
On using Edge Computing for computation

offloading in mobile network

Farouk Messaoudi∗, Adlen Ksentini†, and Philippe Bertin∗

∗IRT b<>com, †Institut Eurecom

Email: ∗name.surname@b-com.com, †name.surname@eurecom.fr

Abstract—Mobile edge computing (MEC) emerges as a promis-
ing paradigm that extends the cloud computing to the edge
of pervasive radio access networks, in near vicinity to mobile
users, reducing drastically the end-to-end access latency to
computing resources. Moreover, MEC enables the access to up-
to-date information on users’ network quality via the radio
network information service (RNIS) application programming
interface (API), allowing to build novel applications tailored to
users’ context. In this paper, we present a novel framework for
offloading computation tasks, from a user device to a server
hosted in the mobile edge (ME) with highest CPU availability.
Besides taking advantage of the proximity of the MEC server,
the main innovation of the proposed solution is to rely on the
RNIS API to drive the user equipment (UE) decision to offload or
not computing tasks for a given application. The contributions
are two-fold. First, the design of an application hosted in the
ME, which estimates current value of round trip time (RTT)
between the UE and the ME, according to radio quality indicators
available through RNIS API, and provide it to the UE. Second,
the elaboration of a novel computation algorithm which, based
on the estimated RTT coupled with other parameters (e.g.,
energy consumption), decide when to offload UE’s applications
computing tasks to the MEC server. The effectiveness of the
proposed framework is demonstrated via testbed experiments
featuring a face recognition application.

I. INTRODUCTION

MEC is gaining lots of momentum, wherein the key idea

is to empower mobile edge entities (e.g., radio access points

such as eNodeBs and access gateways) with computation

capabilities, allowing hosting and executing applications at the

edge of mobile networks, rather than at a remote server in the

Cloud or in the operator’s core network domain. Combined

with the 5G mobile access, which aims to drastically reduce

the latency, MEC will enable a plethora of novel mobile

services that require low latency to access data or computation

capabilities. Among the envisioned services are computation-

offloading-driven applications, which are able to offload part

of the execution of their applications code to a remote server,

benefiting from additional and highest CPU resources avail-

ability. Several works have been proposed in the literature to

take advantage of nearby or remote servers to offload part of

the computation from thin devices. Most of these works have

been devised without considering MEC, since this concept is

very recent. Moreover, they consider enforcing the offloading

algorithms at the thin device side, ignoring all information

on the device network environment, epecially varying radio

quality. This can lead to dramatic situations, as the thin devices

may offload data even when the network conditions are bad

(e.g., introducing very high RTT with the remote servers, not

compatible with the devices application requirements). In this

paper, we use MEC as an enabler for low-latency computation

offloading-based applications, not only by hosting the remote

server on the ME, but also by devising a ME service that

continuously estimates the expected RTT in order to feed the

device decision to offload parts of an application’s computing

tasks. Indeed, according to the European Telecommunications

Standards Institute (ETSI) definition of MEC [1], the ME

host is able to expose high level APIs to ME applications

in order to provide real-time UE-relevant network state infor-

mation, making possible the prediction of UE network state

(particularly the RTT), and hence feeding the UE decision

of when to offload , according to the network conditions. To

the best of our knowledge, this is the first work that actively

involves ME services in the UE’s decision to offload part of

an application for remote execution, by introducing interaction

between the two components to drive the latter’s decision,

instead of relying on purely UE-local strategies.

This article is organized as follows. Section 2 presents the

concept of computation offloading and the different processes

needed to offload a part of an application. It also reviews the

state of the art in computation offloading in the context of edge

computing, also describing the MEC reference architecture

as defined by ETSI. Section 3 introduces our framework,

by detailing each component (i.e., ME application, UE, and

server). Section 4 presents the obtained results and validates

the proposed framework, before concluding the article in

Section 5.

II. RELATED WORK

A. Computation offloading

Accelerated by the emergence of cloud computing, virtu-

alization technology advances, and wireless network technol-

ogy improvement (including mobile broadband), computation

offloading has attracted a tremendous amount of research

works to make it a reality. Besides reducing energy con-

sumption, computation offloading allows low-resource devices

(e.g., smartphones) to run CPU-intensive applications like 3D

gaming [2].

