or NRES is its relative simplicity, in
that it only requires an estimate of the frequency dependent real-valued spectral gain.

However, computing the estimates of the magnitude/power spectra of near-end speech
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Figure 5.5 — Structure of NAEC.

and/or nonlinear residual echo are more prone to errors and often depends on many
assumptions. These errors in the model leads to unwanted modulations and further

causes over spectral subtraction leads to near-end speech distortion.

5.2.3 Nonlinear Adaptive Filtering

The third and the more general approach to handle the nonlinear distortion in the LEMS
is by using Volterra series and nonlinear adaptive filtering in the AEC. The structure
of Nonlinear Acoustic Echo Canceller (NAEC) is shown in Fig. 5.5. Using nonlinear
adaptive filtering in the NAEC, one aims to estimate both the linear and nonlinear
echo together and cancel from the microphone signal. Over the past decade, various
approaches have been proposed for nonlinear acoustic system identification for echo
cancellation. These techniques are classified into three types based on the domain of their
implementation. There are time domain [4,12,30,48,49,82,83], frequency domain [84,85]
and subband domain [24,29] solutions. As shown in Fig. 5.1, the NAEC solutions can be
classified into three groups depending on the structure of nonlinear system identification

involved:
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Figure 5.6 — Structure of parallel approach based NAEC.

e Parallel approach
e Cascaded approach

e Other approaches

Parallel Approach

The parallel approach (or the power filter approach) based NAEC takes into account
the Hammerstein model discussed in Section 2.2.4 (Eq. 2.10) to estimate the overall
LEM system. This involves the simultaneous tracking of both the nonlinear and linear
impulse responses through the multi-channel adaptive filters as illustrated in Fig. 5.6.
This approach is especially suitable for memoryless nonlinearities, where the first channel
represents the overall linear impulse response of the LEMS. Concurrently, the other
channels are used to adaptively track the higher order nonlinearities in the LEMS. The

input signals to the different channels are accordingly z(n),z?(n),--- ,z"(n).

In [48], authors used a 3"%-order parallel NAEC model and used an NLMS based
approach to update all the three adaptive filters. Since the input signals to the multi-
channels adaptive filters are the powers of the same reference signal, they are generally
highly correlated. This strong inter-channel correlation has a profound impact on the
convergence speed of the adaptive filters. Hence the authors proposed to use an additional

orthogonalization stage prior to the adaptive filtering. The simulation results show the
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better ERLE improvement over linear AEC. This algorithm has been rigorously tested for
validation and performance with empirical nonlinear signals and the results are presented

in Section 5.4.

Adaptive filtering in frequency domain has an advantage of fast convergence speed
and reduced complexity due to fast convolution property. On the other hand multi-
channel adaptive filtering in frequency domain exploit the orthogonality properties of the
DFT (discrete fourier transform) and hence do not suffer from inter-channel correlation.
Making use of these benefits, authors in [85] proposed a parallel approach based NAEC
in frequency domain. Simulation results demonstrate the superiority of frequency domain
solution over time domain solution in [48] both in terms of convergence speed and

maximum achievable ERLE.

Although this parallel approach seems to be simple and practically possible NAEC
structure, the convergence speed is always slow compared to the linear AEC due to the
multi-channel adaptive filtering and the increased number of filter coefficients. Also,
there is an inherent disadvantage of estimating the linear acoustic path (RIR) multiple
times through multiple channels (due to the effect of convolution between the loudspeaker
parameters and the RIR). The stability and the robustness of parallel approach based
NAEC during dynamic variation of acoustic echopaths and the order of nonlinearity is

studied in the later sections of this chapter.
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Cascaded Approach

The key idea behind the cascaded approach based NAEC was to decouple the identification
of nonlinear loudspeaker parameters from the tracking of linear acoustic echopath. The
structure of cascaded approach based NAEC is illustrated in Fig. 5.7. In this case, a
nonlinear pre-processor is placed in cascade with a linear Finite Impulse Response (FIR)
filter. The nonlinear pre-processor filters the reference signal from the far-end and aims
to emulate the downlink path along with its nonlinearities. The linear FIR filter aims to
accurately emulate the unwanted nonlinear echo in the microphone signal by filtering the
incoming nonlinear signal. This cascaded approach involves joint parameter estimation
for the nonlinear pre-processor and the FIR filter using the combined error signal e(n)
employing linear adaptive algorithms. The nonlinear pre-processor block requires an
appropriate nonlinear model to accurately emulate the downlink nonlinear behaviour.
Nonlinear models with memory [12,30] and without memory [46,47,49] were proposed in

the literature.

In [12], authors considered a 2"¢-order Volterra series with memory as a pre-processor
and used NLMS adaptive algorithm to estimate the filters coefficients and achieved a 7dB
ERLE improvement compared to the conventional linear AEC. In [30], authors assumed
the loudspeaker model as a 3"%order Volterra series with memory and used a modified
cascaded model to identify the nonlinear echopath. Assuming the invertibility of the
loudspeaker linear impulse response (h1(n)), in their modified cascaded approach the
nonlinear pre-processor block adapts to the convolution between second order kernel
ha(n) (respectively third order kernel hg(n)) and the inverse of hi(n). The linear FIR
filter adapts to the global linear impulse response of the LEMS, h,i(n) * hi(n) (where x
indicates convolution). In accordance with the modifications in the cascaded structure,
a modified NLMS algorithm was derived and used to adaptively estimate both of the
blocks. Simulation results reported a 5dB ERLE over conventional NLMS based linear
AEC and a 2dB ERLE improvement over parallel approach based NAEC respectively.
This approach is conceptually viable but in practice the modified cascaded structure
and the corresponding NLMS algorithm are computationally more complex in relative
comparison with the normal cascaded structure. Further the primary assumption of
loudspeaker linear impulse response invertibility may not be true and any mismatches

leads to total system divergence and uncontrollable gradient noise in the uplink path.

Authors in [82] modeled the loudspeaker as a 2"%-order Volterra series with memory and
noticed that most of the energy in the second order kernel is concentrated around the
diagonal and mainly contains the direct path with a very few early reflections. Hence,
in order to control the computational complexity authors truncated the non-significant

coefficients in the second order Volterra kernel. It has also been shown that the linear
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kernel requires larger memory length compared to quadratic (or higher order) kernels in
order to model the nonlinear behaviour of loudspeakers. The NLMS algorithm was used
to track the overall nonlinear acoustic echopath and achieved a 7dB ERLE improvement
over linear AEC. Since the NLMS algorithm usually exhibits low convergence and tracking
rates when the input signals are coloured (especially for speech), authors in [86] used
APA algorithm to improve the learning rate of the filters. However, algorithms like APA

and RLS significantly increase the computational complexity of the system.

Authors in [84] considered a 2"?-order Volterra series with memory as a pre-processor
and proposed a frequency domain NAEC solution to achieve effective reduced complexity
implementation. In general, frequency domain nonlinear adaptive filtering has a limitation
to use the same memory length for all the kernels [87]. Authors presented a way to allow
different memory lengths for the linear and 2"%-order kernel by extending the partitioned
block techniques to Volterra filters. Using NLMS algorithm with frequency dependent
normalization authors achieved a better initial convergence and ERLE performance
compared to partition block based frequency domain linear AEC and time domain
adaptive Volterra filter algorithm. However, a comprehensive validation to prove the
stability of the proposed method is lacking. Moreover, the study of nonlinear systems in
frequency domain involves a range of uncertainty. Unlike linear systems, the connection
between the input and the output spectra of nonlinear systems is more complicated.
Certainly, the linear system frequency domain analysis techniques cannot easily be
extended to the nonlinear systems. This phenomenon will be discussed at greater length

in the next two chapters.

Several techniques based on memoryless nonlinear models have been proposed to cope
with the overall system complexity and to improve the learning rate of the cascaded
blocks. In [47], authors considered a memoryless nonlinear preprocessor and compared
the performance of different adaptive algorithms, like NLMS, orthogonalised NLMS
and Recursive Least-Squares (RLS) algorithms, by varying the order of nonlinearity
(P). Authors also proposed appropriate step-size control mechanisms to enhance the
convergence speed for the considered adaptive algorithms which then provide upto 10dB
ERLE gain compared to the linear AEC case. In [49], authors proposed a low cost
NAEC by using a memoryless preprocessor with fewer filter taps compared to the linear
block and suggested to use higher step-size for the linear block to achieve good results.
The simulation results with NLMS algorithm achieved better ERLE compared to both
the parallel approach based NAEC and the linear AEC at different input SNR levels
and at different orders of nonlinearity. The dynamic re-convergence and the maximum
achievable ERLE also improved with the increasing input SNR. This algorithm has been
rigorously tested for validation and performance with empirical nonlinear signals and the

results are presented in Section 5.4.
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We will see in the next section of this Chapter, there is the obvious question of the
stability of most of the NAEC algorithms in the literature. In general, the signal statistics
of the nonlinear echo are unknown and will be time-varying for nonstationary signals like
speech. A stable NAEC algorithm avoids performance degradation in case of: nonlinear
model mismatch, over/under modeling the nonlinear adaptive filters, dynamic variation
of acoustic echopath, and dynamic variation of order of nonlinearity. The loudspeaker
nonlinear behaviour changes over time due to structural deformation, overload, ageing,
ambient temperature or climate effects [9]. Unfortunately, most of the published NAEC
algorithms have never been rigorously tested to determine the solutions to manage these

practical problems.

More importantly, for any NAEC algorithm to achieve a good ERLE (like a linear AEC)
in the presence of linear echo (absence of nonlinearities in the echo) is a challenging task.
Authors in [53,88] attempted to achieve the same by using adaptive convex combination
of a linear kernel and a 2"%order Volterra kernel. In this approach, the linear and the
2nd_order Volterra kernels are independently adapted using their own error signals and
their outputs are adaptively combined by means of a stochastic gradient algorithm in
order to minimize the overall error. It has been presumed that the combined scheme
performs at least as well as the best contributing filter. The simulation results presented
are satisfactory, but the filter combinations schemes have not been thoroughly validated
with real or empirical nonlinear echo signals. For a more detailed treatment of comparison
results of filter combination techniques with the other NAEC algorithms, the reader is
referred to [66,67].

Most of the published NAEC solutions in cascaded approach are conceptually possible,
but as a practical matter, they seem implausible, for at least two reasons. First, the
cascaded model requires the nonlinear pre-processor and the linear filter adaptation
using a single joint error signal. As a result the convergence of both the blocks (or all
the adaptive filters) are interdependent, which leads to possible errors and also reduces
the over-all convergence speed. One possible way to solve this drawback is to adapt
the nonlinear pre-processor separately using a reference microphone signal by placing
it very close to the loudspeaker cavity. However, in such scenarios there is no need to
use a cascaded approach neither any NAEC solution. Since the reference microphone
signal incorporates the nonlinearities and the downlink system properties, a conventional
linear AEC would be sufficient to cancel the nonlinear echo. Second, most of the NAEC
algorithms start with the assumption of the type of the nonlinear model suitable to
a microspeaker (a miniature loudspeaker). A slight change in any of the assumptions
drastically alters the performance of NAEC algorithms. Choosing the right order of
nonlinearity and the memory size (or filter-length in case of memory-less nonlinearities)

in the nonlinear pre-processor can be challenging. Under-modeling results in high residual
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nonlinear echo where as over-modeling effects the convergence due to increased complexity,

and the maximum achievable ERLE by adding gradient noise to the uplink signal.

Other Approaches

As discussed in Part 1 of this thesis, the complexity of the Volterra filters increases
exponentially with the increase in the order of the Volterra model. The large number of
filter taps leads to slow convergence, vast misadjustment, and increased computational
complexity. In order to increase the effectiveness of nonlinear system identification, some
of the authors deviated from the conventional adaptive filtering and other approaches

have been devised and developed during the last few years..

In [83,89] authors exploited the state-space modeling and Kalman filter recursions for
the NAEC problem. In [89], authors first transformed a conventional parallel approach
based NAEC model into a multi-channel state-space structure by augmenting with a
multi-channel first-order Markov model. The state-space model in each channel consists
of two model equations: an observation (or measurement) equation and a state (system)
equation. Authors then proposed two different variants of updating the unknown filter
coefficients in the model equations using a recursive Bayesian estimator in the form
of frequency domain multi-channel Kalman filters. The proposed NAEC algorithm
was tested under realistic situations like dynamically varying nonlinear distortion and
acoustic echo path and in the presence of double-talk. The simulation results published
are encouraging. In [83], authors proposed a time-domain Kalman filter solution to
NAEC. Like in any state-space modeling, authors transformed a cascaded NAEC model
to a cascaded state-space model based on mathematical manipulations. Authors then
proposed to use Kalman filters operating sequentially to update the unknown filter
coefficients in the model equations. However, the inherent problem here is the Kalman
filter works on the basic assumption of the linearity and the Gaussianity of the state and
the measurement models. This assumption does not hold in the NAEC problem. Also,
the several mathematical assumptions made while transforming the conventional NAEC
model to a state-space model may not valid in practice. Imprecise models can lead to a
state-error covariance matrix not positive semi-definite and the smoothing errors can

significantly impact the performance of NAEC.

In [90, 91, 92] authors make use of the artificial neural networks to solve the NAEC
problem. In these approaches, the NAEC is carried out by composing the LEMS as
a cascaded model. An artificial neural network (ANN) based nonlinear pre-processor
is used in order to model the nonlinear behaviour of the loudspeakers followed by a
conventional linear adaptive filter to model the linear echopath. Different algorithms

were proposed in the literature to train the ANN. Despite having good simulation results
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with the artificial data, there are many drawbacks associated with the usage of neural
networks especially for the NAEC problem. Besides the general problems like higher
computational complexity and biased convergence, a major drawback with the neural
network based models is their extreme sensitivity to the model mismatches. Since there is
no well-defined nonlinear loudspeaker model available, the behaviour of an ANN system
largely depends on its training, which can also be problematic as it requires a huge
amount of training data. Another major problem is that the ANN’s introduce many
local minima in the error surface which leads to higher probability to converge to those

local minima while using the gradient descent based learning algorithms.

5.3 Influence of the simulated nonlinear signal models on
NAEC evaluation

Most of the published NAEC algorithms have never been rigorously tested with empirical
and/or real recorded nonlinear loudspeaker signals. As we have seen in Section 4.2, the
correlation between the simulated nonlinear signals and the real nonlinear signals is
always poor. The power series model (the PSM) shown in Eq. 3.4 is very often used in the
literature to simulate the memoryless nonlinear signals. Some specific simulated nonlinear
signals like the one in Eq. 3.4 have the potential to over-exaggerate the performance
of NAEC algorithms. In this section, we assess the performance of a typical NAEC
algorithm, for example the popular cascaded NAEC system proposed in [49], when
exposed to the simulated (the PSM model given in Eq. 3.4), the empirically generated
(the GPHM model give in Eq. 3.5) and the real recorded nonlinear signals.

5.3.1 Cascaded Model

The block diagram shown in Figure. 5.8 illustrates the structure of a P order cascaded
model NAEC [49]. The input signal z(n) with sampling frequency fs is passed into a
pre-processor that contains P different channels. In the p'* channel, the input vector
x(n) = [z(n),...,x(n— N,+1)]T is passed through a low-pass filter (or anti-aliasing filter)
with cut-off frequency fs/2p before taken to the pt* power, and then passed through an
estimated sub-filter whose impulse response is given by ﬁp (n). The low-pass filters are
used to avoid aliasing and to make sure that the frequency content of the input signal
is limited before taken to the p!* power. The output §s(n) of the pre-processor, which

aims to model the loudspeaker output, is obtained by the summation of over-all channel
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Figure 5.8 — An illustration of the cascaded model NAEC. In the p*"-channel, the input
signal vector passes through a low-pass filter (LPF) with cut-off frequency f,/2p to avoid
aliasing.

outputs:

Js(n) = > hl(n)x"(n) (5.12)

where ﬁp (n) is the estimated sub-filter vector of length N,. The pre-processor output
§s(n) is then passed through a linear filter h (n), which aims to model the RIR, to get
the overall output of the cascaded model g(n):

9(n) =h"(n)g,(n) (5.13)

The update equations based on NLMS algorithm for the pre-processor filters and the
linear filter are given by [49]:

ﬁpn 1:f1pn Hp Xpnthen 5.14
(14 1) = By 1)+ o Xl (1) (1) (5.14)
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Figure 5.9 — NAEC performance in terms ERLE with either real recorded nonlinear echo
signals or those synthesised with the PSM or the GPHM models.

h =h(n R n)e(n .
hin 4 1) = B0) + o9, 0e (0 (5.15)

where X,(n) = [x,(n), ..., %p(n — N + 1)]7 and § is the regularization parameter.

5.3.2 Experimental results

The performance of the cascaded model NAEC has been investigated when exposed to
the simulated, the empirically generated, and the real recorded nonlinear echo signals.
First the loudspeaker nonlinearities (zyy(n)) are synthesized through the PSM and the
GPHM models as described in Chapter 4.2. Then the microphone output signals with

nonlinear echo are generated according to:

N-1
y(n) = Z Zout (M — 1) hypir (7) (5.16)
i=0
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where hy;r(n) is a room impulse response (RIR) and ., (n) is a loudspeaker output
signal computed using either Eq. 3.4 (the PSM) or Eq. 3.5 (the GPHM). Experiments
were performed with diagonal (one-dimensional) loudspeaker Volterra kernels h, (n) for
values of p < 5 and with IV, = 256 taps. The acoustic channel was modeled with
a fixed 256-tap room impulse response (RIR) hy;r (n) selected from the Aachen RIR
database [1]. All experiments were performed with a clean speech downlink/reference
signal x (n) of approximately 30 seconds duration with a sampling frequency of 8kHz. A
set of common filter parameters were applied to all three test cases and were chosen to
maintain stability and better performance. The test configurations are Nj—i ... 5 = 256,
N =256, fip=1...5 = 0.01, 6p=1..5 = le —4, N = 256, = 0.5, § = le — 7. The ERLE

results are illustrated in Fig. 5.9.

While NAEC performance in the case of loudspeaker signals synthesised with the PSM
model is similar to that obtained in previous work [49], poorer performance is observed
in the case of real recorded nonlinear echo signals. While NAEC performance in the case
of signals synthesised empirically with the GPHM approach also differs from that with

real recorded nonlinear echo signals, the difference is significantly reduced.

These observations confirm the significant, favourable bias in results generated with
the popular PSM model and emphasise its potential influence on the evaluation of
NAEC performance. Results generated with the GPHM model better reflect practical
measurements and thus the empirically generated loudspeaker signals are an appealing
alternative to be considered for future work. Results thus derived will exhibit less
bias than those reported previously in the open literature, and provide a more realistic

estimation of practical NAEC performance.

5.4 Comprehensive performance analysis of NAEC algo-

rithms

As discussed in the first two sections of this Chapter, several NAEC algorithms have been
proposed in the literature to handle nonlinearities in the acoustic echopath. However,
their evaluation methodologies are not as compelling as their key design idea because most
of the algorithms had never been tested under both real nonlinear echoes and real mobile
phone loudspeaker data. We have learned in the previous section that the performance
of the NAEC algorithms can be inflated using specific test signals. Further observed,
many of the NAEC algorithms are developed based on two different rationales, Parallel
and Cascaded approaches, each possessed its own merit and claimed outperforming
other. The claim is prone to subjectivity because the algorithms are compared only

in few idealistic situations. In this section, we conduct a deep performance analysis
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Figure 5.10 — An illustration of the parallel/power-filter model NAEC. In the p‘"-channel,
the input signal vector passes through a low-pass filter (LPF) with cut-off frequency
fs/2p to avoid aliasing.

and comparison of these two typical NAEC structures under various and more practical
situations. The cascaded model was described in the previous section and next we will
briefly outline the parallel/power filter NAEC followed by the comprehensive analysis
part.

5.4.1 Parallel Model

The block diagram shown in Fig. 5.10 illustrates the structure of a P** order power-filter
model NAEC [48]. The input signal z(n) is passed into P different parallel channels. In
the p'" channel, the input vector x(n) = [z(n),...,z(n — L, + 1)]7 is passed through
a low-pass filter (or anti-aliasing filter) with cut-off frequency fs/2p before taken to
the pt" power, and then passed through an estimated linear filter vector W, (n). The
overall output §(n) of the power-filter model is obtained by the summation of all parallel

channels outputs:

P
g(n) =)W, (n)xy(n) (5.17)

where W, (n) is the estimated filter vector of length L,. The update equation based on
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NLMS algorithm for the power-filters is given by [48]:

= Wy, (n #X n)en .
i (1) = wy (1) it e (o) (5.18)

In ideal case the linear filters of the power-filter model W, (n) are a combination of the

pre-processor sub-filters b, (n) and the linear filter i (n) of cascaded model:

where * represents linear convolution and leads to the equality L, = N, + N — 1.

In practice the cascaded and the power-filter NAEC are popular time-domain solutions
because of their simple and relatively less complex structures. Hence, enhancing their
efficiency is of vital importance for better NAEC performance. In order to highlight the
advantages and drawbacks of each of them, authors in [49] have done a limited work
in comparing these models but not with real loudspeaker data. Indeed, this evaluation
is necessary as it will enable better understanding of the missing features in these two
popular models and thus improved algorithms can be designed to deal with the complex

nonlinear distortion in the acoustic echopath.