Usually, computation offloading consists in offloading a part

or an entire application to a remote server in order to be

executed there. This necessitates the design of algorithms able

to decide which part of an application should be offloaded and

when. Computation offloading requires four steps: (i) applica-

tion profiling, (ii) application partitioning, (iii) execution of the

decision algorithm, and (iv) data offload and communication

with the remote server. In what follows we detail each step

along with related work.

One of the big concerns of computation offloading is the

packets delivery delay between the client and the server.

High latency, as experienced today with servers hosted in

the cloud (e.g., RTT around 200ms), limits computation

offloading applicability to delay-tolerant applications. Indeed,

for delay-sensitive applications (e.g., interactive, and gaming),

high latency is intolerable and causes the quality perceived

by users to degrade. Hopefully, with the emergence of Fog

Computing and MEC, it is possible to alleviate this constraint

by reducing drastically the RTT with remote servers.

Fog is an extension of Cloud computing, bringing the network

resources from the core network to the edge network. It is

gaining a lot of industry support.1

Although several works have been proposed to use Fog as an

enabler for computation offloading [3], [4], [5], only few works

have considered MEC. In [6], a power-constrained delay mini-

mization problem for computation offloading based on Markov

decision processes has been proposed and adapted to the MEC

context. The authors have considered a mobile device running

computation-intensive and delay-sensitive applications. The

device is composed of a task buffer, a transmission unit,

and a processing unit, and an algorithm has been proposed

based on the average delay of each task and the average

power consumption at the mobile device. This algorithm was

used to solve the power-constrained delay model in order to

find the optimal scheduling. The authors demonstrated their

model with simulations. A multi-user resource allocation for

MEC has been also proposed in [7]. The model is formulated

as a convex optimization problem to minimize the mobile

energy consumption considering the computation overhead

and the capacity of the MEC. The model derives an offloading

priority for each user according to its channel gain and energy

consumption. A low priority derives a minimum offloading,

while a high priority performs a complete offloading. Lastly,

an extended study of computation offloading in a multi-cell en-

vironment was proposed in [8], wherein the authors considered

a multiple inputs multiple outputs (MIMO) multi-cell system,

with multiple users requests for computation offloading. The

authors formulated the problem using a joint optimization of

the radio and the computational resources for computation

offloading in a dense deployment, with the presence of inter-

cell interference. Clearly, none of these proposed solutions

use the MEC services to drive the decision to offload or not.

They all rely on local device’s information to take such a

decision. Our proposed framework overtakes this limitation

by highly interacting with the MEC service to better predict

UE’s network quality of service, and thus considering up-to-

date information to take offloading decision.

1https://developer.cisco.com/site/iox

B. MEC Architecture

Operations Support System

Mobile Edge
Orchestrator

ME
Service

Service registry

DNS
handling

Traffic
rules

control

Service

Mobile edge platform

ME
app

ME
app

ME
app

Data plane

Virtualisation infrastructure

ME
platform
element
mgmt

ME
app rules

&
reqts
mgmt

ME
app

lifecycle
mgmt

Mobile edge platform manager

Virtualisation infrastructure
manager

Mobile edge host

M
o

b
ile

 E
d

g
e
 S

ys
te

m
 le

ve
l

M
o

b
ile

 E
d

g
e
 h

o
st

 le
ve

l

Mp1 Mp1

Mp2

Mm6

Mm3 Mm2

Mm1

Mm4

Mm5

Fig. 1: (Simplified) MEC architecture

With MEC standard, the ETSI would mainly ease the

deployment of UE applications requiring very low latency

access to remote servers, which are usually hosted in the

cloud. Examples of such targets are automotive systems,

computation offloading, etc. Figure 1 portrays a simplified

version of the MEC architecture as defined by ETSI. The

ME management system comprises the ME orchestrator, the

ME platform manager and the virtualization infrastructure

manager (VIM). The ME orchestrator has the view on the

whole ME system, as maintains the information about all the

deployed ME hosts, the services and resources available in

each host, the ME applications that are instantiated and the

network’s topology. The ME orchestrator is also responsible

for installing the ME applications in the system, checking their

integrity and authenticity and validating the policies associated

to them. The ME host is the logical entity that contains the ME

platform and the virtualization infrastructure on which the ME

applications run. The ME platform contains a set of baseline

functions that enable ME applications to run on a particular

host, as well as to discover, and consume ME services, or to

advertise and provide them through the service registry. The

ME platform is also responsible for enforcing the traffic rules

to route the data packets to/from the ME applications, as well

as to maintain a DNS subsystem necessary to discover the ME

applications. ME applications run on the ME host as virtual

instances (i.e., virtual machine or container) and are designed

to consume and/or provide ME services. The latter provide

high level APIs that expose UEs status (radio and context

information), which will be then used by the ME applications

to optimize a registered service (e.g., offload computation).