5.4.2 Experimental work

In the following we report a comprehensive performance comparison of the cascaded
NAEC and the power-filter NAEC along with the linear AEC. In all cases tests were
conducted using either real recorded nonlinear echo signals or echo signals synthesized
empirically (the GPHM model as discussed in previous section) based on the real mobile
phone loudspeaker responses. Performance is assessed in terms of the echo return loss
enhancement (ERLE).

Test Set-up

Experiments were performed with diagonal (one-dimensional) loudspeaker Volterra kernels
hy (n) for values of p < 5 and with N, = 64 taps in all cases. The acoustic channel
was modeled with a fixed 256-tap room impulse response (RIR) hy; (n) selected from

the Aachen RIR database [1]. All experiments were performed with a clean speech
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’ ‘ Multiplications ‘ Additions ‘
Linear AEC with NLMS 3L+1 3L
Power Filter model NAEC (3L+1)*P 3L*P

Cascaded model NAEC

[(3Np+1)*P]+2N,2 | [(3Np-+1)*P]+2(N,-1)?
3N+1 3N

Table 5.1 — Computational Complexity Comparison

downlink /reference signal z (n) of approximately 30 seconds duration with a sampling

frequency of 8kHz. A set of common filter parameters were applied to all three AECs

and were chosen to maintain stability and better performance. The three AECs and their
configurations are: the linear NLMS AEC (L = 319, u = 0.5, § = le — 7), a power-filter
model NAEC without orthogonalization (Lp—i.. 5 = 319, 1 = 0.5, pp—2.. 5 = 0.01,
01 = le—T7, 0s,.. 5 = le—4) and a cascaded model NAEC (Np—1.... 5 = 64, ptp—1.... 5 = 0.01,
Op=1,.5=1e—4, N =256, p=0.5,6 =1le—7)

Case 1: Computational complexity

Number of computations (multiplications and additions) required for each iteration
of the NLMS algorithm based three AECs viz. linear AEC, power-filter model
NAEC, cascaded model NAEC are compared in Table 5.1. Power-filter model
contains P parallel channels each of length L, = LV p hence the computations
increased P-times of linear AEC. Each iteration of the cascaded model NAEC of
sub-filters length N, and linear filter length N requires more computations because
of the matrix-vector multiplication in its sub-filters update equation as shown in
Eq. 5.14. So before examining the experimental work, one advantage of power-filter

model over cascaded model is its relatively computationally simple structure.

Case 2: Echo cancellation with empirical nonlinear echo signals

100

Here we investigate the performance of the three AECs in the presence of fifth-order
empirical nonlinear echo. The results are illustrated in Fig. 5.11 with the label
"Nonlinear Echo’. As shown in figure, the power-filter model NAEC outperforms both
the linear AEC and the cascaded model NAEC. In contrast to the literature [49],
the linear AEC outperforms cascaded model NAEC in the presence of empirical
nonlinear echo. This is due to the fact that the cascaded model requires pre-
processor and linear filter adaptation using a single joint error signal e(n). As a
result the convergence of both filters is interdependent, which leads to possible
errors. Also, the cascaded model doesn’t have the ability to prevent falling into

local minima.
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Figure 5.11 — A performance comparison of the three AECs in terms of mean ERLE in
the presence of different echo scenarios

Case 3: Effect of linear echo on NAEC

The nonlinear distortion caused by the nonlinear systems like mobile phone loud-
speaker is not constant and often time variant. How does a NAEC perform in the
absence of nonlinearities (when the echopath is linear)? Therefore, in this case, the
performance of the three AECs are analysed in the presence of linear echo. The
results are illustrated in Fig. 5.11 with the label 'Linear Echo’. As expected, the
linear AEC outperforms both NAEC models. In this situation, the NAEC models
contain unnecessary coefficients (over-modeling) and that overestimating the linear
echo signal results in suboptimal performance, as a consequence of the large amount
of gradient noise introduced by the adaptation of the coefficients. However, The

power-filter model is relatively better compared to the cascaded model.

Case 4: Effect of background noise

Here we analyse the performance of the three AECs in the presence of both the
fifth-order nonlinear echo and the background noise. To simulate this scenario, a
white Gaussian noise signal of different SNR levels has been added to the fifth-
order nonlinear echo signal. The results are illustrated in Fig. 5.11 with the
label "Nonlinear Echo’ and their corresponding SNR level. The echo cancellation

performance of the three AECs decreases with increasing noise variance level.
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Figure 5.12 — A performance comparison of the three AECs in terms of ERLE in the
presence of dynamically varying orders of nonlinear echo

Power-filter model NAEC is more sensitive to noise compared to the other two
AECs. In moderate or high noisy environments (SNR < 30), the linear AEC
and the power-filter model NAEC show similar behavior. On the other hand, the

cascaded NAEC is relatively less sensitive to the presence of noise.

Case 5: Performance with varying order-of-nonlinearity P in the echo signal

It has been observed while making many recordings using popular mobile phones
that the waveform distortion caused by the loudspeaker’s nonlinear distortion is
not constant throughout the waveform but instead time-varying (more details on
this are given in Chapter 7 of this thesis). Hence, in this case, the principle is
to evaluate and compare the efficiency of the linear AEC and the two fifth-order
NAECs under dynamically varying orders of nonlinear distortion in the acoustic
echopath. Fig. 5.12 illustrates the performance comparison if the order of the
nonlinear echo is changing from five to three after 30 seconds and then to linear

after 60 seconds and going back to five after 90 seconds.

The power-filter NAEC clearly shows its ability to handle nonlinear echoes in the
exact-modeling scenario (the model of the NAEC matches with the true echopath).

However, it’s performance is plagued by any changes in the echo signal. Upon each
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Figure 5.13 — A performance comparison of the three AECs in terms of mean ERLE in
the presence of real recorded nonlinear echo as a function of pre-processor filter lengths

change in the order of nonlinear echo we observe that the power-filter NAEC exhibits
poor convergence than the linear AEC. This is due to its large filter-tap lengths.
Linear AEC is more robust to the changes and whenever the order of nonlinearity
reduces it attains faster convergence and continuously provides an improvement
of the echo cancellation performance. Linear AEC performance is obviously the
best if the echopath is roughly linear, or contains negligible nonlinearities. Except
for the initial convergence phase, the cascaded NAEC continuously provides poor
performance compared to the other two algorithms. However, the cascaded NAEC is
robust to changes in the order of nonlinear echo. In all the cases, upon initialization
the convergence speed is faster for cascaded NAEC just because it has fewer taps

in its linear filter.

Case 6: Impact of the pre-processor filter lengths

As discussed in earlier sections, choosing the right acoustic model parameters for
any AEC is equally challenging like its design. Here, we investigate the impact of
the pre-processor filter lengths on the three AECs in the presence of real-recorded
nonlinear echo signal. In this setting, a response of a real mobile phone loudspeaker
(in hands-free mode at maximum volume) to the speech signal is recorded using a
very good quality microphone mounted in front of the mobile phone at a distance
of 30cms. All the recordings were made in a very low-reverb Vocal booth. Ignoring
the room effect on the loudspeaker recording, a nonlinear echo signal is generated

by convolving the recorded speech and a 256 taps RIR. In this scenario, selection
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of the order (P) of the NAEC and the length of each filter is subject to a trade-off

involving performance and computational cost.

Fig. 5.13 illustrates the performance of the linear AEC and the two fifth-order
NAECs as a function of the pre-processor filter lengths of the nonlinear channels.
The linear filter length (N) is set at 256 taps. From the results, it is clear that
increasing the pre-processor filters length improves the performance of the linear
AEC and the power-filter NAEC up to certain extent and then the performance
drops due to gradient noise produced by the over-modeling adaptation. Further,
there is no noticeable difference between the linear AEC and the power-filter
NAEC, this is because of the sensitivity to the background noise (noise floor) in
the recorded speech signal. It is observed that the Signal-plus-Noise to Noise Ratio
(SNNR) of the real recorded speech signal is around 25dB. On the other hand, the
performance of the cascaded NAEC is completely random, showing it’s inability to
achieve uniqueness in it’s convergence. It can also be observed that the mean ERLE
of both the NAEC algorithms are very low because in the presence of real recorded
nonlinear echo, the NAEC models used to estimate the nonlinear distortion did

not match the real distortion, thus rendering the poor performance.

Although so many efforts have been devoted to NAEC problem, the performance of
most of the NAEC algorithms in practical acoustic environments still cannot meet
expectation. Apparently, the dynamics of the nonlinear systems has not yet been fully
realized as expected. The reasons behind this are very sophisticated and have not been

fully understood thus far. Therefore, further research in this area is indispensable.

5.5 Summary

In this chapter we have provided a coherent and concise introduction to the state-of-
the-art NAEC and/or NRES algorithms proposed to handle the nonlinear distortion in
the LEMS. We outline an overview of both the hardware-based and the software-based
solutions. In particular, we enumerated and described the software-based solutions by
dividing them into three categories: nonlinear pre-filtering, nonlinear post-filtering and
nonlinear adaptive filtering. We then analysed and discussed the technical issues involving

the implementation of the available state-of-the-art solutions in each category.

Furthermore, we have identified that the convergence and the stability performance of the
widely used NAEC algorithms have not been fully explored in the literature. Thus, we
have provided a comprehensive performance analysis of the selected popular algorithms
from the literature. The results from our experimental evaluations demonstrate that, while

much valuable work has been accomplished in the literature, currently available NAEC
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solutions are not suitable for most of the practical acoustic environments. Accordingly,
there is a considerable potential for further development of NAEC techniques and a
need for the utilisation of novel techniques to achieve a more effective nonlinear system

analysis and design methodology.
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Chapter 6

Empirical Mode Decomposition

Miniature loudspeakers, often used for mobile devices, are generally nonlinear systems
associated with multiple nonlinear effects including electronic, magnetic, mechanical and
sound. Traditional signal analysis techniques such as the Discrete Fourier Transform
(DFT) and the Wavelet Transform (WT) were designed for linear signals (signals resulting
from linear systems) and rely on a priori defined bases for data representation. These
approaches are ill-suited to the analysis of nonlinear signals, and thus direct application
of these approaches to nonlinear systems may lead to undesirable affects (like spreading

of energy into high-frequency components) and unrelated physical interpretations.

Huang et.al. [18] proposed a novel engineering tool, known as Empirical Mode Decompo-
sition (EMD), for systematic signal analysis and synthesis of nonlinear and nonstationary
data. As an alternative to Fourier-based approaches, in this thesis we have studied the
application of EMD to nonlinear signal processing. Theoretical aspects of the EMD
are reviewed and its extensive field of contemporary applications are discussed in this
chapter. This chapter also reports our novel solution to NAEC based on EMD. This
work was published in [93].

6.1 Why study EMD?

Traditional data analysis techniques such as Fourier approaches are all based on assump-
tions of linearity and (short-term) stationarity. Wavelet analysis [94] was designed to
handle nonstationary data, but still assumes linearity. Common to both of these tech-
niques is the definition of standard and/or a priori defined bases for signal representation.
The concept of eigenfunctions plays an extremely important role in the study of such
traditional signal analysis techniques. In general, decomposition of signals are based upon

linear combination of the eigenfunctions of linear systems [95]. In contrast, nonlinear
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systems in general do not have a common set of eigenfunctions. Hence traditional signal
analysis approaches are ill-suited to the analysis of nonlinear signals, and their direct

application may lead to undesirable affects and unrelated physical interpretation.

The analysis of nonlinear and nonstationary data, however, necessitates data-dependent
bases or, equivalently, adaptive bases [18]. Empirical mode decomposition (EMD) [18,
96] is one approach which meets this requirement of data-dependent basis functions
necessary for adaptive data analysis. The motivation for performing EMD is to adaptively
decompose nonlinear and/or nonstationary data into a set of elementary signals, referred
to as Intrinsic Mode Functions (IMFs), in an ad-hoc manner without any a priori
information. The IMFSs retain the characteristics of the nonlinear input data and can
reveal oscillatory trends that are not easily visible in the original input signal. This signal
decomposition is not haphazard; the direct summation of the IMFs will (re)produce
the original signal [97]. This allows the IMFs themselves to be used for processing and
manipulation to effectively improve the input signal enhancement. As an alternative
to the Fourier-based approaches, we apply this methodology to nonlinear loudspeaker

analysis and to nonlinear echo signals.

6.2 Introduction to EMD

A relatively recently developed technique, empirical mode decomposition (EMD) assumes
any signal is composed of different modes of oscillations. This may be considered as faster
oscillations locally (in time) overlying to slow oscillations [18,98]. Fig. 6.1 illustrates such
an idea. The working principle of EMD is to iteratively break down a complex signal into
finite and a usually very small number of empirical modes, referred to as intrinsic mode
functions (IMFs), without leaving the time domain. IMFs are called empirical modes
because they are neither pre-defined nor in a particular transform domain as is the case
with traditional signal analysis techniques but are derived empirically based on the input
signal. Accordingly, IMFs serve as adaptive basis functions of the EMD and each IMF
represents a certain oscillatory trend (fast to slow) in the original signal. The original

complex signal can be completely reconstructed by summing all the IMFs.

This section reviews EMD in a nutshell. There is abundant theoretical and empirical
literature relating to the EMD and its use in applied sciences [18,96]. All the details
regarding the implementation of the EMD algorithm and the corresponding Matlab

scripts are fully available in [99)].
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Figure 6.1 — An illustration of the basic idea of EMD. Illustrated is a given parent data
(Blue line in the left figure) and is considered as faster oscillation (top figure on the right)
overlying to slower oscillation (bottom figure on the right).

6.2.1 EMD Analysis: The Sifting Process

The ad-hoc adaptive data analysis procedure that EMD uses to extract IMFs from the
original input signal is called the Sifting process. In representing and analyzing nonlinear
and nonstationary signals, the basic approach of sifting process has been to decompose
the input signals into a linear combination of empirical oscillatory modes (IMFs). The
empirical modes or the IMFs help better understand the internal structure of the signal
and the various components involved. For an elementary signal to be an IMF, it must

satisfy the following two important properties [18]:

1. The number of extrema (maxima and minima) and the number of zero-crossings in
the entire input signal (total duration of the signal) must either be equal or differ

at most by one.

2. The mean value of the envelop defined by the local maxima and local minima is

equal to zero at any point.

The EMD algorithm was originally proposed to overcome the limitations of the Hilbert
transform, the latter will be introduced in the following chapter. The above two constraints
admit the well-behaved Hilbert transforms. The first constraint eliminates the riding-
waves' ensuring the local maxima of a signal are always positive and the local minima
are negative, respectively. The second condition makes the waveform symmetric with

respect to the origin by removing any unwanted fluctuations, which simplifies the data

'Riding-waves are the rapid oscillations with no zero crossings between the extrema. This causes
positive local minima and negative local maxima in the signal. In general, riding waves are defined as
transient signals that are interrupting the predominant pattern of the wave [97]
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analysis by extracting the desired amplitude and frequency information without conflicting

paradoxical results [100]. These conditions ensure that each IMF has a localized frequency

content by preventing frequency spreading due to asymmetric waveforms [18].

The complete sifting process procedure to decompose a time series into a set of IMFs is

illustrated schematically in Fig. 6.2 and is described below:

110

The sifting process starts by identifying all the local extrema points for a given

parent (input) signal 2(n) as shown in Fig.6.3a.

Once all the local extrema points are identified, compute the upper envelope
emaz (n) and the lower envelope e, (n) by interpolating the local maxima and
minima, respectively. The choice of interpolation method plays a key role in the
decomposition. Different interpolation methods have been studied in detail and
their effects on EMD algorithm have been compared in [101]. As recommended by
the authors in the original work [18], we used a cubic-spline interpolation technique

for all the work reported in this thesis.

. Compute the local mean between the two envelopes as illustrated in Fig. 6.3b,

given by:

(6.1)

where m1 (n) is the local mean between the two envelopes after first sifting iteration.

. Extract the residue, referred to as the detail signal (di(n)), defined by:

di (n) =z (n) —mq (n) (6.2)

An example of such a detail signal is shown in Fig. 6.3c.

dy (n) can be considered as a first IMF if it satisfies a stopping criterion, the two
properties of the IMFs as discussed above. If not, take d; (n) in place of z(n) and
repeat the sifting process k times, until dy;, (n) is an IMF:

dik (n) = dyg-1) (n) — mx (n) (6.3)
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Figure 6.2 — The flowchart illustrating the sifting process procedure to decompose any
complicated signal into a set of IMFs.
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where dyx(n) and mq(n) are the detail signal and the local mean of the envelopes, on
the k-iteration of the sifting process respectively. Thus the first IMF component,

x1(n), is given by:

r1(n) = dig (n) (6.4)

The first IMF component x1(n) is shown in Fig. 6.3d. It represents the fastest (or

highest frequency) oscillatory mode in the parent signal, z(n).

6. To obtain the next IMF, the first IMF, x;(n), is subtracted from the parent signal
z(n) and the difference signal r1(n) is used as a parent signal for a new sifting

process.

ri(n) = z(n) — z1(n) (6.5)

7. The sifting process is then repeated on the difference signals until the residual
signal rj7(n) becomes a non-oscillatory monotonic function, i.e., it contains only

two extrema:

ra(n) = x(n) — zp(n) (6.6)

where zp/(n) is the M th IMF. Being a monotonic function, no envelops can be
formed from rjs(n) and no more IMFs can be extracted. We finally have M IMFs

and a final residual signal rps(n).

Fig. 6.4 illustrates a complete set of IMFs resulting upon application of EMD to the
parent signal x(n). The IMFs are iteratively derived starting from the highest frequency
mode, IMF1, to the lowest frequency mode, IMF6. However, IMFs are not constant
amplitude and frequency components like in Fourier analysis but may have amplitude
modulation and also changing frequencies as shown in Fig. 6.4. The higher-order IMFs
are subsequently smoother as we remove the high frequency components prior to their
extraction. The residual signal (or the last IMF) represents the general trend in the

input signal.
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(b) Upper and lower envelopes are formed by interpolating (cubic-spline) local maxima and
minima respectively. Illustrated also the local mean of the two envelopes.
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(¢) The parent data and the detail signal, d; (n)
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(d) The first IMF component is extracted from the parent data after multiple iterations of sifting
process

Figure 6.3 — An illustration of the sifting process, which decomposes a test signal into a

set of IMFs.
113



Chapter 6. Empirical Mode Decomposition

parent el X(H)X/\MMW\N\/\M/\N\W\/N

|MF1MMVW«MAANAMM«/WMVVWNMWMWVW

w2\ N~ NN N\NAAAN N\ A~ AN

'MH/\/\/\/\/\/\/\A/\/\/\/\/\/\
w— N N N N N

IMF 5 =

IMF 6 (Residual) =

| | | | | |
0 50 100 150 200 250 300

Figure 6.4 — An illustration of EMD. Illustrated is a given parent signal (top) and the
resulting 6 IMFs.

6.2.2 The Stopping Criteria

The stopping criterion in Step 5 of the sifting process checks if the detail signal d; (n)
satisfies the two IMF properties. In [102], it was argued that all types of signals cannot fit
this IMF definition strictly, which often results in over-sifting. Over-sifting of IMFs leads
to over-decomposition of signals causing spectral dispersion over adjacent oscillatory
modes, whereas under-sifted IMFs tend to violate at least one of the IMF properties.
Thus the choice of stopping criterion plays a key role in the accuracy of EMD. Analogous
to system distance definition, the authors of the original EMD algorithm in [18] proposed
a stopping criterion depending on the normalized Square Difference (SDy) between two

successive sifting operations:

s, st o
n=0 1k—1

where dii(n) and dy,_1(n) are the two adjacent detail signals, of length L samples,
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after k iterations of the sifting process. If this SDy value is smaller than a pre-defined
value then the sifting process can be stopped. Since this stopping criterion, SDy, does
not depend on the IMF conditions, choosing a threshold value lacks proper guidance.
Imposing too low a threshold leads to over-sifting thereby causing over-decomposition.
Hence, alternative stopping criteria for sifting process were proposed in [98,103,104]. In
this thesis, we adopt a widely used stopping criterion first proposed in [98]. This stopping
criterion compares the amplitudes of the mean of the envelopes and the corresponding
detail signal. If the amplitude of mean of the envelopes is relatively small compared
with the amplitude of the corresponding detail signal at all data points, then the sifting
process is terminated. It is based on three parameter thresholds «,#; and 62, which
are purposed to ensure globally small variations in the mean, m(n), while taking into

account locally large excursions [98]:

a(n) _ emaw(n) ; emzn(n) (68)
_ |m(n)
() = |2 ’ (6.9)

where a(n) and o(n) are referred to as the mode amplitude function and the evaluation
function respectively in [98]. The sifting process is iterated until o(n) < 6; for some
prescribed fraction 1 — « of the total duration, while o(n) < 2 for the remaining fraction.
The typical values proposed by the authors are a =~ 0.05,6; =~ 0.05 and 6y ~ 106,
respectively (the default values in the EMD matlab scripts in [99]). If this stopping

criterion is fulfilled, then the sifting process is terminated to give an IMF.

6.2.3 EMD Synthesis

The result of the sifting process produces M IMFs and a constant residue signal r(n)
(=rpr(n), the subscript M is ignored for the sake of simplicity). The parent signal (z(n))
can be completely reconstructed through EMD synthesis process, which is simply a direct

summation of physical domain IMFs generated by the EMD:

M
x(n) = Z zj(n)+r(n) (6.10)
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The sifting process has two postulates: 1) the input signal to the sifting process (z(n))
can be represented as a linear combination of its IMFs and 2) inputting an IMF to the
sifting process results in just the input IMF with scaling factor 1. Hence, the IMFs can
be remarked as eigenfunctions of the sifting process. Further, IMF components form a
complete and "nearly" orthogonal basis for the input signal [18,96,98]. Thus, the fully
data-driven and adaptability of the EMD method explains that it can be considered to

be well accommodated for nonlinear and nonstationary data.

6.2.4 EMD Applications

EMD does the unsupervised signal decomposition based on local characteristic time scale
of the data. Besides, EMD is adaptive, highly efficient and does not leave time domain.
These properties of EMD were claimed to be well suited for nonlinear and nonstationary
data and have prompted many researchers to investigate EMD method to various research
fields. Accordingly, there have been hundreds of papers in the literature during the last
decade dedicated to apply EMD technique to various engineering and non-engineering
applications, for example, biomedical applications [100,105,106,107], image processing
and computer vision [101,108,109], meteorology and climate studies [110,111], financial
studies [112], ocean and seismic wave studies [113,114], mechanical engineering [115,116,

117] and many other diverse research areas.

Speech Processing using EMD

In the last few years, the application of EMD has also been extended to speech and audio
signal processing. Before presenting our work on EMD-based NAEC, this section discusses
other applications of EMD in speech and audio enhancement that are widely reported.
Like many real-world signals, speech signals are also highly nonstationary, making
traditional signal analysis dissatisfying due to dynamic variation of spectral content
across the time. EMD is a better alternative suitable to analyse highly nonstationary
signals like speech. An example of speech signal analysis using EMD is illustrated in
Fig. 6.5. The input signal is a clean speech signal sampled at 8kHz. EMD decomposes
the clean speech signal into 18 IMFs; the first 6 IMFs are shown in Fig. 6.5. The first
IMF has a high-pass characteristic but also contains lower energy, low frequency content.
The higher order IMFs have overlapping band-pass characteristics [118]. It is necessary
to emphasize that the cut-off frequency between the consecutive IMFs is time varying
and input signal dependent. Several efforts were recently made to use the IMFs for
speech enhancement [119,120,121,122]. In [121], linear predictive coding (LPC) analysis
was computed on the IMFs in order to extract the resonant frequencies of the vocal

tract (formants). The results are compared to the LPC analysis operated on original
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Figure 6.5 — An illustration of EMD. Illustrated is a clean speech signal (top) and the
first 6 IMFs.

(full-band) speech signal and it was shown that the latter is more reprehensive than the

same analysis operated on IMFs.

Further observing the IMFs in Fig. 6.5, it is clear that most of the energy content of
the clean speech signal is concentrated in the first few IMFs. Fig. 6.6a illustrates the
variance of IMFs with respect to the order of IMFs for a clean speech signal. The
variance (or energy) of the IMFs decreases as the order of IMF increases. Similarly, if a
speech signal is contaminated with a low-frequency noise (example: wind noise or car
interior noise) then EMD has the capability to characterize the IMFs as either speech
dominant or noise dominant. To illustrate such an example, a noisy speech signal was
generated artificially by adding wind noise to the same clean speech signal shown in
Fig. 6.5 at 0dB SNR level. Applying EMD to the noisy speech signal resulted in 12
IMFs. Fig. 6.6b illustrates the IMF variance plot of noisy speech signal. It can be
seen that there is a sudden increase in the energy (variance) at higher order IMFs due
to the low-frequency wind noise components. In [118], the authors showed that these
observations hold true for most of the speech signals and low-frequency noisy signals.
Thus, one way to reconstruct the speech signal from the noisy signal is by ignoring the

higher-order noise-dominant IMFs and summing the first few IMFs composed of the
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(b) IMF variance(energy) plot of a speech signal contaminated with wind noise at 0 dB SNR

Figure 6.6 — IMF variance plots: indicates energy content in each IMF

desired speech signal. By taking advantage of this principle that separates the speech
from the noise, approaches to EMD-based speech enhancement /noise cancellation are
proposed in the literature [118,119,120].

Recently, an EMD-based sub-band approach to linear AEC is reported in [122]. In typical
sub-band approaches to linear AEC, the far-end signal and the microphone output signal
are divided into mutually exclusive multiple sub-band signals using identical analysis

filter-banks?. The resulting sub-band signals are down-sampled by a known factor and

2A filter-bank is a bank of band-pass filters that divides the input signal into a set of sub-band signals
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each down-sampled sub-band far-end signal serves as an input to an independent adaptive
filter. The outputs of the sub-band adaptive filters are subtracted from the sub-band
microphone signals forming the sub-band errors. These errors are then up-sampled and
combined using synthesis filter-banks leading to the full-band echo-free output. This
sub-band adaptive filtering technique allows for fast convergence and reduced complexity
through the use of a robust NLMS algorithm, especially in longer reverberant acoustic
environments [2]. However, in practice, the performance of sub-band adaptive filtering
techniques is often degraded due to artifacts introduced by the filter-banks [123]. Authors
in [122] presented an EMD-based sub-band adaptive filtering scheme to reduce the
filter-banks artifacts. This structure uses EMD in the place of filter-banks, but there is
no guarantee that the same number of IMFs with the same bandwidths will be produced
at both downlink (far-end) and uplink (microphone) signals using EMD. Hence, the
authors proposed to use an IMF separation process after EMD, where IMFs are grouped
into separate bands according to the power spectral densities (PSD) of the IMFs. A
detailed description about IMFs grouping is provided in [122]. The different IMF groups
are treated with multiple adaptive filters similar to the traditional sub-band adaptive
filtering techniques. The results presented show effective ERLE values with a faster

convergence rate using the proposed EMD-based structure.

Other applications of EMD in speech and audio processing include speech analysis [124],

source separation [125], voice activity detection [126] and pitch estimation [127].

6.3 Application of EMD to NAEC

This section reports the first EMD-based approach to NAEC. The work aims to demon-
strate the application of EMD in the time domain as a potential solution to NAEC.

Before going into the details about EMD based NAEC, a real nonlinear echo signal is
analysed using EMD, assuming that the downlink path is the only source of nonlinear
distortion in the LEMS. A clean speech signal x(n) sampled at 8kHz is played by a real
mobile phone loudspeaker in hands-free mode at full gain. The output signal x gy (n)
is simultaneously recorded using a high-quality microphone. The experiment uses a
setup similar to the one described in Section 4.1.1. The time series signals x(n) and
Zout(n) (both normalized) are illustrated in Fig. 6.7. As a first step, EMD is applied
to both x(n) and s (n). Consider the IMF variance plots shown in Fig. 6.8 for z(n)
and xo,t(n) respectively. The plots in Fig. 6.8 reveal that the first few IMFs of the real

recorded signal, x,,:(n), have more energy than those of the clean speech signal, x(n),

each of which corresponds to a dissimilar spectral region of the input signal. Filter-banks concept is
discussed in detail in [80]
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Figure 6.7 — A real mobile phone loudspeaker (in hands-free mode at maximum gain)
excited by a clean speech signal (top) and simultaneously recorded using a high quality
microphone (bottom)

this is because of the inherent loudspeaker nonlinear distortion. Also, the higher order
IMFs of the recorded signal (zqy:(n)) have its energy reduced because of the mobile
device loudspeakers intrinsic inefficiency at low frequencies. Further, the first few IMFs
of the recorded signal cover the higher-frequency band ranges from approximately 1kHz
to 4kHz, the bandwidth which typically contains the majority of the higher-orders of
nonlinear echo components. After first few IMFs, other IMFs are predominant with linear

echo components.

Thus the data-adaptive EMD technique is more suitable to decompose a nonlinear
distorted signal into a set of IMFs which can further be characterized as either nonlinear
dominant or linear dominant. This IMF classification into nonlinear and linear dominants
is one of the key factors of the nonlinear echo cancellation. It makes possible to eliminate
the nonlinear processing for linear echo dominant signals (to avoid over-modeling) without
degrading the linear AEC performance (due to gradient-noise). By taking advantage of

this principle, we propose a novel scheme of NAEC.
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Figure 6.8 — A comparison of IMF variance plots of a clean speech signal and a real
loudspeaker recorded signal

6.3.1 NAEC Structure

The approach is based on the decomposition of a full-band microphone signal into IMFs
using EMD. NAEC is accomplished through the application of conventional, adaptive
power filtering (parallel approach) to each IMF using a full-band reference signal z(n).
The structure of the new EMD-based NAEC scheme illustrated in Fig. 6.9 is essentially
standard except for EMD decomposition, resynthesis and the use of multiple filter
chambers (FCs). The downlink/reference signal is denoted by z (n), the loudspeaker
output signal by Z,,: (n) and the uplink/microphone output signal by y (n). In this first
attempt to employ EMD for NAEC we suppose no near-end speech and no background

noise. The uplink signal thus contains echo alone.

The microphone output y (n) is decomposed by EMD into M IMFs according to the
approach described in Section 6.2. Each IMF is then adaptively estimated from the
full-band downlink /reference signal = (n) by one of M filter chambers (FCs). Each FC
contains the P order conventional power filter model [48] illustrated in Fig. 5.10. The
power filter model is relatively an efficient approach to the identification of nonlinear

acoustic echo paths as discussed in Chapter 5. The sub-filters adaptively estimate the

121



Chapter 6. Empirical Mode Decomposition

Downlink

| [Xour (1)

<

x(n)

¥

o] ) o

hym)| [hz(m) |- - |hp(m)

hrir(n)

[ IMF
| D—{ el Buifer e(n)
— 5 Summer
_______________ Uplink O] O)

Figure 6.9 — Structure of EMD based NAEC.

acoustic channel and loudspeaker impulse response, collectively referred to as the LEMS
illustrated in Fig. 6.9.

Decomposition of the microphone signal y (n) produces M IMF signals y;;j =1,--- M
where each IMF represents a distinct frequency range. Accordingly, each corresponding
FC requires fewer filter taps than would otherwise be required in the case of a full-band
signal. Featuring a frequency dependent control on IMFs, the order of the power filters,
P, can be adjusted individually in each FC according to the spectral properties of the
corresponding IMF. This structure also gives an additional degree of freedom to choose
the system parameters of the power filter model (such as the order of nonlinearity P,
length of sub-filters L,, adaptive filters parameters, etc.) in each FC in accordance
with the spectral range of the IMFs. The output of each FC, §;(n), is subtracted from
the corresponding IMF, y;(n), thereby generating individual error signals e; (n). Each
error signal is used in the conventional manner to update FC sub-filter coefficients
ﬁp,j (n);p=1,---,Pand j=1,--- ,M. The parameter j in lAzpyj (n) is ignored for the
rest of the chapter for the sake of simplicity and will be referred to as ?Lp (n). Finally, the
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individual error signals are summed together to reconstruct the full-band error signal:

M
e(n) = Z ej (n) (6.11)
j=1

6.3.2 Adaptive filtering

EMD produces a total of M IMF signals y;;j = 1,--- , M. Corresponding error signals
ej;j = 1,---, M are thus expressed by:

ej(n) = yj(n)—4g;jn)
P
ej(n) = yj(n) =Y hy (n)x"(n) (6.12)
p=1
where h,, (n) is the estimated sub-filter vector of length L,, x?(n) = [#P(n), ..., zP(n — L, + 1)]7
is the reference signal vector and 4 (n) = 5:1 ﬁg (n) xP(n) is the output of the j** FC.

Due to its simplicity we used a normalized least mean square (NLMS) adaptive filtering
algorithm within each FC. The NLMS algorithm for sub-filter h,, (n) is derived using an
approach similar to that given in [47]. Updates are applied in the usual manner according

to:

by, (n+1) = by (n) + —2_xPe; (n) (6.13)
%715

6.3.3 Experimental work

The following reports a performance comparison of the new EMD-based approach to
NAEC to a baseline power filtering approach. All experiments were conducted with
speech signals and the nonlinear echo signal is generated empirically (using the GPHM
model by identifying a real mobile phone loudspeaker) as discussed in previous chapters
(refer Section 4.1). Performance is assessed in terms of the echo return loss enhancement
(ERLE).
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Figure 6.10 — A performance comparison in terms of ERLE for the new EMD-based
approach to NAEC and a baseline power filter approach.

Experiments were performed with diagonal (one-dimensional) loudspeaker Volterra
kernels hy, (n) for values of p < 5 and with 32 taps in all cases. The acoustic channel
was modeled with a fixed 256-tap room impulse response (RIR) h,; (n) selected from
the Aachen RIR database [1]. All experiments were performed with a clean speech
downlink /reference signal x (n) of approximately 10 seconds duration with a sampling
frequency of 8kHz. A change in the acoustic channel is introduced after approximately 5

seconds simply by delaying the RIR by 2.5 ms. This is done to compare the dynamic
re-convergence performance of each algorithm.

We used the EMD routines available in [99] for decomposing the nonlinear echo signal
into M = 10 IMFs. M varies for each speech signal; it depends on the stopping criteria
used in the process outlined in Section 6.2. It is not the purpose of this thesis to address
such issues which have been analyzed in detail elsewhere [18,99]. Also, the energy
content of the higher-order IMFs beyond 10*-IMF are almost negligible. Accordingly,
we have considered the 10"-IMF is equivalent to the sum of all higher-order IMFs
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Sub-filter lengths
1(Linear) | 2 | 3 [ 4[5
1-4 128 32| 32| 32
5 128 32| 32| 32
6-7 128 32132 X
8-10 128 X[ XX

FC

| | | &

Table 6.1 — Order of the power filters (P) and their associated sub-filter lengths (L,
p € [1, P]) in each Filter Chamber (FC)

from the 10"-IMF (IMFyy = ij‘/ilo IMFj; M > 10). The order of the power filters
(P) can be adjusted individually in each FC according to the spectral properties of
the corresponding IMF. Over-modeling the order of power filters in the FCs increases
computational complexity and the unnecessary degrees of freedom lead to noisy estimates
g;j(n). For the test whose results are illustrated in Fig. 6.10, we have used different P
for different FCs as illustrated in Table 6.1. Upon observing the spectral content of
the IMFs, the first 4 IMFs covers the higher-frequency band ranges from approximately
1kHz to 4kHz, the bandwidth which typically contains significant nonlinear distortion.
Hence, first 4 FCs each contain 5 adaptive sub-filters, P = 5. Similarly, the 5th FC has
only 4 adaptive sub-filters whereas the 6th and 7th FCs have only 3 sub-filters®. The
higher-order IMFs, from 8 to 10, correspond to the lower frequency range approximately
less than 400Hz, which can be safely assume as linear. Therefore, nonlinear processing
is not required for these IMFs and accordingly FCs 8-10 consist of a single, 287-tap
linear transversal filter for linear echo cancellation. For all multi-channel FCs, the first
sub-filter, which corresponds to the linear system response, has 128 taps. All other
sub-filters have 32 taps.

Finally, the baseline power filter approach has P = 5 sub-filters, each with 287 taps.
Neither the EMD-based nor the power filter approach uses orthogonalization since with the

number of sub-filter taps used in these experiments, it does not improve performance [49].

6.3.4 Experimental results

ERLE results for the EMD and the baseline power filter approaches to NAEC are
illustrated in Fig. 6.10 for a common excitation. The EMD approach is shown to
outperform the baseline system; it attains a higher level of ERLE, around 8-10 dB more
than the baseline. The use of different orders of power filters provides a convenient means

of improving NAEC performance, thus minimizing gradient noise due to over-modelling.

3 Assuming a miniatured loudspeaker low frequency cut-off at 200Hz, then the least possible 2™¢
harmonic appears at 400Hz. Therefore, the frequency range below 400Hz is distortion free. Similarly, the
frequency band below 600Hz could cause only a third order distortion
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Chapter 6. Empirical Mode Decomposition

Fig. 6.10 also illustrates the response of each approach upon initialization and to a
discrete change in the acoustic echo path which occurs at approximately 5 seconds. In
both cases the EMD approach is shown to converge more rapidly than the baseline
system. This is due to the lower spectral dynamic range in each IMF compared to the

full-band signal in the baseline approach.

Notice the performance drop of the EMD approach at roughly between 1.5 and 2.5 seconds.
The ERLE drop is a very good example and is due to one of the main limitations of the
EMD sifting process, called "mode mixing". As discussed later in the thesis in Section 7.6,
Orthogonality of the EMD is not guaranteed in some applications as often multiple IMFs
are correlated, meaning different modes of oscillations (analogous to spectral content)
coexist in multiple IMFs. This problem is called the "mode mixing" in the literature.
The spectral content in that particular time period leaked into multiple IMFs (similarly
to multiple FCs) which reduces the performance of those corresponding FCs leading to
drop in the ERLE.

While the proposed EMD-based NAEC not only delivers greater average echo attenuation,
faster convergence and thus better performance in the case of a dynamically changing
acoustic path, it is not without cost. This entails increased computational complexity,
principally due to the EMD decomposition and the use of multiple FCs. While there
is scope to reduce the computational load via further optimization, the current system
is approximately 1.8-times more demanding in terms of computation. While there is
an on-line EMD algorithm [96], the work reported here was performed with an ’off-line’
implementation, i.e. by application of EMD to entire signals. This was deliberate in order
to demonstrate the application of EMD to nonlinear echo cancellation while avoiding

additional problems inherent to on-line processing [96].

6.4 Summary

In hands-free telephony with low-cost transducers, the microphone signals are often
nonlinear and nonstationary time series, hence their analysis is challenging. Linear signal
analysis tools like Fourier analysis are ill-suited to analyse nonlinear signals. Empirical
mode decomposition (EMD) was used in this thesis as a good alternative to analyse
such complex nonlinear data. This chapter introduces and explains in detail the EMD
technique. EMD is based on the local properties of the input signal and thus iteratively
decomposes time series into different zero mean oscillations called intrinsic mode functions
(IMFs). The IMFs themselves to be used for processing and manipulation to effectively
improve the input signal enhancement. Various applications of EMD in the speech and

audio signal processing are briefly discussed in this chapter.
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This chapter also reports the first application of EMD to NAEC. The EMD solution
entails the decomposition of the nonlinear echo signal from microphone into IMFs and
their utilization in otherwise conventional echo cancellation using adaptive filtering.
When compared to the power filter baseline system, experimental results demonstrate
improved NAEC performance in terms of greater echo reduction and faster convergence.
The proposed structure is also more robust to dynamic changes in the acoustic channel.
While a modest increase in computational complexity is a drawback, there is scope to

reduce this through further optimization.

Although the proposed EMD-based NAEC solution does not use Fourier analysis (or
any linear signal analysis tools), the underlying interpretation of nonlinear distortion
(as harmonic distortion) is still depends on the traditional Fourier based time-frequency
analysis and the Volterra series. In continuation to the above described EMD algorithm,
next chapter introduces a new method for time-frequency analysis called the Hilbert-
Huang Transform (HHT). As an alternative method to the Fourier-based time-frequency
analysis, we will apply this HHT methodology to analyse nonlinear loudspeakers in the

next chapter.
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Chapter 7

An Alternative Interpretation of

Loudspeaker Nonlinearities

This chapter presents a new approach to nonlinear loudspeaker characterization using the
Hilbert-Huang transform (HHT'). Based upon the empirical mode decomposition (EMD)
and the Hilbert transform, the HHT decomposes nonlinear signals into adaptive bases
which reveal nonlinear effects in greater and more reliable detail than current approaches.
Conventional signal decomposition techniques such as Fourier and Wavelet techniques
analyse nonlinear distortion using linear transform theory. This restricts the nonlinear
distortion to harmonic distortion. This work shows that real nonlinear loudspeaker
distortion is more complex. HHT offers an alternate view through the cumulative effects
of harmonics and intra-wave amplitude-and-frequency modulation. The work calls into
question the interpretation of nonlinear distortion through harmonics and points towards
a link between physical sources of nonlinearity and amplitude-and-frequency modulation.
This work, published in [128], furthermore questions the suitability of traditional signal

analysis approaches while giving weight to the use of HHT analysis in future work.

7.1 Time-Frequency Analysis

Of all commonly accepted practices for interpreting nonlinear distortion in loudspeakers,
harmonic distortion is by far the most pervasive. Be it modeling, characterization or
linearization of nonlinear loudspeakers, and/or nonlinear acoustic echo cancellation/sup-
pression, most of all the concepts discussed in this thesis or published in the literature,
presume nonlinear distortion as harmonic distortion. However, as Klippel mentioned
in [9], harmonic distortion only provides a peculiar indication but not a comprehensive

description of the nonlinear system.

Time-frequency-energy distribution (or the spectrogram) represents what frequencies are

present in a signal, their energy and how they change over time. For example, Fig. 7.1
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Figure 7.1 — Miniature loudspeaker (microspeaker) response to a pure sinusoidal input at
1kHz, sampled at 8kHz;

illustrates the Fourier-based spectrogram of the output of a miniature loudspeaker operat-
ing at max amplitude and excited with 1kHz sine tone. Harmonic distortion components
appearing in the spectrogram indicate nonlinearities inherent in the loudspeaker under
test. However, the conventional time-frequency analysis techniques are usually derived
from a short-time Fourier transform (STFT) [80] or any generalized integral transforms
like Gabor and wavelet transforms [94,95].