One of the most important API is the RNIS, which exposes

RAN information such as radio quality indicators related to

UE/eNodeB (eNB) layer 1/layer 2 parameters. It includes up-

to-date information regarding the configuration and status of

UEs and the access network. We may mention the follow-

ing: UE’s configuration information (e.g., public land mobile

network identifier (PLMN ID), cell-radio network temporary

identifier (C-RNTI), downlink/uplink (DL/UL) bandwidth);

UE status information (e.g., global navigation satellite system

(GNSS)); eNB configuration information (DL/UL radio bearer

configuration, tracking area code, PLMN identity); eNB status

information (GNSS, DL/UL scheduling information, number

of active UE).

III. PROPOSED FRAMEWORK

A. General description

UE eNB ME

Application
Server

Offload Request

ACCEPT, RTT, @IP Server

Offloaded Data

Check the RNIS API

Accept or Reject

RNIS

Keep a Live (Estimated RTT)

ME

App

Use RTT to

Decide

 to offload

 or not

Use RTT to

Decide

 to offload

 or not

Offloaded Data

Offloaded Data

Offloaded Data

ME host

Fig. 2: Global overview of the proposed framework

The key idea of the proposed solution is to enable UEs to

offload computation tasks to a remote server hosted in the ME

host. As stated before, MEC allows the reduction of the end

to end latency, which may ease the computation offloading

process. Unlike the existing solutions, where UEs take locally

(without the remote server help) the decision to offload or not

a part of the computation task, in this work we rely on the

MEC architecture, to not only host the remote server, but also

drive the UE decision to offload or not a computation task.

One of the inputs usually considered to decide whether

offload computation tasks, is the RTT between the remote

server (hosted in the Cloud) and UE. In mobile networks,

the RTT value is impacted by different parameters, which

depend on both the core network and the wireless channel

access delays. Note that hosting a server in the mobile edge

to run the offloaded code prevents core network delay issue,

any server located near eNBs being reacheable within a one

hop connection. Therefore, only the wireless channel access

may have impact on the RTT. On the DL direction, depending

on the number of active UEs as well as the scheduler policy

for the UE (i.e., guaranteed bit rate (GBR) or not) the packets

towards UEs may experience delay. If the number of active

UEs in the cell is high and the UE is using a no GBR bearer

(e.g., the default bearer or a dedicated bearer with no GBR),

the packets towards the UE might experience high delays at

the eNB DL queue. In the UL direction, the same behaviour

as for the DL may be seen (i.e., if the number of active UEs

is high and the UE has no GBR, the packets from UE to the

server may experience high latency, too). In addition, if the

UE has very bad channel conditions it may not be scheduled

often, which may also increase latency.

Estimating the value of the RTT in the wireless channel

may be challenging as many types of information are required,

such as the number of active UEs in the cell, the channel

quality of the UE (channel quality indicator (CQI) and channel

state information (CSI)), and the DL and UL bandwidth.

But knowing that the ME application has access to these

information via the RNIS API, it is possible to estimate the

RTT and hence help the UE to decide to offload or not part of

the computation tasks. A global view of the proposed solution

is shown in Fig. 2. At the beginning, the ME application

registers to use the RNIS API for specific UEs. Once a

UE sends a request to offload data to a remote server, the

ME application checks the RNIS API. If the ME application

considers that it is better that the UE executes the application

locally, then it sends a reject; otherwise it accepts the request,

and includes the IP address of the ME server to connect to.

Moreover, the accept message includes an estimation of the

RTT, which will help the UE to decide to activate or not

the computation offloading process. More details are given

hereafter.