Traditional Fourier-based signal analysis methods such as the discrete Fourier transform
(DFT) and the STFT dominate the signal analysis field. These methods all assume
linearity and stationarity, at least within the time window of observation. Since they rely
on a priori defined orthogonal bases for data representation, Fourier-based approaches
are ill-suited to the analysis of nonlinear signals; they assume the linear superposition of
different signal components. As a consequence, the energy of a nonlinear signal is spread
across a number of harmonics. Nonlinear distortion is then represented as harmonic

distortion, even if the link to a physical source is questionable.

As an alternative to the STFT, Wavelet transform is developed for the improved visible
localization of the frequency components in the analysed signals by means of variable width

window (time-scale domain) [129]. However, Wavelet transform is also not unsupervised
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or data driven, in that it relies very strongly on a parametric model of the input
signal. Wavelet-based signal decomposition is characterized by the prior definition of the
analyzing mother-wavelet (orthonormal basis function). Nonetheless, Wavelet analysis is

designed to handle non-stationary data but still assumes linearity [98].

Although the two methods, Fourier and Wavelet analysis, are based on two different
concepts, they both are designed for linear systems and/or signals. Therefore, direct
application of these methods on nonlinear signals may lead to incorrect physical interpre-
tation of the underlying nonlinear distortion. Accordingly, these mainstream methods
may not be the most suitable approaches for the analysis of miniature loudspeakers.

Alternative analysis methods are thus needed.

7.2 Instantaneous frequency and The Hilbert transform

To understand the complex behaviour of nonlinear systems, a thorough time-frequency
analysis is necessary at the accuracy level of instantaneous frequency (IF) and instanta-
neous amplitude (IA). Instantaneous frequency is expected to reveal more precise details

of the underlying phenomenon of the nonlinear distortion.

The Hilbert transform (HT) is a well-known technique in signal processing to compute
instantaneous frequency and amplitude. The HT can be interpreted as a 90° phase
shifter. Reverting temporarily to continuous notation, for any arbitrary time series, x(t),
the Hilbert Transform (HT), y(¢), is obtained as follows [130]:

B l +Oox(7‘)
y(t)—WP/ S ar (7.1)

where P denotes the Cauchy principal value. With this definition, z(¢) and y(¢) form a

complex conjugate pair leading to an analytic signal:

2(t) = 2(t) + jy(t) = a(t)e’? (7.2)

in which
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a(t) =/ (#*(t) + y*(1))

_ y(t)
0(t) = arctan o) (7.3)

Here, a(t) is the IA and 6(t) is the instantaneous phase. The IF can be computed as:

w(t) = 20 (7.4)

This classical wave theory-styled definition of IF is computed through differentiation
rather than integration. Hence the IF is local, not global, and reflects intra-wave
frequency modulation [18]. Intra-wave frequency modulation represents the change of
IF within one oscillation cycle (or within a period of a wave). However, this way of
computing IF and sometimes the concept of IF itself has been subjected to controversies
and limitations [124,129,131,132]. Cohen [129] showed that the HT produces meaningful
IF only for monocomponent signals while the Bedrosian and Nuttall theorems [131, 132]
impose further constraints, e.g. non-overlapping amplitude spectra (a(t)) and the spectra
of cosine term (cos(6(t))). If for a given function the spectra of a(t) and cos(6(t)) are
overlapped then that function cannot be expressed in the analytic signal form given in
Eq. 7.2. Similarly any real signals with positive local minima and negative local maxima
(the so called multicomponent signals) also cannot be expressed in the analytic signal
form, meaning HT does not exist. Unfortunately, these conditions are too restrictive and
most practical data do not meet these requirements. As a result, the full potential of the

HT had to wait for the development of the empirical mode decomposition (EMD).

7.3 The Hilbert-Huang Transform

As discussed in the previous chapter, the EMD was first introduced to solve the limitations
of the HT. Recalling what was said in the previous chapter, EMD decomposes any signal
into a finite set of elementary signals through the Sifting process and for an elementary

signal to be an IMF, it must satisfy the following two important properties [18]:
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1. The number of extrema (maxima and minima) and the number of zero-crossings in
the entire input signal (total duration of the signal) must either be equal or differ

at most by one.

2. The mean value of the envelop defined by the local maxima and local minima is

equal to zero at any point.

The IMFs generated by the EMD satisfy the constraints and/or the limitations to
admit well-behaved HT and meaningful instantaneous local frequencies as a function
of time. EMD together with the HT is what Huang et al. referred to as the Hilbert-
Huang Transform (HHT) [18]. The Hilbert-Huang Transform (HHT) is a signal analysis
approach which is well-suited to nonlinear, nonstationary signals [18,96]. The application
of HHT involves two steps. The first decomposes a discrete time-domain signal y (n) into
a set of M intrinsic mode functions (IMFs), y; (n); j =1,---, M, using empirical mode
decomposition (EMD) such that:

M
y(n) = yj(n)+r(n) (7.5)
j=1

where 7 (n) is the residue. The second step determines the instantaneous frequency (IF)
and instantaneous amplitude (IA) of each IMF y; using the Hilbert Transform. From
these, one can construct straightforwardly the time-frequency-energy distribution referred
to as the Hilbert spectrum [18,96].

7.3.1 Hilbert-Huang Spectrum

The HT is readily applied to each IMF in order to determine the IA (a;(n); j =1,--- , M)
and IF (wj(n); j =1,---, M) according to Eqgs. 7.3 and 7.4 respectively. The analytic

representation of the input signal may then be expressed as:

M .
y'(n) =3 aj(n)el S witman (7.6)
j=1

where, since it is constant, the residue r(n) is omitted. The original input signal,
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y (n), is the real part of the analytic signal. The IAs (aj(n); j = 1,---, M) and IFs
(wj(n); j=1,---, M) then give a time-frequency-amplitude representation of the signal,
termed the Hilbert-Huang Spectrum [18,96]. A plot of the time-frequency distribution
of IA? (square the amplitude) illustrates the energy density in similar fashion to a

conventional spectrogram.

7.3.2 Relation to Fourier techniques

Expressed as a sum of sinusoids, the input signal is given by:

y/(n) _ Z ajeiwjn (7.7)
j=1

where a; and w; are constant amplitude and frequency terms respectively. Because the
frequency of each sinusoidal function is time-independent, Fourier analysis is able to
construct stationary data only. Also, since the sine waves used to describe a signal are
infinite in extent, Fourier analysis is considered a global analysis tool. The accuracy thus
depends critically on data length and stationarity, yet practical data is generally short in

existence and of arbitrary duration.

The comparison of Eqgs. 7.6 and 7.7 show that the HHT is a generalised Fourier expansion
but with time-varying amplitude and frequency which accommodate nonlinear, nonsta-
tionary data. The Fourier representation implies constant energy at a given frequency,
i.e. a regular harmonic wave which persists unchanged throughout the full data record.
HHT analysis, in contrast, reflects the local likelihood of energy at a given frequency.
A brief description of HHT analysis is presented in this section and for more detailed

presentations, readers are referred to [18,96,98].

7.4 Loudspeaker distortion analysis

This section reports our first attempt to apply HHT to the analysis of nonlinear distortion
produced by miniature loudspeakers. The work is our first steps to align the analysis of
nonlinear distortion to its physical origins. This work was performed using real mobile

phone loudspeaker recordings.
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Figure 7.2 — Experimental setup in an anechoic chamber to measure loudspeaker outputs.

7.4.1 Experimental set-up

The nonlinear response of a loudspeaker is observed from its output to a single sinusoidal
excitation signal. This approach was used to characterize a real mobile phone loudspeaker
placed before a head and torso mannequin at a distance of 30cm in an anechoic chamber.
The experimental set-up used is illustrated in Fig. 7.2. The device is configured to operate
in hands-free mode and at maximum volume at which nonlinear distortion is greatest.
Input signals sampled at 48kHz are pure sinusoids with frequencies between 100Hz and
3800Hz in 100Hz intervals. They are stored in mobile phone memory and played back
using a pre-installed VLC player. Loudspeaker outputs are recorded with a high-quality
(linear) microphone mounted in the mannequin ear. Recorded signals are stored on a PC

at the same 48kHz sampling frequency.

7.4.2 HHT Analysis

As an example we consider a real mobile phone loudspeaker subjected to a single sinusoidal
excitation of frequency 1kHz. Fig. 7.3(a) shows the results of STFT analysis. Several

high-order harmonics are visible, representing the traditional view of nonlinear distortion.

Fig. 7.3(b) illustrates the four (out of eight) IMFs which result from decomposition of the
loudspeaker signal using EMD and the routines available in [99]. Since EMD extracts
the highest-frequency IMF first, IMF-1 is the distorted harmonic caused by loudspeaker
nonlinearities. IMF-2 is the distorted natural frequency at 1kHz whereas the other IMFs
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Figure 7.3 — (a) STFT spectrogram of a mobile phone loudspeaker response to a pure
sinusoidal input at 1kHz, sampled at 48kHz; (b) Loudspeaker response to 1kHz sine tone
is decomposed by the EMD, resulting in the 8 IMFs, first 4 IMFs are listed above and
others are not displayed since they are almost zero; (c) IA profiles of the IMFs obtained
by HHT; (d) IF profiles of the IMFs obtained by HHT

have negligible energy.

Fig. 7.3(c) illustrates the IA profiles of the four IMF components which exhibit intra-wave
amplitude modulation, namely variation in amplitude across time. Fig. 7.3(d) illustrates
the corresponding IF profiles which exhibit intra-wave frequency modulation. This is due
to the displacement of the loudspeaker diaphragm which is no longer a pure sinusoidal
function on account of nonlinear distortion. A relatively strong third-order harmonic is

also generated as a result of asymmetrical loudspeaker nonlinearities.

The wave-profile deformation caused by the nonlinear distortion is the result of accu-
mulated harmonic content and intra-wave amplitude-and-frequency modulation. This
cumulative effect is observed in the time domain response of the loudspeaker shown in
Fig. 7.4. The waveform deformation is not constant, but varies from high to low and
vice versa in accordance with the IA profile in Fig. 7.3(c). The extent of the deformation
depends on the magnitude of the additional harmonics and the strength of the intra-

wave amplitude-and-frequency modulation. Close observation of IA and IF profiles in
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Figure 7.4 — A real mobile phone loudspeaker response to 1kHz pure sine tone. The
wave-profile deformation caused by the nonlinear distortion is not constant throughout
the time.

Figs. 7.3(c) & (d) respectively shows that the frequency variation of the IMF components
increases when their amplitude decreases and vice versa. This is indicative of softening

nonlinearity [133].

The effects described above are not reflected in the traditional STFT spectrogram which
instead shows spurious harmonics. HHT-derived estimates may thus reflect more reliably
nonlinear behavior than STFT-derived estimates. Huang et al. in [18] stated that
the intra-wave frequency modulation is the hallmark of nonlinear distortion, where the
frequency of the system changes with position even with-in one oscillation period. Besides,
authors argue that a priori defined bases in the traditional signal analysis techniques
impose numerous harmonics and that these are nothing more than a mathematical
artifact, with no link to a physical source [18,96]. Unlike traditional approaches, EMD
adapts the bases to the signal itself and can therefore yield more physically relevant
results. HHT analysis leads to a new physical interpretation of nonlinear distortion. In
place of harmonic distortion is the concept of cumulative effect of harmonic content and
intra-wave amplitude-and-frequency modulation. The real question, however, is whether
the frequency and amplitude modulation illustrated in Fig. 7.3 have a real, physical

source or whether they are simply an artefact of the HHT.
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Figure 7.5 — Time-frequency-energy distributions: (a) STFT spectrogram of a mobile
phone loudspeaker response to a pure sinusoidal input at 500Hz, sampled at 48kHz; (b)
the IF profiles obtained by HHT; (c¢) IF profiles for a high-quality loudspeaker response to
the same input; (d) the IF profiles of the same loudspeaker subject to an input excitation
comprised of pure sinusoidal at 500Hz and its third harmonic.

7.5 Validation of HHT

The HHT is thoroughly validated in [18] with analytical examples. This section aims to
validate the HHT technique as a means of characterizing nonlinear loudspeaker behavior.
Figs. 7.5(a) and 7.5(b) illustrate the spectrogram and IF profiles of a mobile phone
loudspeaker response to a pure sinusoidal input at 500Hz. The IF profiles show cumulative
harmonic and modulation nonlinear distortion. There is only a weak third-order harmonic
and significant intra-wave amplitude-and-frequency modulation, whereas the spectrogram
shows a strong third order harmonic and several, weak harmonics. Fig. 7.5(c) shows
the corresponding IF profiles when the mobile phone loudspeaker is replaced with a
high-quality (linear) loudspeaker and shows a total absence of amplitude-and-frequency
modulation. Fig. 7.5(d) shows the IF profiles of the (high-quality) loudspeaker output
when a simulated, 3rd order harmonic distortion is added to the input. Once again, there
is no amplitude and frequency modulation indicating that the distortion observed in (b)

has physical origins and is not simply an artifact of HHT processing.
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Figure 7.6 — (a) STFT spectrogram of a mobile phone loudspeaker response to a pure
sinusoidal input at 2kHz, sampled at 48kHz; (b) Loudspeaker response to 2kHz sine
tone (zoomed in) is decomposed by the EMD, resulting only a single IMF, meaning the
loudspeaker response itself satisfy the EMD properties; (c) TA profile of the IMF obtained
by HHT; (d) IF profile of the IMF obtained by HHT, indicating very low percentage of
modulation

After HHT analysing the three different microspeakers outputs for pure sine tone excita-
tions at different frequencies, we could determine that the nonlinear distortion is caused
by the cumulative effect of the harmonic content and the intra-wave frequency-and-
amplitude modulation. Further, the harmonics content is dependent on the input signal
level. For an over-driven microspeaker, the harmonic content is stronger but is limited to
the third-order distortion. At moderate level of excitation the modulation distortion is
more detrimental than the harmonic content. On the other hand, the strength of the
intra-wave frequency-and-amplitude modulation is nonlinearly dependent on the input
signal level and frequency. The intra-wave frequency modulation is stronger even at
moderate levels of excitation if the input signal frequency is close to the natural resonant
frequency of the microspeaker compared to the other frequencies. The waveform defor-
mation develops as soon as the intra-wave frequency modulation index (or the percentage
of modulation) exceeds a certain threshold, which is different for different microspeakers.
For example, Fig. 7.6 represents the STFT and HHT analysis of a microspeaker response
to a 2kHz sine tone. In Fig. 7.6(a) traditional spectrogram shows a relatively stronger
third harmonic and a weak second harmonic. The actual loudspeaker response shown
as an IMF1 in Fig. 7.6(b) indicates no visual waveform distortion except the amplitude

modulation. The same can be witnessed in the HHT analysis in terms of IA and IF
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in Figs. 7.6(c) and 7.6(d) respectively. Since there is no waveform deformation in the
signal, the intra-wave frequency modulation index is very weak and no sign of harmonic
content. Hence it is safe to consider that the over-all degree of nonlinearity produced by
a microspeaker is largely due to the modulation distortion with a limited impact due to

harmonic content.

Expanding from these empirical findings, we believe that this new alternative interpreta-
tion of loudspeaker nonlinearities can be potentially applied to solve the NAEC problem.
One possible solution to estimate the nonlinear echo is by incorporating the intra-wave
amplitude-and-frequency modulation effect as a pre-processor in the NAEC system to
model the loudspeaker distortion and a traditional linear adaptive filter in cascade to
model the linear acoustic echopath. The major advantage over the traditional solutions is
that the NAEC system does not require many orders of harmonics to model the downlink
nonlinearities as the intra-wave modulations incorporate the inherent nonlinearities in the
acoustic echopath. However, developing a probabilistic model that explicitly emulates the
cumulative effect of the harmonic content and the intra-wave frequency-and-amplitude
modulation effect in the microspeakers is a most challenging part of the NAEC design.
This alternative interpretation can also be extended to other similar research areas like

loudspeaker modeling and loudspeaker linearisation.

7.6 Limitations of the HHT/EMD

Despite having many characteristic advantages of employing EMD/HHT technique for
studying nonlinear and nonstationary signals, current decomposition technique still suffers
from several limitations. The major shortcoming of the EMD is that it is completely
empirical by means it lacks a firm mathematical foundation and hence the performance
of EMD can only be reviewed either empirically or numerically. Ideally, the decomposed
elements or the IMFs must satisfy the properties like completeness, orthogonality and
uniqueness to be considered as (adaptive) basis functions. In the case of standard EMD,
orthogonality and uniqueness properties are highly dependent on the input data and the
sifting process parameters (Eg. stopping criteria). Often a small change in the data or
the sifting process parameters can result in a different series of IMFs. Orthogonality is
also not guaranteed in many applications as often multiple IMFs are correlated, meaning
different modes of oscillations (analogous to spectral content) coexist in multiple IMFs.
This problem is called the "mode mixing" in the literature [18,124,134,135]. This so called
mode mixing problem questions the physical meaning-fullness of the IMFs. However,
Huang et al. argue that the orthogonality is not a necessary property for the IMFs for
analysing the nonlinear and nonstationary signals and is required only to decompose

linear signals [18,135]. We have explored the tone masking method proposed in [136]
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to get-rid of the mode mixing problem and to separate the closely spaced frequency

components that would be inseparable with standard EMD technique.

Although the orthogonality and the uniqueness properties are questionable, the complete-
ness is totally guranteed and can be easily verified by reconstructing the original signal
as the sum of all IMFs. No loss of information is incurred. Despite perfect reconstruction,
HHT still suffers from so-called end effect artifact’s [18]. The cubic spline fitting to local
extrema in the EMD process is error prone, especially due to discontinuities at signal
extremities. As a result, Gibbs phenomenon is induced upon the application of the HT
to each IMF [18,96]. This effect is observed in Figs. 7.3 and 7.5.

Despite notable success of applying EMD in various fields, the standard EMD is limited
to analyse real signals from a single channel data. Often in many applications the data
usually comprise in multi-channel data sets. In such cases, applying standard EMD
separately to each channel may not produce same number of IMFs for every channel
and also the same-index IMFs may not contain the same spectral content across data
channels. This is because of the data dependent adaptive basis nature of the EMD. Some
solutions to avoid these problems are proposed in the literature and are briefly discussed

in the next section before concluding the chapter.

7.7 Recent advancements/extensions of the standard EMD

To overcome the aforementioned drawbacks of the standard EMD, many extensions have
been reported [100,103,104,115,124,134,137]. Popular among them with a full potential
to be extended to study the nonlinear distortion problem in hands-free communications

are briefly reported in this section.

7.71 EEMD

A significant property of the EMD algorithm has been deduced after studying the
characteristics of the white noise using EMD in [138,139]. It turns out that the EMD
exhibits a dyadic filter bank structure of constant-Q bandpass filters for white Gaussian
noise (WGN). For the intermittent data, which causes mode mixing in the standard EMD,
this filter bank property is observed to be compromised. Adding white noise to such a
data can provide a uniformly distributed reference frame in the time-frequency space,
which helps standard EMD to repair the compromised filter bank property [104, 139].
Inspired from this filter bank property of EMD, authors in [104] proposed a noise assisted
EMD, called the Ensemble Empirical Mode Decomposition (EEMD), to improve the

robustness (in terms of orhtogonality and uniqueness properties) of EMD and to alleviate
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the problem of mode mixing. The working principle of EEMD is explained in the following
way [104]:

e For an original input signal z(n) add WGN (zero mean and constant variance,o?)

at different finite amplitudes and create an ensemble of k = 1,--- | K signals.

{ar(n) iy = 2(n) + {wi(n) }iy

where {wy(n)}X | ~ N(0,0?) are K independent realizations of WGN.

e Decompose every noisy signal in the ensemble into a set of IMFs using the standard
EMD. The noisy signals have a lot more local extrema and detailed envelopes than
the original signal, due to the added noise, which render EMD to decompose more

closely spaced frequencies, yielding enhanced IMFs.

e Take the average of same-index IMFs across the ensemble to obtain the resultant
IMFs of the EEMD. In the process of averaging the WGN components will eventually

cancel out (by an amount of %2) leaving only the true IMFs.

In this ensemble process, all the IMFs stay within the natural dyadic filter bank windows,
reducing the spectral leakage into other IMFs and thus significantly reduce the chance of
mode mixing. Although EEMD is a promising technique, the ensemble process makes it

more computationally demanding than the standard EMD.

7.7.2 MEMD

Authors in [134] proposed a Multi-variate EMD (MEMD) and successfully extended the
idea of EMD (rather EEMD) to multi-channel data. Authors claim that the MEMD
has the ability to identify and align common oscillatory scales in different data sources
and termed this phenomenon as mode alignment. Thus, MEMD generates the same
number of IMFs for every input channel and same-index IMFs across the channels have
almost the same spectral content. Authors further extended the work and advocated the
usefulness of computing EMD using the MEMD in [137]. Taking advantage of the mode
alignment and the filter bank properties of the MEMD, EMD via MEMD yields better
signal decomposition and enhanced IMFs compared with the standard EMD and EEMD
techniques. By better signal decomposition we mean resolving closely-spaced frequencies,

no mode mixing, unique and reproducible decomposition.
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7.7.3 Hilbert Spectral Analysis (HSA)

HSA proposed in [124] is a recent advancement in the time-frequency analysis methods
and a more powerful signal analysis technique than the EMD /HHT to model nonlinear and
nonstationary signals. We discussed EMD as a non-conventional signal analysis tool which
does not depend on the linear transform theory and a priori defined basis functions like the
traditional techniques. EMD uses HT to construct analytic signal (Eq. 7.2) and to compute
TA and IF parameters of the IMFs to obtain the time-frequency-energy representation.
Authors in [124] argued that the HT relies on the so called Harmonic Correspondence
property (H{a(t)cos(wt + 6)} = a(t)sin(wt + €)) in the process of complex extending a
real signal (that is constructing an analytic signal), which may lead to incorrect IA and IF
parameters. For a given signal z(t), by relaxing the harmonic correspondence assumption,
there will be many choices for the quadrature components (imaginary part of the analytic
signal). Accordingly there will be many complex extensions (thus many IA and IF pairs)
for a given real signal z(t), which authors in [124] termed as Latent signals. It has
been shown that these latent signals can still maintain analyticity and are well-suited
in representing/modeling the real physical phenomenon. It is worth mentioning that
the analytic signals generated by HT (assuming harmonic correspondence) are usually

confined to one particular region which is a subset of a larger set of latent signals.