B. ME application Side

Once receiving the first request from a UE asking to offload

data, the ME application checks the RNIS API to gather

information on: the number of active UEs in the cell, the

UE bearer type and the CQI of the UE. Obviously, if the

UE’s CQI is very bad, then it is better to execute the code

locally as UE packets may experience high delays (due to the

low modulation throughput), which may degrade the quality

of the application run at the UE. Furthermore, if the UE is

using a non-GBR bearer and the number of active UE is

very high, then the offloading request is rejected. Even if the

UE has a dedicated bearer, the ME application should check

the associated QoS class identifier (QCI) in order to evaluate

the packet delay budget allowed to this bearer. If the ME

application estimates that the channel conditions are good or

the UE has a dedicated bearer that guarantees low delay access,

the UE is authorized to offload. The decision along with the

remote IP address (i.e., if the offload is accepted) are included

in the response of the ME application to UE. When the ME

App decides to authorize the UE to offload data, it provides

also an estimation of the RTT. The initial value could be the

budget of packet delay associated with the bearer type of the

UE (i.e., maximum tolerated latency). Then periodically, the

ME application will further estimate the RTT according to the

RNIS information and provide it to the UE.

Many works have tried to model the access latency in long

term evolution (LTE) radio access. Among them, the authors

in [9] proposed to rely on the remaining block signal (RBS),

which is sent periodically by the UE to the eNB, in order to

estimate the access delays. Though this solution shows a good

approximation, it is difficult to use it at the ME application,

since the RBS will arrive delayed to the ME application,

leading to wrong estimations. One straightforward solution

on which we rely to estimate the RTT is based on the UL

scheduling report obtained via the RNIS API. Indeed, the UL

Scheduling information indicates the physical resource block

(PRB) assignment per UE. The ME application will gather the

UL information during a period of time, noted T , and analyze

it to estimate the delay. We know that the transmission time

interval (TTI) (or the smallest scheduling interval) in LTE is

1ms. If we fix T to 1 s, then each period will include 1000
UL scheduling samples to be analyzed. If the UE has been

scheduled X times during T , we can estimate the average

access delay during the period T , noted by D, as T/X . Of

course this calculation represents an average, which may not

lead to an exact estimation, but at least it can be used easily

to estimate the UE’s packet delay, requiring only the UL

scheduling information available through the RNIS API.

It is well known that the RTT could be estimated by

multiplying the access delay by two, as the DL latency could

not exceed the UL latency but would somehow be equivalent.

Moreover, the backhaul latency may be omitted, as the server

is located at the ME host. Then, the estimated RTT is equal

to 2×D. To avoid a sudden fluctuation of the estimated RTT,

an exponential weighting moving average (EWMA) technique

is used. The final value of the RTT, to be sent to the UE

periodically is as follows:

RTTest = α×RTTprec + (1− α)×RTTcur, (1)

where α ∈ [0, 1], and RTTprec and RTTcur represent the

most recent RTT estimate and RTT sample respectively.

C. UE Side

Basically, We assume an application composed by n
classes. An application is represented using a valued and

locality-labeled graph (VLG) with n vertices. Each vertex in

the graph corresponds to one class in the application; it is

labeled with a binary value to indicate whether the component

can be offloaded or not, according to its dependencies on the

system and/or hardware components like global positioning

system (GPS), modem, screen, and I/O. Indeed, some parts of

the application depend on the UE device hardware and cannot

be offloaded. We used the execution time on the UE and the

energy consumption to assign values to vertices. Each edge

in the graph represents the interactions between two classes

in the application and is weighted with the frequency of calls

and the size of the exchanged data. The problem consists in

identifying which classes of the application could be offloaded

aiming at improving the response time and saving energy on

the UE device. To this end, we propose to use the graph

partitioning technique to obtain a minimum cut. Stemming

from the fact that graph partitioning is an NP-hard problem

(thus, its solution is prohibitive computationally), we propose

to reduce the graph size by clustering the vertices that highly

communicate.

From the valued and locality-labeled graph (VLG) we

construct a reduced valued and locality-labeled graph (RVLG).

The first step consists in transforming the VLG into a reduced

graph (RG) using the strongly connected components (SCC)

algorithm that constructs the clusters (detailed later), leading

to reduce the size of the graph as well as the communication

between components. Indeed, reducing the graph size permits

to decrease the time duration for resolving it. Now, we assign

values to the RG by computing the vertice weights and identify

the vertice labels using the procedure VerticesConstruct. For

the edge weights, we use the procedure EdgesConstruct. The

result is a reduced valued and locality-labeled graph (RVLG).

a) Clusters Construction: The SCC algorithm constructs

a cluster from a given vertex a. This cluster will at least contain

the element a. To construct the cluster we proceed as follows.