Authors reformulated the time-frequency analysis problem as a latent signal analysis
(LSA) problem where the uncertainty is not in the time or frequency localization but
in choosing the right quadrature component. In this new framework, any nonlinear
and/or nonstationary signal can be represented as a superposition of latent signals,
where each latent signal is a complex amplitude-and-frequency modulated (AM-FM)
component analogous to IMFs. Assuming IMFs are the perfect AM-FM components,
authors incorporated EMD algorithm (with modifications to control its limitations) to
decompose any signal into a set of IMFs and proposed a more sophisticated way to
compute IA and IF parameters without using the HT. Further, authors proposed a 3-D
visualization of the Hilbert spectrum by plotting IF vs. real-valued time-domain signal
vs. time as a line in a 3-D space and coloring the line with respect to IA parameters. The
benefits of HSA as opposed to the HHT and the traditional STFT analysis are illustrated
in [124,140].

7.8 Summary

In this chapter we have provided new insights into loudspeaker nonlinear distortion that
can be potentially applied to solve the NAEC problem. This work is our first steps to

align the analysis of nonlinear distortion to its physical origins. First we introduced

143



Chapter 7. An Alternative Interpretation of Loudspeaker Nonlinearities

a relatively new time-frequency analysis method called the Hilbert-Huang Transform
(HHT), which is well-suited to the analysis of nonlinear, nonstationary signals. The
HHT is based on EMD and does not assume any particular linear transform theory
prior to time-frequency decomposition of the signal. The HHT spectral analysis provides
instantaneous time and frequency resolution unlike the conventional time-frequency
analysis methods. Instantaneous amplitude (IA) and frequency (IF) parameters give
more detailed and enhanced representation of the underlying nonlinear behaviour of the

distorted signals.

Further, this chapter reports our first attempt to apply HHT to the analysis of nonlinear
distortion produced by miniature loudspeakers. This approach gives an alternative
interpretation of loudspeaker nonlinear behavior. The waveform deformation caused by
the nonlinear distortion is the result of a cumulative effect, namely that of harmonics and
intra-wave amplitude-and-frequency modulation, instead of the pure harmonic distortion
interpretation which results from Fourier treatments. Besides, the HHT analysis supports
the exploration of different nonlinear phenomena: quadratic, cubic or higher-order,
softening and hardening effects, intra-wave amplitude-and-frequency modulation and
distorted harmonic responses etc. This valuable information helps in designing more

accurate nonlinear loudspeaker models.

Finally, we outlined the limitations of the EMD/HHT technique and briefly discussed

the recent advancements/extensions to overcome those limitations.
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Chapter 8

Conclusions and

Future Directions

Acoustic echo cancellation (AEC) is an essential module in any hands-free communication
device. AEC helps in creating smooth and comfortable full-duplex voice conversation in
hands-free mobile telephony. AEC helps to improve the speech recognition rate in voice
assistance systems. AEC greatly enhances the audio quality and prevents the listener
fatigue in audio conferencing system. Currently, most of the hands-free communication
devices use linear AEC algorithm to cancel the acoustic echoes. Linear AEC is well-
studied as a system identification problem in the literature. In practice, the three main
challenges of a linear AEC are background noise, reverberation and double-talk. There
are many sophisticated linear AEC algorithms in the literature that are robust against
these challenges and can demonstrate superior AEC performance. However, nonlinear
distortion in the acoustic echopath has been the biggest threat to the performance of a
linear AEC.

Current trend of portability and miniaturisation in consumer electronics have created an
enormous demand for low-cost transducers. Particularly low-cost/miniature loudspeakers
aka microspeakers are a major source of nonlinear distortion. We have shown in Chapter
1 that the conventional linear AEC algorithms are inadequate to tackle the nonlinear
distortion in the LEMS and discussed the imperative need to implement nonlinear acoustic
echo cancellation (NAEC) algorithms. In order to get the best NAEC performance, it is
vital to accurately model the dynamic nonlinear behavior of the loudspeakers. Therefore,
this dissertation concerns the analysis, identification and characterization of nonlinear

distortion in loudspeakers and its application to NAEC.

8.1 Contributions

The contributions presented in this thesis are listed below:
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e This thesis begins with the definition of nonlinear distortion in Chapter 2 followed

by a brief discussion on the theoretical concepts of nonlinear systems and their
modeling. Chapter 3 explores the possible sources of nonlinear distortion in the
LEMS, highlighting the downlink path nonlinearities. This chapter also discusses
different loudspeaker models to emulate its inherent nonlinear behaviour. Volterra
series derivatives are more popular in the literature. This chapter also offers a
theoretical framework of a nonlinear (loudspeaker) system identification approach
based on exponential sine-sweep signals referred to as nonlinear convolution tech-
nique. Overall, Chapter 3 serves as a state-of-the-art for the identification and

modeling of nonlinear loudspeakers.

Our main contributions start in Chapter 4 with an assessment of the suitability of
Volterra series derivatives in accurate modeling of nonlinear distortion in micros-
peakers. First we reported the identification of a real mobile phone loudspeaker
using the nonlinear convolution technique. By identification we mean computing
the linear and the higher-order impulse responses of a loudspeaker. We then com-
pared the synthesized outputs of the power series model (PSM) and the generalized
polynomial Hammerstein model (GPHM) to empirically measured, real loudspeaker
outputs. This work suggests that the GPHM approximates more stable and reliable

practical nonlinear behavior of a loudspeaker.

After identifying a suitable loudspeaker model, determining its optimal model
parameters is one of the challenging issues in real-time applications. Therefore,
we investigated further the accuracy of the GPHM model as a function of the
key parameters, namely the filter length (L) of the simplified Volterra kernels
and the order of nonlinearities (P). This investigation involves the identification
of loudspeakers from three different mobile phones. The results of this study
demonstrate that the P should be high enough to capture the principle sources of
nonlinear distortion where as moderate filter lengths of the higher-order kernels
are sufficient to obtain reliable loudspeaker modeling. Even if the chosen order of
nonlinearity (P) is greater than the true order, the model accuracy is still reliable
provided the L is moderate. If both P and L are greater/lesser than the actual
order then it leads to over/under-modeling scenario respectively and limits the
model accuracy. This work also highlights the limitations of the GPHM model
whose performance is inconsistent in accurate modeling the nonlinear loudspeaker

behavior involving real-speech inputs.

Another study! reveals that the ERLE performance of a NAEC algorithm can be
inflated using the PSM model based synthesized nonlinear echo signals. For the

same NAEC algorithm (for example cascaded approach) and under the identical test

!This study was actually presented in Chapter 5.3 of this thesis.
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conditions, the ERLE results generated with the PSM model lead to favourably-
biased indications of performance. In contrast, the results generated with the
GPHM model better reflect practical measurements and is thus an appealing

alternative model for future evaluations of NAEC performance.

Following a review of the state-of-the-art NAEC and/or NAES solutions in Chapter
5, we have provided a comprehensive performance and stability analysis of the
widely used NAEC algorithms, which have not been fully explored before. The
results from our experimental evaluations demonstrate that the popular NAEC
solutions such as the cascaded and the parallel approaches, which are shown to
provide better performance in nonlinear environments in the literature, are less
competent in many practical acoustic environments. This is a common problem
related to most of the NAEC algorithms, if the nature of the nonlinear distortion
varies then they will not perform as expected. Another open issue is that the
stability of the NAEC algorithms is not guaranteed in the absence of nonlinear
distortion (when the acoustic echopath is totally linear). Thus there is a lot of

potential for further research in the NAEC domain.

Thanks to the recent advances in the nonlinear signal processing field, empirical
mode decomposition (EMD) technique developed in the recent past emerged as
a dedicated nonlinear and nonstationary signal analysis tool. EMD has been suc-
cessfully applied in various engineering and non-engineering applications involving
nonlinear systems. In this thesis for the first time we have studied the application
of EMD to combat the nonlinear distortion in the LEMS. Chapter 6 reports the
first EMD-based approach to NAEC. EMD decomposes the nonlinear echo signal
into a set of IMFs which can further be characterized as either nonlinear or linear
dominant. NAEC is accomplished through the application of adaptive power fil-
tering (parallel approach) to the nonlinear dominant IMFs and the conventional
linear adaptive filtering to the linear dominant IMFs using the full-band reference
signal. When compared to the power filter baseline system, experimental results
demonstrate improved NAEC performance in terms of greater echo reduction and
faster convergence. While the proposed solution is also robust to dynamic variations

in the acoustic channel, computational complexity is a major drawback.

It is noteworthy that all NAEC algorithms in the literature including our EMD-
based NAEC solution share one common feature: the underlying interpretation
of nonlinear distortion as harmonic distortion. This traditional interpretation
of nonlinear distortion stemmed from the application of traditional (for example
Fourier-based) time-frequency analysis to study the dynamic nonlinear systems.
Traditional data analysis techniques are ill-suited to analyse nonlinear signals as

they depend on linear transform theory. As an alternative, we introduce a relatively
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new time-frequency analysis method called the Hilbert-Huang Transform (HHT).
Based on EMD and the Hilbert transform (HT), HHT is well-suited to the analysis
of nonlinear and nonstationary signals. Chapter 7 reports our first attempt to apply
HHT to the analysis of loudspeaker nonlinearities. On the basis of the results of
this work, this approach gives an alternative interpretation of loudspeaker nonlinear
behavior. The waveform deformation caused by the nonlinear distortion is the
result of a cumulative effect, namely that of harmonics and intra-wave amplitude-
and-frequency modulation. The extent of deformation depends mostly on the
magnitude of amplitude-and-frequency modulation. Besides, the HHT analysis
supports the exploration of different nonlinear phenomenon which helps in designing

more accurate nonlinear loudspeaker models.

Thus the thesis begins with a traditional interpretation of nonlinear distortion
in loudspeakers and ends with a novel and accurate interpretation of nonlinear

distortion, which marks a new beginning of NAEC research.

8.2 Future directions

While this thesis calls into question the interpretation of nonlinear distortion in the
loudspeakers through harmonics and points towards a link between physical sources of
nonlinearity and amplitude-and-frequency modulation, many opportunities for extending

the scope of this thesis remain. The section presents some of these directions:

Amplitude-and-frequency modulation based NAEC

New findings suggest new approaches. As most of the NAEC solutions in the literature
depends on the harmonic distortion and Volterra series based modeling, future research
should move beyond the harmonic distortion and consider how the new physical interpre-
tation of loudspeaker nonlinearities can be applied to solve the NAEC problem. Provided
a probabilistic model that explicitly emulates the cumulative effect of the harmonic
content and the intra-wave frequency-and-amplitude modulation, with a linear adaptive
filter in cascade we believe that the best NAEC performance can be achieved at lower
computational costs in the near future. Moreover, it is safe to assume the stability of
such an algorithm when the nature of nonlinear distortion is varying and even in the
absence of nonlinear distortion as this information is captured and incorporated in the

amplitude-and-frequency modulation parameters.
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Filter-bank property of EMD

As discussed in Chapter 7, EMD and its extensions (particularly, EEMD and MEMD)
exhibit a dyadic filter-bank property. Exploiting such a filter-bank property of the EMD
and its extensions, sub-band domain approaches may be explored to further lower the

complexity and to obtain a combined reduction of noise and nonlinear echo disturbances.
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Chapter A

Sommaire de la thése en francais

A.1 Résumé

Cette these porte sur 'analyse, I'identification et la caractérisation de la distorsion
nonlinéaire dans les haut-parleurs et son application a 'annulation d’écho acoustique

nonlinéaire (ou NAEC, pour "Nonlinear Acoustic Echo Cancellation").

La premiere partie de la these vise a la dérivation d’'un modele de haut-parleur plus
précis et empirique. Celui-ci émule la réponse fréquentielle du haut-parleur dans le but de
prédire et d’empécher la distorsion nonlinéaire. Les travaux de recherche suggerent que
le modele de Hammerstein généralisé se rapproche plus fiablement d’un comportement

de haut-parleur nonlinéaire.

Dans la partie suivante, apres avoir discuté les études avancées de development des
algorithms de NAEC, nous présenterons ’analyse des performances des algorithmes
les plus utilisés. Les résultats ont démontré que les solutions populaires n’obtiennent
de meilleurs résultats que dans quelques conditions idéales et sont moins performants
dans la plupart des environnements acoustiques réels. Nous proposons ensuite une
nouvelle approche de NAEC basée sur la décomposition modale empirique (ou EMD,
pour "Empirical Mode Decomposition"), une technique récemment développée pour
I’analyse de signaux nonlinéaires et nonstationnaires. Des expériences comparatives sur
des techniques de reference montrent que la nouvelle approche (NAEC basée sur la EMD)
permet d’obtenir une plus grande réduction d’écho nonlinéaire et une convergence plus

rapide.

Dans I’étape qui suit, les travaux mis en place sont le commencement sur 1’établissement
de la correspondence entre I'analyse de la distorsion nonlinéaire dans les haut-parleurs a

ses origines physiques. Nous considérons I'application de la transformée d’Hilbert-Huang
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(ou HHT, pour "Hilbert-Huang Transform") a I’analyse de la distorsion nonlinéaire dans
les haut-parleurs. Sur la base des résultats de cette étude, nous avons rapporté une
interprétation alternative des nonlinéarités des haut-parleurs a travers les effets cumulatifs
du contenu harmonique et de la modulation en amplitude et en fréquence. Ces nouvelles

conclusions pourraient stimuler et renouveler la direction future de la recherche sur la

NAEC.

A.2 Introduction

Alors qu’aujourd’hui, I'interaction entre les humains et les machines se fait principalement
par le toucher, la prochaine étape de 'interaction sera principalement par commande
vocale. Si la croissance récente des dispositifs de communication mains libres marché
est une indication, beaucoup de gens préferent naturellement la communication mains
libres. Dans tous les environnements de communication mains libres, ’annulation de
I’écho acoustique (AEC) et 'annulation du bruit jouent un réle de plus en plus important
pour assurer une qualité de communication (vocale) satisfaisante. Dans cette these,
nous nous sommes concentrés sur le probléeme d’annulation de 1’écho acoustique. De
nombreux appareils différents sont équipés de haut-parleurs et de microphones pour
une variété de buts différents et souvent ces transducteurs sont montés a proximité les
uns des autres. Ce couplage acoustique entre le haut-parleur et le microphone ainsi
que des réflexions d’additifs provoque I’écho acoustique. Dans le cas de la téléphonie
mobile, cet écho acoustique sera transmis a ’'utilisateur distant et la conversation peut
étre génante voire insupportable en fonction du délai aller-retour du systeme. Dans
le cas des «smart speakers» d’assistance vocale (exemples typiques: Amazon Echo et
Google Home), cet écho acoustique est une source d’interférences pour les moteurs de
reconnaissance vocale automatique affectant sa performance (détection de mots-clés
et/ou taux de reconnaissance vocale). Ainsi, ’écho acoustique dégrade la qualité de la
communication vocale en dégradant I'intelligibilité de la parole et le confort d’écoute.
Afin de lutter contre le phénomene d’écho acoustique, il est souvent nécessaire d’utiliser

un annuleur d’écho acoustique.

A.2.1 Annulation d’écho acoustique

L’annulation d’écho acoustique (AEC) est un probléme vieux de plusieurs décennies
dans le traitement du signal depuis I'introduction des communications vocales en duplex
intégral, et il s’agit toujours d’un domaine de recherche actif. IAEC repose sur une
approche d’identification de systéme bien établie. Le trajet de 1’écho acoustique (du

haut-parleur au microphone) est trés dynamique et soumis & des variations dans le

152



A.2. Introduction

|
| .
|
\ |
dm | - . °
” |
— |

Figure A.1 — Modele de systeme illustrant le couplage acoustique dans le systéme LEMS
et une approche générale de ’AEC adaptatif.

temps, en raison de la modification des caractéristiques acoustiques du systeme LEMS
(Loudspeaker Enclosure Microphone System). Par conséquent, AEC utilise généralement
un filtre transversal adaptatif linéaire pour estimer la réplique numérique de la fonction
de transfert du LEMS. Un systeme AEC adaptatif typique est illustré a la Fig. A.1,
ou d(n), s(n) et v(n) représentent respectivement le signal d’écho, le signal de parole &

proximité et le bruit.

La plupart des scénarios de cette thése supposent que le signal du microphone contient
uniquement 1’écho, c¢’est-a-dire y(n) = d(n), s(n) = v(n) = 0, sauf si spécifié. Le signal
de distante z(n) est passé a travers le filtre adaptatif h(n) pour synthétiser le signal
d’écho g(n), qui est ensuite soustrait du signal de microphone y(n) pour annuler 1’écho
acoustique. Si la réponse impulsionnelle du filtre adaptatif, ﬁ(n), correspond a celle de
LEMS, h(n), (convergence), alors I’écho sera éliminé sans aucun artefact. Cependant,
parvenir & une convergence parfaite est une tache assez difficile, en particulier lors de la
manipulation de signaux hautement nonstationnaires comme la parole. En outre, il existe
de nombreux autres facteurs tels que le bruit de fond a proximité, la période de double
conversation (la période a laquelle signal de parole & proximité et 1’écho sont présents
en méme temps) et les nonlinéarités nuisent aux performances de 'annuleur d’écho.
La distorsion nonlinéaire dans le trajet d’écho acoustique est particulierement génante.
Dans les appareils mobiles actuels, la tendance vers la portabilité et la miniaturisation
a conduit a 'utilisation de transducteurs de plus en plus petits. Les contraintes sur la

taille du haut-parleur entralnent souvent une sortie nonlinéaire.

Dans ce qui suit, nous examinons 'impact de la distorsion nonlinéaire sur quelques

algorithmes adaptatifs populaires associés a ’AEC linéaire. La performance est évaluée
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en termes de convergence et d’'une mesure standard appelée ERLE (Echo Reduction
Loss Enhancement). ERLE est une mesure quantitative qui représente la réduction de
I'énergie (en dB) du signal du microphone (d(n)) obtenue par réduction d’écho. ERLE

est donné par:

E{d*(n)}

FRLE = 10log—————=
“TE{2(n)}

(A1)

ou e(n) est le signal de sortie AEC a transmettre a l'utilisateur distant. Voici les

algorithmes adaptatifs linéaires bien connus considérés pour cette étude:

e L’algorithme LMS (Least Mean Square) avec p = 0.16
e L’algorithme NLMS (Normalized Least Mean Square) avec p = 1

e L’algorithme FBLMS (L’algorithme LMS par bloc dans le domaine fréquentiel)
avec p = 0.5 et la taille du bloc est B = 256

e L’algorithme DCTLMS (Discrete Cosine Transform-LMS) algorithm avec p = 0.5

e L’algorithme APA (Affine Projection Algorithm) avec p = 1 and l'ordre 2

Les détails de ces algorithmes adaptatifs sont bien décrits dans la littérature (par
exemple, [2,3]), et ne seront pas répétés dans cette these. La taille de pas p de chaque
algorithme est choisie de telle sorte qu’elle atteigne le maximum ERLE apres convergence.
Le processus de génération d’écho linéaire et nonlinéaire et ’environnement de simulation
complet sont expliqués en détail a la Section 1.1. La figure A.2 illustre le comportement
des algorithmes adaptatifs linéaires en termes d’ERLE dans des environnements linéaires
et nonlinéaires. La plupart des travaux d’AEC dans la littérature supposent la linéarité
des composants électroniques dans le LEMS. Dans de telles conditions linéaires, les
algorithmes AEC fonctionnent généralement bien, comme le montre la Fig. A.2. Les
nonlinéarités de liaison descendante dans le LEMS réduisent le maximum d’ERLE
réalisable par chaque algorithme. Ces courbes démontrent clairement I'impact de la
distorsion nonlinéaire sur chaque algorithme AEC linéaire. Les algorithmes FBLMS et
APA sont gravement affectés par les nonlinéarités. En dépit du fait que la convergence
initiale est meilleure méme avec la distorsion nonlinéaire, I’algorithme APA du deuxieme
ordre se comporte presque comme 'algorithme NLMS en termes d’ERLE. Les algorithmes
NLMS et DCTLMS fonctionnent de maniére similaire dans les environnements linéaires

et nonlinéaires. Méme si la performance de I’algorithme LMS est faible, elle reste robuste
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Figure A.2 — Les résultats des tests ERLE pour comparer les performances des algorithmes
linéaires AEC dans des environnements linéaires et nonlinéaires.

aux nonlinéarités (en termes de différence dans ERLE) par rapport aux autres algorithmes.

Reportez-vous & [5,6] pour plus de détails.