First, we initialize all the components of the graph to non

visited (lines 3 and 9). Next, we create two sets of vertices

(lines 4, 10). One of them will contain all the successors of

all the vertices in this set (lines 4 to 8), and the other one

will regroup all the predecessors of all the elements in this

set (lines 10 to 14). Finally, we obtain a cluster which is the

intersection between the two sets of vertices (line 15).

1: procedure SCC(G(V,E) , a ∈ V)
2: begin

3: Initialization: Set all the vertices with the label visited = false
4: Create a set of vertices V1 initialized with a (i.e., V1 = {a});
5: while there is a non visited vertex v in the set V1 do
6: mark this vertex v with the label visited = true;
7: for each edge (v, y), where the vertex y does not belong to V1

do
8: Add y to V1;

9: Re-Initialization: All the vertices are set to non visited (i.e.,
visited = false);

10: Create a second set of vertices V2 initialized with a (i.e., V2 = {a});
11: while there is a non visited vertex v in the set V2 do
12: mark this vertex v as visited;
13: for each edge (x, v), where the vertex x does not belong to V2

do

14: Add x to V2;

15: return the intersection between the two sets V1, V2 (i.e., the cluster)
16: end

b) Graph Reconstruction: Once the clusters are created,

we reconstruct the graph with the obtained clusters. We start

by defining the vertices of the reduced graph in the algorithm

VerticesConstruct. Each vertex in the new graph is actually a

cluster (with at least one element). Thus, the weights (time

and energy) of each cluster are the cumulative weight of all

the vertices in this cluster (lines 9 and 10). Then we assign a

label to the cluster Ci, which depends on the labels assigned

to the vertices composing the cluster Ci. If at least one vertex

in the VLG that belongs to the cluster Ci, is labeled with the

l = 0, then the cluster Ci should be labeled with li = 0,

otherwise li = 1. In other words, if a class from the cluster

Ci cannot be offloaded, then the whole cluster Ci cannot be

offloaded (lines 12 and 13).

When all the vertices are defined, we construct the edges

using the algorithm EdgesConstruct. For each edge in the

original VLG, if the two vertices that constitute the edge

belong to two distinct clusters, then an edge between the two

clusters (if it does not exist, line 7) is created, and the weight

of this edge is incremented with the weight of the respective

edge in the VLG (line 8). This process is repeated for all the

clusters.

1: procedure VERTICESCONSTRUCT(G(V,E))
2: begin

3: G′(V ′, E′)← G(V,E);
4: i← 1;
5: V1 = {a}
6: while (V ′ 6= ∅) do
7: Choose, randomly, a vertex v in V ′;
8: Construct a cluster Ci with the vertex v by calling the algorithm

SCC(G′(V ′, E′), v);
9: Compute the execution time of the cluster Ci by accumulating

the weights (times) of all the vertices in this cluster;
10: Compute the energy consumption of Ci by accumulating the

weights (energy) of all the vertices in this cluster;
11: V ′ ← V ′ − Ci;
12: if it exists a vertex in Ci initialized with (li = 0) then

initialize the cluster Ciwith the locality lci ← 0;
13: else lci ← 1;

14: i++;

15: return C, the set of the clusters;
16: end

1: procedure EDGESCONSTRUCT(G(V,E) ,C =
⋃i

j=1
Ci)

2: begin
3: for (i = 1, i ≤ card(C), i++) do
4: j ← 1;
5: while ((j ≤ card(C)) & (j 6= i)) do
6: for each (((u = (v, w) ∈ E) & (v ∈ Ci)) & (w ∈ Cj))

do
7: Create an edge (Ci, Cj) in the RVLG if it does not

exists;
8: W (Ci, Cj)+ = W (v, w);

9: j++;

10: end

1) Decision Algorithm: Regarding the decision algorithm

(i.e., offload a cluster or not), we propose two different models;

Global-View and Local-View. In the Global-View model, we

focus on the optimal solution. To this end we model the

offloading decision problem using an integer linear program-

ming (ILP). However, the resolution of the ILP may take

time and drastically increase with the size of the application.