De cette discussion, il est plausible que les algorithmes AEC linéaires conventionnels
soient insuffisants pour traiter la distorsion nonlinéaire dans le LEMS. En conséquence,
le tres vieux probleme de PAEC est devenu plus difficile et reformulé comme NAEC
(Nonlinear Acoustic Echo Cancellation), qui est aujourd’hui un domaine de recherche

actif.

A.2.2 L’annulation d’écho acoustique nonlinéaire

La distorsion nonlinéaire redistribue ’énergie dans le spectre et tenter d’annuler ’écho
nonlinéaire en utilisant un AEC linéaire laisse un écho résiduel supplémentaire dans
le signal de liaison montante, ce qui entraine la dégradation de TERLE. Cela met en
évidence le besoin d’algorithmes avancés qui s’attaquent a la distorsion nonlinéaire.
L’annuleur d’écho acoustique nonlinéaire doit étre capable d’identifier et de suivre non
seulement la réponse impulsionnelle linéaire du LEMS, mais également les nonlinéarités
associées aux composants du dispositif. Au cours de la derniére décennie, les chercheurs
ont déployé beaucoup d’efforts pour résoudre le probleme du NAEC. L’état de l'art
NAEC est bien décrite dans le Chapitre 5 de cette these. La plupart des algorithmes
NAEC sont développés sur la base de deux logiques différentes, ’approche parallele et

I'approche en cascade.
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Figure A.3 — Structure de 'approche parallele basée NAEC.

I’approche parallele

L’approche paralléle (ou 'approche par filtre de puissance) basée sur NAEC implique
le suivi simultané des réponses impulsionnelles nonlinéaires et linéaires a travers les
filtres adaptatifs multicanaux, comme illustré a la Fig. A.3 [48]. Cette approche est
particulierement adaptée aux nonlinéarités sans mémoire, ou le premier canal représente
la réponse impulsionnelle linéaire globale du LEMS. Simultanément, les autres canaux
sont utilisés pour suivre de maniere adaptative les nonlinéarités d’ordre supérieur dans
le LEMS. Bien que cette approche paralléle semble étre une structure NAEC simple et
pratiquement possible, la vitesse de convergence est toujours lente par rapport a ’'AEC
linéaire en raison du filtrage adaptatif multicanal et du nombre accru de coefficients de
filtrage. En outre, il existe un inconvénient inhérent & ’estimation du trajet acoustique
linéaire (RIR) plusieurs fois a travers de multiples canaux (en raison de leffet de la

convolution entre les parametres de haut-parleur et le RIR).

P’approche en cascade

L’idée clé de 'approche NAEC en cascade était de découpler I'identification des parametres
de haut-parleurs nonlinéaires du suivi du trajet d’écho acoustique linéaire. La structure
de NAEC basée sur 'approche en cascade est illustrée a la Fig. A.4. Dans ce cas, un pré-
processeur nonlinéaire est placé en cascade avec un filtre linéaire a réponse impulsionnelle
finie (FIR). Le pré-processeur nonlinéaire filtre le signal de référence a partir de l'extrémité
distante et vise a émuler le chemin de liaison descendante avec ses nonlinéarités. Le filtre

FIR linéaire vise a émuler avec précision 1’écho nonlinéaire non désiré dans le signal du
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Figure A.4 — Structure de ’approche en cascade basée NAEC.

microphone en filtrant le signal nonlinéaire entrant.

Une NAEC en cascade typique proposée dans [49] est représentée sur la Fig. A.5.
Cette approche en cascade implique une estimation de parameétre conjointe pour le
pré-processeur nonlinéaire et le filtre FIR en utilisant le signal d’erreur combiné e(n)
employant des algorithmes adaptatifs linéaires. Par conséquent, la convergence des deux
blocs (ou de tous les filtres adaptatifs) est interdépendante, ce qui entraine des erreurs

éventuelles et réduit également la vitesse de convergence globale.

Plus d’informations sur ces deux approches NAEC sont données au Chapitre 5. Ces
algorithmes ont été rigoureusement testés pour la validation et la performance avec des

signaux empiriques nonlinéaires et les résultats sont présentés dans la Section 5.4.

A.3 Modélisation de distorsion nonlinéaire

Les approches pour gérer la distorsion nonlinéaire dépendent fondamentalement d’un
modele & temps discret du haut-parleur. Dans cette section, nous décrivons les modeéles
nonlinéaires populaires et illustrons les facons dont ils peuvent étre intégrés dans la
recherche actuelle afin de mieux comprendre le comportement complexe des systémes

nonlinéaires.

Les systémes nonlinéaires complexes sont les systémes nonlinéaires avec mémoire ou sys-
temes dynamiques nonlinéaires. La méthode la plus courante pour modéliser les systemes

dynamiques nonlinéaires est la série Volterra. La série Volterra est une généralisation
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Figure A.5 — Une illustration du modéle en cascade NAEC. Dans le canal p”, le vecteur
de signal d’entrée passe a travers un filtre passe-bas (LPF) avec une fréquence de coupure
fs/2p pour éviter 'aliasing.

de I’expansion classique de la série Taylor qui comprend un élément dispersif temporel
(mémoire). Puisque cette thése concerne les systémes dynamiques, la sortie du systéme
nonlinéaire dépend non seulement de I'entrée instantanée mais aussi des entrées passées.
Pour modéliser un tel systéme nonlinéaire dynamique, la série Volterra tronquée prend

la forme suivante [16,21,22]:

P Np—1Np—1  Np—1

Tout(n) = ho—i—z Z Z Z hp(it,d2, - ip)z(n —1i1) - z(n —ip[A.2)

p=1 i1=0 i2=0 ip=0

ot hy(i1,42,- -+ ,1p) sont les ph-order Noyauz de Volterra, qui caractérisent approxima-
tivement le systéme nonlinéaire . Le terme constant hg peut étre négligé sans aucune
perte de généralité [22]. Il est & noter que le noyau Volterra du premier ordre, hq(i1),
correspond a la réponse impulsionnelle linéaire du systéme. Les noyaux de Volterra
d’ordre supérieur, hy(iy,i2,--- ,ip),p € {2,---, P}, sont p matrices-dimensionnelles de
taille Np, et sont généralement supposées symétriques dans les indices 41,42, - ,,. Bien
qu’il y ait des avantages a modéliser des systéemes nonlinéaires avec des séries Volterra, il
y a un certain nombre de limitations. La limitation la plus commune est sa complexité

de calcul. La complexité de calcul augmente exponentiellement avec ’ordre croissant de
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Figure A.6 — le modele de Hammerstein généralisé polynomiale (GPHM).

nonlinéarité P méme pour une longueur de mémoire modeste N,. Si N, = N, Vp alors

un noyau Volterra P order contient les coefficients N*.

Les systémes nonlinéaires sans mémoire sont souvent considérés comme la forme la plus
simple et la plus couramment implémentée d’un systeme nonlinéaire. Compte tenu de la
nonlinéarité sans mémoire d’un haut-parleur et /ou d’un amplificateur de puissance, la

distorsion peut étre modélisée a 1’aide de I'expansion de série de puissance tronquée:

P
2 P
ZTout(n) = ap + a1 + agz” + - - -+ apx’ = Z ap|x]? (A.3)
p=0
ou ag,ai,as, -+ sont des coefficients scalaires. L’expansion de série de puissance est

également appelée I'expansion polynomiale ou le modeéle Power Series (PSM). La principale
limitation avec le PSM est que le modéle suppose que la réponse en fréquence du haut-
parleur est plate. Cette hypothese n’est pas valable dans la pratique, en particulier avec les
haut-parleurs miniatures. Par conséquent, une autre facon de modéliser un haut-parleur
est de considérer les effets de mémoire (dépendance de fréquence) dans la partie linéaire,
un tel systéme est appelé le modele de Hammerstein généralisé polynomiale (GPHM),

comme le montre la Fig. A.6. La relation entrée-sortie du GPHM est la suivante:

L-1

Tout(n) = Z Z hp (@) [z (n — 0)]° (A.4)

p:l 1=

ou L est la longueur du filtre linéaire et hy(i) sont les noyaux Volterra simplifiés (ou
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diagonaux) du haut-parleur. Si ces noyaux Volterra simplifiés d’un haut-parleur sont
identifiés, il est alors possible de reconstruire la sortie du haut-parleur pour un signal
d’entrée donné z(n). Dans cette these, nous avons adopté une procédure d’identification

simple appelée "technique de convolution nonlinéaire" comme proposé dans [7,17].

A.3.1 Comparaison des modeles de haut-parleurs

Il y a un manque de théorie unique pour modéliser et caractériser un haut-parleur
nonlinéaire. Toute recherche dans NAEC dépend de la précision du modele de haut-
parleur, qu’il soit utilisé pour NAEC lui-méme, ou pour synthétiser artificiellement
des signaux de test nonlinéaires. Alors que l'approche série-puissance (PSM) offre
généralement des performances NAEC efficaces dans des simulations bien controlées,
méme de légeres inexactitudes de modele ont tendance a dégrader les performances dans
des conditions réelles. Le modele polynomial généralisé de Hammerstein (GPHM) a
donc été étudié comme un modele alternatif. Une question se pose maintenant en ce qui
concerne la précision du modele: quel modeéle reflete le mieux la distorsion nonlinéaire
réelle du haut-parleur? Cette section étudie la possibilité de la modélisation de distorsion
de haut-parleur nonlinéaire avec PSM. En outre, la précision des deux modeles est
comparée dans l'estimation des sorties de haut-parleurs réels mesurés empiriquement.

Les résultats sont publiés dans notre premier article [56].

Network .
Mobile
R . L) ,
PC Simulator Device "‘
+ (CMU)
External
Sound Card

Figure A.7 — Configuration expérimentale utilisée pour I’identification d’un réel haut-
parleur de téléphonie mobile

La configuration expérimentale utilisée pour I'identification des haut-parleurs de télé-
phones mobiles est illustrée sur la figure A.7. Un appareil mobile est placé devant un
mannequin de téte et de torse & une distance de 32 cm. L’appareil est configuré pour
fonctionner en mode mains libres et au volume maximal pour lequel une distorsion
nonlinéaire est assurée. Un signal sinusoidal exponentiel (en utilisant I’équation 3.6 avec
amplitude a(n) = 1, fréquences f1 = 20Hz et fy = 4kHz échantillonné a 8kH z) est joué
par le téléphone mobile haut-parleur et enregistré avec le microphone monté dans ’oreille

d’un mannequin. Les noyaux Volterra simplifiés hy,, p € [1, P] d’un véritable haut-parleur
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de téléphone portable sont calculés expérimentalement en utilisant le signal de balayage
sinusoidal exponentiel (chirp) basé sur la technique de convolution nonlinéaire [7,17].
Les détails sur la technique de convolution nonlinéaire et la procédure expérimentale
d’identification des noyaux Volterra simplifiés sont décrits dans la section 3.3 et la

section 4.1 respectivement.

Génération de signaux synthétiques

Tout d’abord, un signal vocal propre z(n) est joué par le haut-parleur de I'appareil
mobile et ensuite enregistré a 'oreille du mannequin en utilisant la méme configuration
expérimentale représentée sur la figure [A]. Nous appelons le signal vocal enregistré
empiriquement ;.4 (n). Maintenant, en utilisant le méme signal de parole propre z(n),
les signaux de sortie de haut-parleur synthétisés ¢ (n) sont calculés pour PSM et GPHM

en utilisant les équations A.3 et A.4 respectivement.

Pour le GPHM, nous avons utilisé les noyaux de Volterra diagonaux simplifiés hy,, p €
[1, P] mesurés empiriquement & partir d’un haut-parleur de téléphone portable comme
décrit dans la section précédente pour la génération de signal . Nous avons considéré les
noyaux d’ordre P = 5 chacun de longueur L = 256 taps, car ils sont plus dominants que

les autres nonlinéarités d’ordre supérieur.

Pour le PSM, nous définissons le gain a; = 1. A des fins de comparaison, nous avons

également utilisé 5"

order PSM ici. Les composantes de pondération a, pour p € [2, 5]
sont choisies de sorte que la quantité totale de distorsion nonlinéaire soit la méme que

celle du GPHM.

Evaluation

Le signal vocal enregistré a l'oreille du mannequin (z,¢q;(n)) a été comparé aux résultats
obtenus selon les deux modeles. Les spectrogrammes du signal de parole propre d’entrée,
une réponse de haut-parleur de téléphone mobile, et les deux signaux synthétisés sont
illustrés sur la Fig. A.8. Il est évident & partir de la figure que le signal synthétisé avec
le GPHM est plus identique au signal vocal réel enregistré (ou mesuré). Le modele de
série de puissance suppose une réponse en fréquence plate qu’un haut-parleur linéaire
IR n’a pas, ce qui explique la différence dans le mécanisme de distorsion par rapport au
signal réel enregistré. Sans surprise, le signal synthétisé avec le PSM a plus d’énergie aux
basses fréquences comme le signal de parole propre original qui ne sont pas réellement
présents dans le signal enregistré réel. Le signal enregistré réel a plus d’énergie dans la

région haute fréquence (~> 1500) en raison de la distorsion nonlinéaire que le signal
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synthétisé en utilisant le GPHM reflete mieux par rapport au PSM.
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Figure A.8 — Le spectrogramme de (a) signal de parole propre (b) une réponse de haut-
parleur de téléphone mobile réel (c) signal de parole synthétisé utilisant PSM (d) signal
de parole synthétisé utilisant GPHM
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Figure A.9 — Une illustration de la distance cepstrale entre les signaux de haut-parleurs
mesurés réels et ceux synthétisés avec les modeles PSM et GPHM.
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En outre, la performance est également évaluée objectivement en termes de distance
Cepstral (CD):

CD(m) - Z [Cwmaz (m) - Cwmodez (m)]Q (A5)
Ly

ou Ly est la longueur de la trame. C,, _,,(m) et C (m) sont les vecteurs de colonne

Tmodel

des coefficients cepstraux a partir du signal réel enregistré x,¢,; et du modele x,,04¢; de
th

la frame m'"* respectivement.
Cs,ooy(m) = IDFT{In|DFT[xyeqi(mLy — 1) Tpeqi((m + 1)Ly)]|} (A.6)

Dans tous les cas, les mesures proviennent de trames consécutives de 32ms (L = 256)
de longueur. La raison pour laquelle CD est cela, il fournit une évaluation plus corrélée
perceptuellement que les approches alternatives basées sur les différences d’énergie ou de
puissance. Les profils CD illustrés sur la figure Fig. A.9 montrent que la différence entre
le signal mesuré et celui synthétisé avec le modele GPHM est toujours inférieure a celle
entre le signal mesuré et le signal synthétisé avec le modele PSM. Le modele GPHM

reflete donc mieux le comportement du vrai haut-parleur nonlinéaire.

Ce résultat a également été confirmé par de nombreux tests d’écoute informels qui ont
montré que les signaux synthétisés avec le modele GPHM semblent moins artificiels et
sont perceptivement plus proches du signal mesuré que ceux synthétisés avec le modele

de série de puissance.

A.3.2 Impact des signaux d’écho nonlinéaires simulés sur 1’évaluation
NAEC

Le modele de série de puissance (PSM) est trés souvent utilisé dans la littérature a la fois
pour synthétiser les signaux nonlinéaires et pour évaluer une performance de I’algorithme
NAEC. Cependant, nous avons vu dans la section précédente que la corrélation entre
le PSM et les signaux nonlinéaires réels enregistrés est faible. Dans cette section, nous
évaluons la performance d’un algorithme NAEC typique en présence de signaux d’écho

nonlinéaires réels et simulés, ce qui est rarement discuté dans la littérature.

Dans cette évaluation, nous avons considéré un systeme NAEC en cascade populaire
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Figure A.10 — Performances NAEC en termes ERLE avec des signaux d’écho nonlinéaires
réels enregistrés ou ceux synthétisés avec les modeles PSM ou GPHM.

proposé dans [49]. Les performances du modele NAEC en cascade ont été étudiées
lorsqu’elles ont été exposées aux signaux simulés (PSM et GPHM) et aux signaux d’écho
nonlinéaires réels enregistrés. D’abord, les nonlinéarités du haut-parleur (x4, (n)) sont
synthétisées a travers les modeles PSM et GPHM comme décrit dans la section précédente.

Ensuite, les signaux de sortie du microphone avec écho nonlinéaire sont générés selon:

N-—1
y(n) =" wout(n —i)hyir(i) (A.7)
=0

ol hyir(n) est une réponses d'impulsions d’espace (RIR). Les expériences ont été réalisées
avec des haut-parleurs diagonaux (unidimensionnels) Volterra kernels hy(n) pour les

valeurs de p < 5 et avec L = 256 taps.

Le canal acoustique a été modélisé avec une réponses d’impulsions d’espace fixe (RIR) de
256-tap hrir(n) sélectionnée & partir de Aachen la base de données RIR [1]. Toutes les
expériences ont été effectuées avec un signal de liaison descendante / signal de référence
propre x(n) d’'une durée d’environ 30 secondes avec une fréquence d’échantillonnage de 8
kHz.
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Un ensemble de parametres de filtre communs a été appliqué aux trois cas de test et a
été choisi pour maintenir la stabilité et une meilleure performance. Les configurations de
test sont Ly—1,... 5 = 256, N = 256, pp=1,... 5 = 0.01, dp=1,.. 5 = le—4, N = 256, u = 0.5,
0 = le — 7. Les résultats ERLE sont illustrés sur la figure A.10.

Alors que les performances NAEC dans le cas de signaux de haut-parleurs synthétisés
avec le modele PSM sont similaires & celles obtenues dans le travail précédent [49],
les performances sont moins bonnes dans le cas de signaux d’écho nonlinéaires réels
enregistrés. Alors que les performances NAEC dans le cas de signaux synthétisés de
maniere empirique avec 'approche GPHM different également de celles avec des signaux

d’écho nonlinéaires réels enregistrés, la différence est significativement réduite.

Ces observations confirment le biais significatif et favorable des résultats générés avec
le modele populaire de PSM et soulignent son influence potentielle sur ’évaluation de
la performance NAEC. Les résultats générés avec le modele GPHM refletent mieux les
mesures pratiques et, par conséquent, les signaux de haut-parleurs générés de maniere
empirique constituent une alternative attrayante a envisager pour des travaux futurs.
Les résultats ainsi obtenus présenteront moins de biais que ceux rapportés précédemment
dans la littérature ouverte, et fourniront une estimation plus réaliste de la performance
pratique NAEC.

A.3.3 Validation du GPHM

Dans cette section, la précision du modele GPHM est étudiée en fonction des parameétres
clés, a savoir le nombre de prises de filtre L et 'ordre des nonlinéarités P. De cette
maniere, nous pouvons juger de I'influence de ces parameétres sur les performances du

modele. Les résultats sont publiés dans notre deuxiéme article [57].

Caractérisation des dispositif

Ce travail implique trois téléphones mobiles différents (téléphones intelligents). Tout
d’abord, les noyaux de Volterra diagonaux simplifiés h,,p € [1, P] pour les trois haut-
parleurs de téléphones mobiles sont calculés empiriquement en utilisant la procédure

décrite dans la section 4.1.

Les performances du modele ont été évaluées en comparant les sorties du modele et du
haut-parleur réel pour un signal d’entrée commun. Deux signaux d’entrée différents
ont été utilisés: (i) le méme signal sinusoidal exponentiel utilisé dans la procédure
expérimentale et (ii) un signal vocal réel. De véritables signaux de haut-parleurs ont

été enregistrés a 'oreille du mannequin en utilisant le méme banc d’essai expérimental
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Figure A.11 — Une illustration de la caractérisation nonlinéaire et des performances du
modele GPHM. La premiére rangée illustre la réponse de chacun des trois dispositifs
mobiles au signal d’entrée du balayage sinusoidal exponentiel. Les lignes deux et trois
illustrent les performances du modele nonlinéaire résultant pour sinus balayent et signaux
d’entrée de la parole réelle. Les résultats sont affichés pour différents ordres de nonlinéarité
P (axes verticaux) et longueurs de noyau de Volterra L (axes horizontaux).

que celui présenté dans la section précédente. Tous les signaux sont des signaux de

modulation par impulsions codées échantillonnées a 8kH z.

La performance est évaluée objectivement en termes de moyenne distance cepstrale

(MCD) entre les signaux réels enregistrés et les estimations du modele:
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CD(m) - Z [Cﬂ?reaz (m) - Cﬂ?modez (m>]2
Ly
MCD = mean(CD) (A.8)

Les MCD inférieurs indiquent que le modele reflete plus fidelement les résultats mesurés

réels.

Résultats

La réponse des trois dispositifs au signal d’entrée du balayage sinusoidal exponentiel est
montrée sous la forme de spectrogrammes dans la rangée supérieure de la Fig. A.11. Le
premier et en particulier le troisiéme dispositif (colonnes gauche et droite de la Fig. A.11)
présentent une distorsion nonlinéaire significative; les spectrogrammes montrent des
harmoniques supplémentaires d’ordre supérieur en plus du signal de balayage sinusoidal
exponentiel d’entrée. La nonlinéarité est en outre asymétrique; les harmoniques d’ordre
impair sont plus significatifs que les nonlinéarités d’ordre pair. Nous notons que quelques
études indépendantes [9,63] ont rapporté des observations similaires. En revanche, le

second dispositif présente relativement moins de distorsion nonlinéaire.