Indeed, there is a local latency (overhead) of the model

resolution to consider in the response time. In the Local-View

model, we try to minimize this overhead by proposing a more

simple but efficient heuristic solution. Both algorithms take as

inputs the reduced version of the graph, the wireless network

characteristics (bandwidth and RTT) and mobile resources

(energy and computing resources), and give as output the

offload decision.

a) Global-View Model: We consider that the total exe-

cution time of the application is split into three parts. The first

part is the local execution time related to the execution of the

clusters on the UE. The second part is the remote execution

time, which considers the execution cost of the remaining

clusters on the server. Finally, there is the communication

cost, which includes the latency as well as the time to send

and receive the results from the server. We define the energy

threshold value Eth, as the maximum amount of energy that

can be spent for the application processing. We set this value to

95% percent of the total consumption of the application when

it is executed locally. This constraint is useful in our model:

In the worst case, we gain 5% energy, and more importantly,

this constraint prevents from wasting additional energy due to

the network communication, as our objective function focuses

on minimizing the execution time.

The algorithm steps are as follows. First, the graph size will

be reduced using the cluster representation, by computing the

V erticesConstruct and EdgesConstruct algorithms, which

regroup the nodes of the VLG inside clusters and compute the

weights of these clusters as well as the interaction between

them, including the edge weight and locality. A RVLG is the

result of this step, which should be written in matrix format in

order to be given as input to an ILP. The proposed ILP aims

to improve the execution cost of the overall program, while

maintaining the energy consumption under a certain threshold

(Eth). It is given by:

Min

n
∑

i=1

(

(1− xi)Ti + xi

(

Ti

s
+

di

UL
+

ri

DL
+ 2×RTT

))

s.t.











∑n
i=1

((1− xi)Ecpu + xi (Eidle + Enic)) ≤ Eth

∀i ∈ {1, ..., n} , xi ∈ {0, 1}, li ∈ {0, 1}

xi ≤ li

(2)

where Ti represents the execution time of cluster Ci, di is

the envisioned data (including the code and inputs) size to

be sent to the remote server (i.e., if cluster i is offloaded), ri
represents the executed data (results) size sent from the remote

server, s is the server CPU speed (this could be obtained along

with the IP address of the remote server), and xi is a binary

variable that indicates the ILP output: xi = 0 (respectively

xi = 1) denotes local (respectively remote) execution of this

cluster. The constraint xi ≤ li concerns the clusters that can

not be offloaded, due to the hardware dependency, as stated

before; therefore, if a cluster is labeled with li = 0 (i.e, non-

offloaded cluster), then xi = 0 (i.e., this cluster will not be

offloaded). Next, the ILP is solved to compute the values of

each xi. After that, each cluster Ci is assigned to one of the

two partitions (local partition or remote partition) based on

the value of the corresponding xi; that is, if xi = 0, then

the corresponding cluster is assigned to the local partition,

otherwise it is assigned to the remote one. At the end, the

algorithm returns the set of clusters that should be offloaded

(remote partition), and those that should be executed on the

UE (local partition).

b) Local-View Model: In the Local-View model, each

cluster composing the application is treated separately from

the others. The proposed algorithm dissects the possibility

of offloading a cluster or not. with respect to the possibility

to be offloaded. The purpose is to avoid using the ILP, in

order to reduce the resolution time compared with the Global-

View algorithm. Indeed, for some low-latency applications,

there is a need to decide rapidly to offload a cluster or not,

to avoid additional delays. Like the Global-View model, the

proposed algorithm accepts as input a RVLG and generates

two partitions as output; the local partition and the remote

partition. The concept of this algorithm is simple; for each

cluster Ci, if either the latency or the cost of communication

(i.e., exchanged data) with the ME is higher than the local

execution time of this cluster, then offloading the cluster will

neither improve the computation cost nor the consumption cost

(i.e., xi = 0). Otherwise, if both latency and the communi-

cation cost are less than the execution time, the algorithm

checks if a gain is achieved when offloading the cluster. The

offloading gain is the difference between the local cost and

the offload cost (the offload cost includes the communication

cost and the remote execution) and is defined as

TGoff = w ×

(

1

sm
−

1

s

)

−

(

di

UL
+

ri

DL
+ 2×RTT

)

(3)

where w is the the amount of computation for cluster Ci, and

sm represents the UE processing speed.

If offloading a cluster will achieve a gain, then it will be

offloaded (i.e., xi = 1).

c) Communication between server and UE: Once the

decision algorithm has been executed (i.e., the computation

offloading process is launched), the UE and the remote server

interact through the communication channel that has been

established just after receiving the authorization to offload

from the ME application. For reliability reasons, this commu-

nication channel is based on TCP and implements a control

protocol which allows the UE or the server to ask for interme-

diate data. For example, a cluster in the MEC end can request

the results of the execution of another cluster located on the

UE, or the results obtained by the cluster in the MEC side

could be used by another cluster in the UE.

IV. RESULTS

To evaluate the proposed framework, we developed a testbed

composed of a UE running a face recognition application

based on the OpenBr2 framework on top of an Ubuntu 14.04

operating system, and a MEC server. The UE was emulated

by a virtual machine hosted on a Dell M4800 laptop, powered

by an Intel Core i7 processor (clocked at 2.8Ghz) running

Ubuntu 14.04, also including an Nvidia Quadro K2100M GPU

card using 2 GB. The server is 8 times faster than the UE,

while the UL bandwidth is around 50Mbps, and the DL

bandwidth is 60Mbps. The aim is to compute the gain of both

proposed solutions, when offloading a part of the application

tasks. After the profiling step, 96 classes are used by the

application. These classes were then grouped into clusters.

Figure 3 illustrates the number of clusters to offload regarding

the latency between the UE and the MEC server. We make

two main observations here.

• The number of clusters to offload is inversely proportional

to the latency. This remark is applicable for both proposed

algorithms (i.e., Global-View and Local-View). When

the network latency is increasing, there is less offload-

ing gain, hence less clusters to offload. Basically, the

Global-View (respectively Local-View) algorithm min-

imizes (respectively maximizes) the model defined by

2http://openbiometrics.org/

equation 2 (respectively the gains through equation 3).

To minimize equation 2, the second part of the sum

(i.e., xi

[

Ti

s
+ di

UL
+ ri

DL
+ 2×RTT

]

) should be equal

to zero when the latency (RTT) is high (i.e., xi = 0). For

equation 3, there is a gain (TGoff > 0) when the RTT

is less than
(

1

2

)

×

[

w
(

1

sm
−

1

s

)

−
(

di

UL
+ ri

DL

)

]

. Once

the latency reaches 110ms, the performances of both

algorithms converge; less than 10 clusters are offloaded.

The number of offloaded clusters is merely zero when

offloading a cluster will not generate gains.

• The Global-View algorithm identifies more clusters to

offload than the Local-View. Deciding where to execute

each cluster subject to latency constraints is very chal-

lenging, as it requires a global view of the program’s

behavior. The solution is optimal only when the decision

strategy is globally optimal (i.e., across the entire pro-

gram) rather than locally optimal (i.e., relative to a single

cluster invocation). The Global-View algorithm solves an

ILP, which helps to derive the optimal solution. Thus, for

each latency value, the ILP finds the maximum number of

clusters that minimizes the cost (i.e., the optimal number

of clusters to offload). The Local-View algorithm, on the

other hand, focuses on each cluster independently of the

others, searching only for local solutions. A cluster is

offloaded if and only if a gain (i.e., TGoff) is obtained.

We believe that the difference between the two curves is

due to the communication cost of some clusters which

do not result in a local gain as the communication cost

exceeds the computation one but improve the global gain.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

10

20

30

40

50

60

70

80

Latency (ms)

O
ffl

o
ad

ed
C

lu
st

er
s(
#

)

Global − V iew

Local − V iew

Fig. 3: Number of offloaded clusters by report to the

RTT between the UE and the MEC sever.

Now we turn our attention to the gain that could be achieved

for users. For this purpose, we focus on two important metrics

regarding improving user experience: (i) the time needed to

execute the face recognition application, and (ii) the energy

consumed at the user end.

Figure 4 presents the response time using three approaches:

(i) the whole application is computed locally on the UE, (ii)

the application is computed using the Local-View algorithm,

and (iii) the application is executed employing the Global-

View algorithm. The two last approaches are subject to the

network latency. The total execution time for face recognition

takes around 9.5 s. This time corresponds to the elapsed time

between the moment when the web camera of the laptop is

launched and the moment of viewing the result. Inside this

delay interval, different actions are performed, including (i)

launching the web-camera, (ii) capturing a video (a set of 300
frames), (iii) communication with a graphical QT interface

to display the video in real-time, (iv) detection (detecting

eyes, face, key-points, and landmarks) for each frame to have

the illusion of tracking, (v) normalization (applying color

conversion, enhancement, and filtering), (vi) representation

(computing binary patterns, key-point descriptors, orientation

histograms, and wavelets), (vii) extraction (using clustering,

normalization, and quantization), and (viii) matching (using

classifiers, distance metrics, and density estimation).