Les résultats pour chacun des trois dispositifs sont également illustrés sur la Fig. A.11.
La rangée du milieu montre les résultats pour le signal d’entrée du balayage sinusoidal
exponentiel alors que la rangée inférieure montre les résultats pour le signal d’entrée du
véritable discours. Dans tous les cas, les résultats sont affichés pour différents ordres de
nonlinéarité P (axes verticaux) et différentes longueurs de noyau de Volterra L (axes
horizontaux). Les couleurs bleues illustrent les MCD inférieurs tandis que les couleurs

rouges indiquent des MCD plus élevés.

Pour une performance satisfaisante, ’ordre de nonlinéarité P devrait étre suffisamment
élevé pour capturer les principales sources de distorsion nonlinéaire, c’est-a-dire les
harmoniques les plus dominantes. La longueur de filtre de noyau de Volterra simplifiée
L devrait étre suffisamment élevée pour capturer avec précision le comportement des
haut-parleurs linéaires et nonlinéaires. Les deux parametres sont cependant un compromis

entre performance et efficacité de calcul.
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Entrée de balayage sinus exponentiel

La réponse de chaque dispositif au signal d’entrée du balayage sinus exponentiel est
illustrée dans la rangée du milieu de la Fig. A.11. Pour les ler et 3éme appareils, le
MCD est plus élevé pour les valeurs inférieures de P, quel que soit le nombre de prises
de filtre L. La MCD diminue néanmoins avec ’augmentation de P. Ce comportement
n’est pas observé pour le 2éme appareil ou, dans tous les cas, le niveau de distorsion
nonlinéaire est relativement faible. Il est néanmoins rassurant de constater qu’il y a un
changement négligeable dans la précision du modele pour 'augmentation (surestimée) de
P. Pour les ler et 2¢me appareils, le MCD diminue & mesure que la longueur du noyau
L augmente. Cependant, pour le troisiéme périphérique, avec une valeur de P > 2, la
performance est relativement stable pour varier L. Une explication possible d’un tel
comportement est que l'ordre le plus élevé de nonlinéarité significative dépasse celui du
modele (P = 10). Puisque le troisiéme appareil présente une nonlinéarité supérieure au
10éme ordre, P n’est pas suffisant dans ce cas pour réduire le MCD. Par conséquent, des

valeurs de P > 10 seraient nécessaires lorsque la capacité de traitement le permet.

Entrée de la parole réelle

Les résultats pour les entrées de la parole réelle sont illustrés dans la derniere rangée de
la Fig. A.11. En raison de l'aliasing causé par la modélisation de nonlinéarité statique,
les valeurs de MCD sont généralement plus faibles pour les entrées vocales que pour
les balayages sinusoidaux. Pour le premier appareil, les meilleures performances sont
obtenues pour des valeurs inférieures a P et des valeurs plus élevées de L. Pour le
deuxieéme périphérique, la performance est meilleure pour les valeurs supérieures de L
mais est indépendante de P. Pour la troisieme performance de 'appareil est le meilleur

dans le cas de P =1 et des valeurs de L autour de 64.

Ces résultats montrent que, pour les deux cas ou la nonlinéarité est significative, le
modele linéaire (P = 1) surpasse le modeéle nonlinéaire (P > 1) dans le cas des entrées de
parole réelle. Malgré I'estimation de la nonlinéarité basée sur une procédure permettant
une analyse avancée du systéme nonlinéaire [7,8], nos résultats montrent que ce modele
ne correspond pas a 'approximation de nonlinéarité observée avec le signal d’excitation
de la parole. Cela conduit a des questions sur les raisons de la discordance observée. Une
explication de ce comportement réside dans la plus grande variation d’amplitude pour les
signaux de parole par rapport aux signaux de balayage sinusoidal; les signaux de parole
de plus faible amplitude peuvent provoquer une distorsion nonlinéaire significativement
moindre. Il est également possible que le modele obtenu a partir de la réponse du systeme
aux signaux de balayage sinusoidal soit trop simpliste. Alors que le signal de balayage

sinusoidal consiste en une seule fréquence sinusoidale a un instant donné, la parole
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a une densité spectrale bien plus complexe alors que le modeéle néglige les influences

inter-spectrales.

Afin de concevoir une solution robuste de NAEC et de traiter la distorsion nonlinéaire
dans les haut-parleurs par le traitement du signal, il est apparemment nécessaire de
comprendre la dynamique des nonlinéarités du haut-parleur par son origine physique.
Nous avons fait une tentative similaire dans la partie suivante de cette theése en engageant

la décomposition modale empirique.

A.4 La Décomposition Modale Empirique

Les techniques traditionnelles d’analyse des données, telles que les approches de Fourier,
reposent toutes sur des hypotheses de linéarité et de stationnarité (a court terme).
L’analyse en ondelettes [94] a été congue pour gérer les données non-stationnaires, mais
suppose toujours la linéarité. La définition de bases standard et/ou a priori définies
pour la représentation du signal est commune a ces deux techniques. Le concept de
fonctions propres joue un réle extrémement important dans I’étude de ces techniques
traditionnelles d’analyse des signaux. En général, la décomposition des signaux est basée
sur la combinaison linéaire des fonctions propres des systeémes linéaires [95]. En revanche,
les systémes nonlinéaires n’ont généralement pas un ensemble commun de fonctions
propres. Par conséquent, les approches traditionnelles d’analyse des signaux sont mal
adaptées a l'analyse des signaux nonlinéaires, et leur application directe peut conduire a

des effets indésirables et a une interprétation physique sans rapport.

L’analyse des données nonlinéaires et non-stationnaires nécessite cependant des bases
dépendant des données ou, de maniére équivalente, des bases adaptatives [18]. La
Décomposition Modale Empirique (ou EMD, pour "Empirical Mode Decomposition")) [18,
96] est une approche qui répond a cette exigence de fonctions de base dépendant des
données nécessaires pour l'analyse adaptative des données. La motivation pour effectuer
un EMD est de décomposer de maniére adaptative des données nonlinéaires et/ou
non-stationnaires en un ensemble de signaux élémentaires, appelés Fonctions Modale
Intrinseque (ou IMFs, pour "Intrinsic Mode Functions"), de maniére ad-hoc sans aucune
information a priori. Les IMF conservent les caractéristiques des données d’entrée
nonlinéaires et peuvent révéler des tendances oscillatoires qui ne sont pas facilement
visibles dans le signal d’entrée d’origine. Cette décomposition du signal n’est pas
hasardeuse; la sommation directe des IMFs va (re)produire le signal original [97]. Cela
permet aux IMFs eux-mémes d’étre utilisés pour le traitement et la manipulation afin
d’améliorer efficacement 'amélioration du signal d’entrée. Comme alternative aux

approches basées sur Fourier, nous appliquons cette méthodologie a ’analyse de haut-
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Figure A.12 — Une illustration de I'idée de base d’EMD. Illustré est une donnée parent
donnée (ligne bleue dans la figure de gauche) et est considérée comme une oscillation
plus rapide (la figure du haut a droite) recouvrant une oscillation plus lente (figure du
bas a droite).

parleur nonlinéaire et aux signaux d’écho nonlinéaires.

A.4.1 Introduction a EMD

Une technique relativement récente, la décomposition modale empirique (EMD) suppose
que tout signal est composé de différents modes d’oscillations. Cela peut étre considéré
comme des oscillations plus rapides localement (dans le temps) recouvrant des oscillations
lentes [18,98]. La figure A.12 illustre une telle idée. Le principe de fonctionnement
d’EMD consiste & décomposer itérativement un signal complexe en un nombre fini et un
trés petit nombre de modes empiriques, appelés fonctions modale intrinseque (IMFs),
sans quitter le domaine temporel. Les IMFs sont appelés modes empiriques parce qu’ils
ne sont ni prédéfinis ni dans un domaine de transformation particulier, comme c’est
le cas avec les techniques d’analyse de signal traditionnelles, mais qu’ils sont dérivés
empiriquement sur la base du signal d’entrée. En conséquence, les IMFs servent de
fonctions adaptatives de base du EMD et chaque IMF représente une certaine tendance
oscillatoire (rapide a lente) dans le signal original. Le signal complexe d’origine peut étre

complétement reconstruit en additionnant tous les IMF.

Cette section passe en revue EMD en quelques mots. Il existe une abondante littérature
théorique et empirique sur 'EMD et son utilisation en sciences appliquées [18,96]. Tous
les détails concernant la mise en ceuvre de l'algorithme EMD et les scripts Matlab

correspondants sont entierement disponibles dans [99].
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Analyse EMD

La procédure d’analyse de données adaptative ad-hoc que EMD utilise pour extraire
des IMFs du signal d’entrée original est appelée le processus de tamisage (ou the Sifting
process). En représentant et en analysant les signaux nonlinéaires et non-stationnaires,
I’approche de base du processus de criblage a été de décomposer les signaux d’entrée en
une combinaison linéaire de modes oscillatoires empiriques (IMF). Les modes empiriques
ou les IMFs permettent de mieux comprendre la structure interne du signal et les différents
composants impliqués. Pour qu’un signal élémentaire soit un IMF il doit satisfaire aux

deux propriétés importantes suivantes: [18]:

1. Le nombre d’extrema (maxima et minima) et le nombre de passages par zéro dans
I’ensemble du signal d’entrée (durée totale du signal) doivent étre égaux ou différer

d’au plus un.

2. La valeur moyenne de I'enveloppe définie par les maxima locaux et les minima

locaux est nulle en tout point.

L’algorithme EMD a été proposé a ’origine pour surmonter les limitations de la trans-
formée de Hilbert, cette derniere sera présentée dans le chapitre suivant. Les deux
contraintes ci-dessus admettent les transformations de Hilbert bien comportées. La

I en s’assurant que les maxima locaux

premiere contrainte élimine les vagues d’équitation
d’un signal sont toujours positifs et les minima locaux sont négatifs, respectivement.
La deuxiéme condition rend la forme d’onde symétrique par rapport a l'origine en sup-
primant toutes les fluctuations indésirables, ce qui simplifie I’analyse des données en
extrayant 'information d’amplitude et de fréquence désirée sans résultats paradoxaux
contradictoires [100]. Ces conditions garantissent que chaque IMF a un contenu de
fréquence localisé en empéchant la propagation de fréquence due aux formes d’onde

asymétriques [18].

La procédure compléte du processus de tamisage pour décomposer une série temporelle
en un ensemble de IMF est illustrée schématiquement a la Fig. A.13. Le lecteur est dirigé

vers la discussion du processus de tamisage trouvé dans la section 6.2.

A titre d’exemple, la figure A.14 illustre un ensemble complet de IMFs résultant de
lapplication de EMD au signal parent z(n). Les IMF sont dérivées itérativement a partir

du mode de fréquence le plus élevé, IMF1, au mode de fréquence le plus bas, IMF6.

Les vagues d’équitation sont les oscillations rapides sans aucun passage par zéro entre les extrema.
Cela provoque des minima locaux positifs et des maxima locaux négatifs dans le signal. En général, les
ondes circulantes sont définies comme des signaux transitoires qui interrompent le modéle prédominant
de I’onde [97]
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Figure A.13 — L’organigramme illustre la procédure du processus de criblage pour
décomposer tout signal compliqué en un ensemble de IMFs.
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Figure A.14 — Une illustration d’EMD. Illustré est un signal parent donné (en haut) et
les 6 IMFs résultants.

Cependant, les IMFs ne sont pas des composantes d’amplitude et de fréquence constantes
comme dans l'analyse de Fourier, mais peuvent avoir une modulation d’amplitude et
également des fréquences changeantes comme le montre la Fig. A.14. Les IMFs d’ordre
supérieur sont ensuite plus lisses car nous enlevons les composants a haute fréquence
avant leur extraction. Le signal résiduel (ou le dernier IMF) représente la tendance

générale du signal d’entrée.

Synthese EMD

Le résultat du processus de tamisage produit M IMFs et un signal résiduel constant
r(n) (=ryp(n), U'indice M est ignorée par souci de simplicité). Le signal parent (z(n))
peut étre entierement reconstruit par le biais du processus de synthése EMD, qui est

simplement une somme directe des IMFs du domaine physique générées par 'EMD:

M
x(n) = Z zj(n) +r(n) (A.9)
j=1
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ol z;(n) est le 7°™¢ IMF. Le procédé de tamisage a deux postulats: 1) le signal d’entrée
pour le processus de tamisage (z(n)) peut étre représenté comme une combinaison
linéaire de ses IMF et 2) entrer un IMF au processus de criblage résultats en seulement
I'entrée IMF avec facteur d’échelle 1. Par conséquent, les IMFs peuvent remarquer
que les fonctions propres du processus de tamisage. De plus, les composantes du IMF
forment une base compléte et "presque" orthogonale pour le signal d’entrée [18,96,98].
Par conséquent, la capacité entierement modulée par les données et 'adaptabilité de la
méthode EMD expliquent qu’elle peut étre considérée comme bien adaptée aux données

nonlinéaires et non-stationnaires.

Applications de ’TEMD

EMD effectue la décomposition du signal non supervisé sur la base de I’échelle de temps
caractéristique locale des données. En outre, EMD est adaptatif, trés efficace et ne laisse
pas de domaine temporel. Ces propriétés de 'EMD ont été déclarées bien adaptées
aux données nonlinéaires et non-stationnaires et ont incité de nombreux chercheurs a
étudier la méthode EMD dans divers domaines de recherche. En conséquence, il y a eu
des centaines d’articles dans la littérature au cours de la derniére décennie consacrée a
I’application de la technique EMD a diverses applications d’ingénierie et non-ingénierie,
par exemple, applications biomédicales [100, 105,106, 107], traitement d’images et vision
par ordinateur [101, 108, 109], météorologie et études climatiques [110, 111], études
financieres [112], des études sur les ondes océaniques et sismiques [113,114], 'ingénierie

mécanique [115,116,117] et de nombreux autres domaines de recherche.

Au cours des derniéres années, 'application de TEMD a également été étendue au
traitement du signal vocal et audio. Comme de nombreux signaux du monde réel, les
signaux de parole sont également fortement non-stationnaires, ce qui rend 'analyse
de signal traditionnelle insatisfaisante en raison de la variation dynamique du contenu
spectral a travers le temps. EMD est une meilleure alternative appropriée pour analyser
des signaux hautement non-stationnaires comme la parole. Un exemple d’analyse de
signal vocal utilisant EMD est illustré sur la figure A.15. Le signal d’entrée est un signal
vocal propre échantillonné a 8kHz. EMD décompose le signal de la parole propre dans
18 IMFs; les 6 premiers IMFs sont représentés sur la figure A.15. Le premier IMF a une
caractéristique passe-haut, mais contient également une énergie plus basse, un contenu
a basse fréquence. Les IMFs d’ordre supérieur ont des caractéristiques de passe-bande
superposées [118]. Il est nécessaire de souligner que la fréquence de coupure entre les IMFs
consécutifs dépend du temps et du signal d’entrée. Plusieurs efforts ont été récemment
déployés pour utiliser les IMF pour améliorer la parole. Les approches de 'amélioration

de la parole et de I’élimination du bruit basées sur les EMD sont proposées dans la
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Figure A.15 — Une illustration d’EMD. Illustré est un signal de parole propre (en haut)
et les 6 premiers IMFs.

littérature [118,119,120]. Récemment, une approche sous-bande basée sur EMD a AEC
linéaire est rapportée dans [122]. D’autres applications de 'EMD dans le traitement
de la parole et du son comprennent l’analyse de la parole [124], I’analyse de codage
prédictif linéaire (LPC) [121], la séparation des sources [125], et I'estimation de hauteur
tonale [127].

A.4.2 Application de ’EMD a NAEC

Cette section présente la premiere approche de NAEC basée sur les EMD. Le travail
vise & démontrer 'application d’EMD dans le domaine temporel comme une solution
potentielle & NAEC. La technique EMD adaptative aux données est plus appropriée
pour décomposer un signal déformé nonlinéaire en un ensemble de IMF qui peuvent étre
caractérisés en tant que dominante nonlinéaire ou dominante linéaire. Cette classification
du IMF en dominants nonlinéaires et linéaires est 1'un des facteurs clés de 'annulation
d’écho nonlinéaire. Il permet d’éliminer le traitement nonlinéaire pour les signaux a
dominante écho linéaire (pour éviter une sur-modélisation) sans dégrader les performances

AEC linéaires (dues au gradient-bruit). En profitant de ce principe, nous proposons un
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Figure A.16 — Structure de NAEC basée sur EMD.

nouveau schéma de NAEC. Ce travail a été publié dans [93].

L’approche est basée sur la décomposition d’un signal de microphone a bande compléte en
IMF utilisant EMD. Le NAEC est réalisé grace a 'application d’un filtrage de puissance
adaptatif conventionnel (approche paralléle) & chaque IMF en utilisant un signal de
référence en bande complete z(n). La structure du nouveau schéma NAEC basé sur
EMD illustré sur la figure A.16 est essentiellement standard sauf pour la décomposition
EMD, la re-synthese et I'utilisation de plusieurs chambres de filtre (ou FC, pour Filter
Chambers). Le signal de liaison descendante / référence est noté x(n), le signal de sortie
du haut-parleur par z,,(n) et le signal de sortie uplink / microphone par y(n). Dans
cette premiere tentative d’employer EMD pour NAEC nous supposons pas de discours
proche et pas de bruit de fond. Le signal de liaison montante contient donc uniquement

un écho.

La sortie du microphone y(n) est décomposée par EMD en M IMFs selon 'approche
décrite dans la Section 6.2. Chaque IMF est alors estimé de maniere adaptative a

partir du signal de liaison descendante & bande-compléte/référence x(n) par 'une des
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M chambres de filtration(FCs). Chaque FC contient le P*™¢ order modele de filtre de
puissance classique [48] illustré dans la figure 5.10. Le modele de filtre de puissance est
une approche relativement efficace pour l'identification des chemins d’écho acoustiques
nonlinéaires comme discuté au Chapitre 5. Les sous-filtres évaluent de maniere adaptative

la réponse impulsionnelle du canal acoustique et du haut-parleur, collectivement appelée
LEMS, comme illustré sur la Fig. A.16.

La décomposition du signal du microphone y(n) produit des signaux M IMF y;;j =
1,--+, M ou chaque IMF représente une gamme de fréquences distincte. En conséquence,
chaque FC correspondante nécessite moins de prises de filtre que ce qui serait autrement
nécessaire dans le cas d’un signal a bande-complete. Avec un controle dépendant de la
fréquence sur les IMF, 'ordre des filtres de puissance, P, peut étre ajusté individuellement
dans chaque FC en fonction des propriétés spectrales du IMF correspondant. Cette
structure offre également un degré de liberté supplémentaire pour choisir les parametres
systéme du modele de filtre de puissance (tels que 'ordre de nonlinéarité P, la longueur
des sous-filtres L,, les parametres de filtres adaptatifs, etc.) chaque FC en fonction
de la gamme spectrale des IMF. La sortie de chaque FC, §;(n), est soustraite du IMF
correspondant, y;(n), générant ainsi des signaux d’erreur individuels e; (n). Chaque
signal d’erreur est utilisé de maniere classique pour mettre a jour les coefficients du
sous-filtre FC iALpJ' (n);p=1,---,Petj=1,---,M. Le parameétre j dans Bp,j (n) est
ignoré pour le reste du chapitre pour des raisons de simplicité et sera appelé fzp (n). Enfin,
les signaux d’erreur individuels sont sommés ensemble pour reconstruire le signal d’erreur

de bande complete:

M
e(n) = Z ej (n) (A.10)
j=1

Plus de détails sur la structure NAEC et la configuration expérimentale sont discutés

dans la Section 6.3.

Ce qui suit rapporte une comparaison des performances de la nouvelle approche basée sur
EMD a NAEC a une approche de filtrage de puissance de base. Toutes les expériences
ont été menées avec des signaux vocaux et le signal d’écho nonlinéaire est généré de
maniére empirique (en utilisant le modele GPHM en identifiant un vrai haut-parleur de
téléphone mobile) comme discuté dans les chapitres précédents (voir section 4.1). La

performance est évaluée en termes d’ERLE.

Les résultats ERLE pour PEMD et les approches de filtre de puissance de base pour
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Figure A.17 — Une comparaison des performances en termes d’ERLE pour la nouvelle
approche EMD basée sur NAEC et une approche de filtre de puissance de base.

NAEC sont illustrés sur la Fig. A.17 pour une excitation commune. L’approche EMD
est montré pour surpasser le systéme de base; il atteint un niveau plus élevé d’ERLE,
environ 8-10 dB de plus que la ligne de base. L’utilisation de différents ordres de filtres

de puissance fournit un moyen pratique d’améliorer les performances NAEC, minimisant
ainsi le bruit de gradient di a la sur-modélisation.

Bien que le NAEC basé sur EMD proposé offre non seulement une atténuation d’écho
moyenne supérieure, une convergence plus rapide et donc de meilleures performances
dans le cas d'un trajet acoustique a changement dynamique, il n’est pas sans coiit. Cela
entraine une complexité de calcul accrue, principalement due a la décomposition EMD et
a I'utilisation de plusieurs FC. Bien qu’il soit possible de réduire la charge de calcul par
une optimisation supplémentaire, le systéme actuel est environ 1,8 fois plus exigeant en
termes de calcul. Bien qu’il existe un algorithme EMD en ligne [96], le travail rapporté
ici a été réalisé avec une implémentation "hors ligne", c’est-a-dire par application d’EMD

a des signaux entiers. Cela a été délibéré afin de démontrer 'application de 'EMD a
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I’annulation d’écho nonlinéaire tout en évitant les problémes supplémentaires inhérents

au traitement en ligne [96].

Bien que la solution NAEC proposée n’utilise pas d’analyse de Fourier (ou d’outils
d’analyse de signaux linéaires), 'interprétation sous-jacente de la distorsion nonlinéaire
(en tant que distorsion harmonique) dépend toujours de 'analyse temps-fréquence de
Fourier et de la série Volterra. Dans le prolongement de ’algorithme EMD décrit ci-
dessus, la section suivante introduit une nouvelle méthode d’analyse temps-fréquence
appelée transformation de Hilbert-Huang (HHT). Comme méthode alternative a ’analyse
temps-fréquence basée sur Fourier, nous allons appliquer cette méthodologie HHT pour

analyser les haut-parleurs nonlinéaires dans la section suivante.

A.5 Une interprétation alternative des nonlinéarités de

haut-parleur

Cette section présente une nouvelle approche de la caractérisation nonlinéaire des haut-
parleurs utilisant la transformée de Hilbert-Huang (HHT). Basé sur 'EMD et la trans-
formée de Hilbert, le HHT décompose les signaux nonlinéaires en bases adaptatives
qui révelent des effets nonlinéaires dans des détails plus grands et plus fiables que les
approches actuelles. Les techniques conventionnelles de décomposition du signal, telles
que les techniques de Fourier et d’ondelette, analysent la distorsion nonlinéaire & ’aide de
la théorie des transformées linéaires. Cela limite la distorsion nonlinéaire a la distorsion
harmonique. Ce travail montre que la vraie distorsion de haut-parleur nonlinéaire est
plus complexe. HHT offre une autre vue a travers les effets cumulatifs des harmoniques
et de la modulation d’amplitude et de fréquence intra-onde. Le travail remet en question
I'interprétation de la distorsion nonlinéaire par les harmoniques et les points vers un lien
entre les sources physiques de nonlinéarité et la modulation d’amplitude et en fréquence.
Ce travail, publié dans [128], remet en outre en question la pertinence des approches
traditionnelles d’analyse des signaux tout en donnant du poids a I'utilisation de I'analyse

HHT dans les travaux futurs.

A.5.1 Fréquence instantanée et transformée de Hilbert

Pour comprendre le comportement complexe des systémes nonlinéaires, une analyse temps-
fréquence approfondie est nécessaire au niveau de précision de la fréquence instantanée
(IF) et de 'amplitude instantanée (IA). La fréquence instantanée devrait révéler des

détails plus précis du phénomene sous-jacent de la distorsion nonlinéaire.

La transformée de Hilbert (HT) est une technique bien connue dans le traitement du
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signal pour calculer la fréquence et 'amplitude instantanées. Le HT peut étre interprété
comme un déphaseur 90°. En revenant temporairement a la notation continue, pour toute
série temporelle arbitraire, z(t), la transformation de Hilbert (HT), y(t), est obtenue

comme suit [130]:

B l +oox(7_)
y(t)—TrP/t_TdT (A11)

ou P représente la valeur principale de Cauchy. Avec cette définition, z(t) et y(¢) forment

une paire conjuguée complexe conduisant a un signal analytique:

2(t) = x(t) + jy(t) = a(t)el?® (A.12)

dans lequel

a(t) =/ (#2(t) + y*(1))
0(t) = arctan Zég (A.13)

Ici, a(t) est I'TA et O(t) est la phase instantanée. L’IF peut étre calculé comme suit:

w(t) = —— (A.14)

Cette définition de IF de la théorie des ondes classique est calculée par différentiation
plutot que par intégration. Le FI est donc local, et non global, et reflete la modulation de
fréquence intra-onde [18]. La modulation de fréquence intra-onde représente le changement
de FI dans un cycle d’oscillation (ou dans une période d’une onde). Cependant, cette fagon
de calculer IF et parfois le concept méme d’TF a été sujet a controverses et limitations [124,
129,131,132]. Cohen [129] a montré que le HT produit un IF significatif pour les signaux

monocomposant tandis que les théorémes de Bedrosian et Nuttall [131,132] imposent
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d’autres contraintes, e.g. spectres d’amplitudes non chevauchants (a(t)) et les spectres
du cosinus (cos(6(t))). Si pour une fonction donnée, les spectres de a(t) et cos(6(t)) sont
superposés, cette fonction ne peut pas étre exprimée sous la forme de signal analytique
donnée dans I’équation A.12 . De méme, tous les signaux réels avec des minima locaux
positifs et des maxima locaux négatifs (les signaux dits multicomposants) ne peuvent
pas non plus étre exprimés sous la forme d’un signal analytique, ce qui signifie que HT
n’existe pas. Malheureusement, ces conditions sont trop restrictives et la plupart des
données pratiques ne répondent pas a ces exigences. En conséquence, le plein potentiel

du HT a du attendre le développement de la décomposition modale empirique (EMD).

A.5.2 La transformation de Hilbert-Huang (HHT)

Comme discuté dans le section précédent, le EMD a été introduit pour résoudre les limites
de la HT. Rappelant ce qui a été dit dans le section précédent, EMD décompose tout signal
en un ensemble fini de signaux élémentaires a travers le processus de tamisage et pour
qu’un signal élémentaire soit un IMF, il doit satisfaire les deux propriétés importantes

suivantes [18]:

1. Le nombre d’extrema (maxima et minima) et le nombre de passages par zéro dans
I’ensemble du signal d’entrée (durée totale du signal) doivent étre égaux ou différer

d’au plus un.

2. La valeur moyenne de ’enveloppe définie par les maxima locaux et les minima

locaux est nulle en tout point.

Les IMF générées par 'EMD satisfont aux contraintes et/ou aux limitations d’admettre
des HT bien agencées et des fréquences locales instantanées significatives en fonction
du temps. EMD avec le HT est ce que Huang et al. Ont appelé la transformation
de Hilbert-Huang (HHT) [18]. La transformation de Hilbert-Huang (HHT) est une
approche d’analyse de signal qui est bien adaptée aux signaux nonlinéaires et non-
stationnaires [18,96]. L’application de HHT implique deux étapes. Le premier décompose
un signal discret du domaine temporel y(n) en un ensemble de M fonctions modale
intrinseque (IMFs), y; (n); j =1,---, M, en utilisant la décomposition modale empirique
(EMD) de telle sorte que:

M
y(n) =73 y;(n)+r(n) (A.15)
j=1
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ou r(n) est le résidu. La deuxiéme étape détermine la fréquence instantanée (IF) et
I'amplitude instantanée (IA) de chaque IMF y; en utilisant la transformation de Hilbert.
A partir de ceux-ci, on peut construire directement la distribution temps-fréquence-énergie
appelée le spectre de Hilbert [18,96].

Hilbert-Huang Spectrum

Le HT est facilement appliqué a chaque IMF afin de déterminer I'IA (aj(n);j =1,---, M)
et IF (wj(n); j=1,---, M) selon Egs. A.13 and A.14 respectivement. La représentation

analytique du signal d’entrée peut alors étre exprimée comme:

M .
Yy (n) =3 aj(n)el S witmin (A.16)
j=1

o, puisqu’il est constant, le résidu r(n) est omis. Le signal d’entrée original, y(n), est
la partie réelle du signal analytique. Les IAs (aj(n); j =1,---, M) et IFs (w;(n); j =
1,---, M) alors donne une représentation temps-fréquence-amplitude du signal, appelée
spectre de Hilbert-Huang [18,96]. Une représentation graphique de la distribution temps-
fréquence de TA? (carré 'amplitude) illustre la densité d’énergie de la méme maniére

qu’un spectrogramme conventionnel.

Relation aux techniques de Fourier

Exprimé en tant que somme de sinusoides, le signal d’entrée est donné par:

y'(n) = a;e™™ (A.17)
j=1

oll a; et w; sont respectivement des termes d’amplitude et de fréquence constants. Puisque
la fréquence de chaque fonction sinusoidale est indépendante du temps, I'analyse de
Fourier est capable de construire des données stationnaires seulement. De plus, comme
les ondes sinusoidales utilisées pour décrire un signal ont une étendue infinie, ’analyse
de Fourier est considérée comme un outil d’analyse globale. La précision dépend donc
de maniere critique de la longueur et de la stationnarité des données, mais les données

pratiques sont généralement de courte durée et de durée arbitraire.
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Figure A.18 — Montage expérimental dans une chambre anéchoique pour mesurer les
sorties des haut-parleurs.

La comparaison des Egs. A.16 et A.17 montre que le HHT est une expansion de Fourier
généralisée mais avec une amplitude et une fréquence variables dans le temps qui
accommodent des données nonlinéaires et non-stationnaires. La représentation de Fourier
implique une énergie constante a une fréquence donnée, c’est-a-dire une onde harmonique
réguliere qui reste inchangée tout au long de ’enregistrement complet. L’analyse HHT,
en revanche, reflete la probabilité local d’énergie a une fréquence donnée. Une breve
description de ’analyse HHT est présentée dans cette section et pour des présentations

plus détaillées, les lecteurs sont référés a [18,96,98|.

A.5.3 Analyse de distorsion de haut-parleur

Cette section présente notre premiere tentative d’application de HHT a ’analyse de la
distorsion nonlinéaire produite par des haut-parleurs miniatures. Le travail est notre
premiere étape pour aligner ’analyse de la distorsion nonlinéaire sur ses origines physiques.
Ce travail a été réalisé a I’aide de véritables enregistrements de haut-parleurs de téléphones

mobiles.

La réponse nonlinéaire d’un haut-parleur est observée depuis sa sortie vers un seul signal
d’excitation sinusoidal. Cette approche a été utilisée pour caractériser un véritable
haut-parleur de téléphone portable placé devant un mannequin de téte et de torse a une
distance de 30 cm dans une chambre anéchoique. La montage expérimentale utilisée est

illustrée sur la Fig. A.18. Le dispositif est configuré pour fonctionner en mode mains
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Figure A.19 — (a) Spectrogramme STFT de la réponse d’un haut-parleur de téléphone
mobile & une entrée sinusoidale pure a 1 kHz, échantillonnée & 48 kHz; (b) La réponse
du haut-parleur au tonus sinusoidal de 1 kHz est décomposée par le EMD, ce qui donne
8 IMFs, les 4 premiers IMF sont énumérés ci-dessus et les autres ne sont pas affichés
puisqu’ils sont presque nuls; (c) Profils TA des IMF obtenus par HHT; (d) Profils IF des
IMF obtenus par HHT

libres et au volume maximal auquel la distorsion nonlinéaire est la plus grande. Les
signaux d’entrée échantillonnés & 48 kHz sont des sinusoides pures avec des fréquences
comprises entre 100 Hz et 3800 Hz a des intervalles de 100 Hz. Ils sont stockés dans la
mémoire du téléphone portable et lus a I'aide d’un lecteur VLC pré-installé. Les sorties
des haut-parleurs sont enregistrées avec un microphone (linéaire) de haute qualité monté
dans l'oreille du mannequin. Les signaux enregistrés sont stockés sur un PC a la méme

fréquence d’échantillonnage de 48 kHz.

A titre d’exemple, nous considérons un véritable haut-parleur de téléphone portable soumis
a une seule excitation sinusoidale de fréquence 1kHz. Fig. A.19(a) montre les résultats
de l'analyse STFT. Plusieurs harmoniques d’ordre élevé sont visibles, représentant la

vision traditionnelle de la distorsion nonlinéaire.

La Fig. A.19(Db) illustre les quatre (sur huit) IMFs qui résultent de la décomposition du

signal de haut-parleur en utilisant EMD et les routines disponibles dans [99]. Puisque
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EMD extrait le IMF le plus élevé en premier, IMF-1 est I’harmonique déformée causée
par les nonlinéarités du haut-parleur. IMF-2 est la fréquence naturelle déformée a 1kHz

alors que les autres IMF ont une énergie négligeable.

La Fig. A.19(c) illustre les profils IA des quatre composantes du IMF qui présentent une
modulation d’amplitude intra-onde, a savoir une variation de 'amplitude dans le temps.
La Fig. A.19(d) illustre les profils IF correspondants qui présentent une modulation de
fréquence intra-onde. Ceci est dii au déplacement du diaphragme du haut-parleur qui
n’est plus une fonction purement sinusoidale en raison d’une distorsion nonlinéaire. Une
harmonique de troisiéme ordre relativement forte est également générée en raison de

nonlinéarités de haut-parleurs asymétriques.

La déformation du profil d’onde provoquée par la distorsion nonlinéaire est le résultat du
contenu harmonique accumulé et de la modulation d’amplitude et de fréquence intra-onde.
Cet effet cumulatif est observé dans la réponse dans le domaine temporel du haut-parleur
représenté sur la figure A.20. La déformation de la forme d’onde n’est pas constante,
mais varie de haut en bas et vice versa, conformément au profil TA de la figure A.19(c).
L’ampleur de la déformation dépend de I'amplitude des harmoniques supplémentaires et
de la force de la modulation d’amplitude et de fréquence intra-onde. Une observation
attentive des profils A et IF sur les figures A.19(c) & (d) montre respectivement que
la variation de fréquence des composantes du IMF augmente lorsque leur amplitude

diminue et vice versa. Ceci est indicatif de adoucissement nonlinéarité [133].

Les effets décrits ci-dessus ne sont pas reflétés dans le spectrogramme STFT traditionnel
qui montre a la place des harmoniques fallacieux. Les estimations dérivées du HHT
peuvent donc refléter un comportement nonlinéaire plus fiable que les estimations dérivées
de STFT. Huang et al. dans [18] a déclaré que la modulation de fréquence intra-onde
est la marque de la distorsion nonlinéaire, ou la fréquence du systéme change avec la
position méme en une période d’oscillation. Par ailleurs, les auteurs soutiennent que les
bases a priori définies dans les techniques traditionnelles d’analyse du signal imposent de
nombreuses harmoniques et qu’elles ne sont rien d’autre qu’un artefact mathématique,
sans lien avec une source physique [18,96]. Contrairement aux approches traditionnelles,
EMD adapte les bases au signal lui-méme et peut donc produire des résultats plus
pertinents physiquement. L’analyse HHT conduit a une nouvelle interprétation physique
de la distorsion nonlinéaire. Au lieu de la distorsion harmonique est le concept de
leffet cumulatif du contenu harmonique et de la modulation d’amplitude et de fréquence
intra-onde. La vraie question, cependant, est de savoir si la modulation de fréquence
et d’amplitude illustrée sur la figure A.19 a une source physique réelle ou s’il s’agit

simplement d’un artefact du HHT.
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Figure A.20 — Une vraie réponse de haut-parleur de téléphone mobile & ton pur sinus
1kHz. La déformation du profil d’onde causée par la distorsion nonlinéaire n’est pas
constante tout au long du temps.

A.5.4 Validation de HHT

Le HHT est entierement validé dans [18] avec des exemples analytiques. Cette section
vise a valider la technique HHT comme moyen de caractériser le comportement des

haut-parleurs nonlinéaires.

Les figures A.21(a) and A.21(b) illustrent les profils spectrogramme et IF d’une réponse
de haut-parleur de téléphone portable a une entrée sinusoidale pure a 500Hz. Les profils
IF affichent cumulative la distorsion harmonique et la modulation nonlinéaire. Il n’y a
qu’une faible harmonique de troisieme ordre et une modulation significative de I’amplitude
et de la fréquence intra-onde, alors que le spectrogramme montre une harmonique de
troisieme ordre forte et plusieurs harmoniques faibles. Fig. A.21(c) montre les profils
IF correspondants lorsque le haut-parleur du téléphone mobile est remplacé par un
haut-parleur (linéaire) de haute qualité et montre une absence totale de modulation
amplitude-fréquence. Fig. A.21(d) montre les profils IF de la sortie du haut-parleur
(haute qualité) lorsqu’une distorsion harmonique de troisiéme ordre simulée est ajoutée a
I’entrée. Encore une fois, il n’y a pas de modulation d’amplitude et de fréquence indiquant
que la distorsion observée en (b) a des origines physiques et n’est pas simplement un
artefact du traitement HHT.
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Figure A.21 — Distributions temps-fréquence-énergie: a) spectrogramme STFT de la
réponse d’un haut-parleur de téléphone mobile a une entrée sinusoidale pure a 500 Hz,
échantillonnée a 48 kHz; (b) les profils IF obtenus par HHT; (c) profils IF pour une
réponse de haut-parleur de haute qualité & la méme entrée; (d) les profils IF du méme
haut-parleur soumis a une excitation d’entrée composée de sinusoidale pure a 500 Hz et
de son troisieme harmonique.

Apres avoir analysé les trois différentes sorties de micro haut-parleurs pour des excitations
sinusoidales pures a différentes fréquences, nous avons pu déterminer que la distorsion
nonlinéaire est causée par 'effet cumulatif du contenu harmonique et la modulation de
fréquence et d’amplitude intra-onde. En outre, le contenu des harmoniques dépend du
niveau du signal d’entrée. Pour un micro haut-parleur sur-piloté, le contenu harmonique
est plus fort mais est limité & la distorsion du troisiéme ordre. A un niveau d’excitation
modéré, la distorsion de modulation est plus préjudiciable que le contenu harmonique.
D’autre part, la force de la modulation de fréquence et d’amplitude intra-onde dépend

nonlinéairement du niveau et de la fréquence du signal d’entrée.

La modulation de fréquence intra-onde est plus forte méme a des niveaux d’excitation
modérés si la fréquence du signal d’entrée est proche de la fréquence de résonance
naturelle du micro haut-parleur par rapport aux autres fréquences. La déformation de la
forme d’onde se développe deés que 'indice de modulation de fréquence intra-onde (ou le

pourcentage de modulation) dépasse un certain seuil, ce qui est différent pour différents
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Figure A.22 — a) spectrogramme STFT de la réponse d’un haut-parleur de téléphone
mobile & une entrée sinusoidale pure a 2 kHz, échantillonnée & 48 kHz; (b) La réponse du
haut-parleur au signal sinusoidal de 2 kHz (zoom avant) est décomposée par le EMD, ce
qui donne un seul IMF, ce qui signifie que la réponse du haut-parleur satisfait elle-méme
aux propriétés EMD; (c) profil IA du IMF obtenu par HHT; (d) Profil IF du IMF obtenu
par HHT, indiquant un trés faible pourcentage de modulation

micro haut-parleurs. Par exemple, la figure A.22 représente 'analyse STFT et HHT
d’une réponse de micro haut-parleur a un signal sinusoidal de 2 kHz. Dans la Fig. A.22(a),
le spectrogramme traditionnel montre une troisieme harmonique relativement plus forte
et une seconde harmonique faible. La réponse réelle du haut-parleur est représentée par
un IMF1 sur la Fig. A.22(b) n’indique aucune distorsion visuelle de la forme d’onde sauf
la modulation d’amplitude. La méme chose peut étre observée dans ’analyse HHT en
termes de TA et IF sur les Fig. A.22(c) et A.22(d) respectivement. Comme il n’y a pas
de déformation de la forme d’onde dans le signal, I'indice de modulation de fréquence
intra-onde est tres faible et aucun signe de contenu harmonique. Par conséquent, il est
stir de considérer que le degré global de nonlinéarité produit par un micro haut-parleur
est largement di a la distorsion de modulation avec un impact limité di au contenu

harmonique.

En partant de ces résultats empiriques, nous pensons que cette nouvelle interprétation
alternative des nonlinéarités des haut-parleurs peut étre potentiellement appliquée pour
résoudre le probleme NAEC. Une solution possible pour estimer 1’écho nonlinéaire consiste
a incorporer 'effet de modulation amplitude-fréquence intra-onde comme pré-processeur

dans le systéme NAEC pour modéliser la distorsion du haut-parleur et un filtre adaptatif
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linéaire traditionnel en cascade pour modéliser I’echopath acoustique linéaire. . Le
principal avantage par rapport aux solutions traditionnelles est que le systéme NAEC
ne nécessite pas de nombreux ordres d’harmoniques pour modéliser les nonlinéarités de
liaison descendante car les modulations intra-ondes intégrent les nonlinéarités inhérentes
dans I’echopath acoustique. Cependant, le développement d’un modele probabiliste qui
émule explicitement 'effet cumulatif du contenu harmonique et de I'effet de modulation
de fréquence et d’amplitude intra-onde dans les micro haut-parleurs est une partie tres
difficile de la conception du NAEC. Cette interprétation alternative peut également
étre étendue a d’autres domaines de recherche similaires comme la modélisation de

haut-parleurs et la linéarisation de haut-parleurs.

En dépit de nombreux avantages caractéristiques de 1'utilisation de la technique EMD /HHT
pour I’étude des signaux nonlinéaires et non-stationnaires, la technique de décomposition
actuelle souffre encore de certaines limitations. Plus de détails sur les limitations EMD
et les avancées récentes de la norme EMD sont discutés dans les sections 7.6 et 7.7

respectivement.

En conclusion, cette these est 'occasion de faire un premier pas substantiel vers la
recherche de réponses a des questions comme ce que la distorsion nonlinéaire réelle
provoque aux signaux. La thése commence par une interprétation traditionnelle de la
distorsion nonlinéaire dans les haut-parleurs et se termine par une interprétation nouvelle

et précise de la distorsion nonlinéaire, qui marque un nouveau début de la recherche

NAEC.
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