The Global-View algorithm achieves the best performance

for all the latency values. For a 10ms latency, the Global-

View algorithm (respectively Local-View) offers almost 69
(respectively 62) percent of gain compared with the local

execution. For small latency (10ms to 60ms), the Global-

View algorithm is almost 1.13× optimal compared with the

Local-View Algorithm. For a latency higher than 110ms, the

two algorithms offer the same performance, since both identify

the same clusters to offload. As the latency is high, the two

algorithms converge to the same results.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

1

2

3

4

5

6

7

8

9

10

Latency (ms)

E
x
ec

u
ti

o
n

ti
m

e
(s

)

Local − V iew

Global − V iew

Local − Exec

Fig. 4: The execution time by report to the RTT between

the UE and the MEC sever.

Figure 5 depicts the energy consumed by the face recog-

nition application for the three scenarios (i.e., local exe-

cution, Global-View algorithm, and Local-View algorithm).

Computing the whole application locally consumes 7.564 J .

For 10ms latency, the Global-View (respectively Local-View)

algorithm offers almost 93.4 (respectively 90.5) percent better

performance than the local execution. This gain is inversely

proportional to latency. Indeed, when latency increases, the

number of clusters to offload decreases, in turn decreasing

the achieved gain, which depends on the number of clusters

to offload. The Global-View algorithm is almost 3 percent

better than the Local-View algorithm. From 140ms latency,

the achieved gain by the both proposed algorithms is null.

Basically, no clusters are offloaded for such high latency. For

latencies higher than 140ms, no gain is achieved by either

algorithm, since no clusters are offloaded in such conditions.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Latency (ms)

E
n

er
g

y
(j

)

Global − V iew

Local − V iew

Local − Exec

Fig. 5: Energy consumption versus the network latency

V. CONCLUSION

In this paper, we proposed a novel framework for compu-

tation offloading, which uses the MEC architecture defined

by the ETSI, taking advantage of its RNIS API to estimate

network latency between the UE and a server hosted in the

ME. This estimation, coupled with other parameters, is used

to derive an offloading decision for the UE. We formulated

two models operating at different granularities (application

component vs. component cluster level). Whilst the fist model

searches for an optimal offloading, the second searches for a

fast solution. The effectiveness of our design, tested using a

face recognition application, unveils an execution 62 percent

faster than the local execution, and can save up to 93.5 percent

of energy for the UE.

REFERENCES

[1] ETSI, “Mobile edge computing (mec); framework and reference archi-
tecture,” ETSI GS MEC, vol. 3, p. V1.1.1, March 2016.

[2] F. Messaoudi, G. Simon, and A. Ksentini, “Dissecting games engines: The
case of unity3d,” in Proceedings of the 14th ACM Netgames Workshop,

Zagreb, Croatia, December 3-4, 2015, pp. 1–6.
[3] M. A. Hassan, M. Xiao, Q. Wei, and S. Chen, “Help your mobile

applications with fog computing,” in 12th Annual IEEE International

Conference on Sensing, Communication, and Networking Workshops,

SECON Workshops 2015, Seattle, WA, USA, June 22-25, 2015, 2015,
pp. 49–54.

[4] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and
applications,” in Third IEEE Workshop on Hot Topics in Web Systems

and Technologies, HotWeb 2015, Washington, DC, USA, November 12-

13, 2015, 2015, pp. 73–78.
[5] N. Chen, Y. Chen, Y. You, H. Ling, P. Liang, and R. Zimmermann,

“Dynamic urban surveillance video stream processing using fog comput-
ing,” in IEEE Second International Conference on Multimedia Big Data,

BigMM 2016, Taipei, Taiwan, April 20-22, 2016, 2016, pp. 105–112.
[6] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computa-

tion task scheduling for mobile-edge computing systems,” CoRR, vol.
abs/1604.07525, 2016.

[7] C. You and K. Huang, “Multiuser resource allocation for mobile-edge
computation offloading,” in Proc. IEEE Globecom, 2016.

[8] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,” IEEE

Trans. Signal and Information Processing over Networks, vol. 1, no. 2,
pp. 89–103, 2015.

[9] A. Baid, R. Madan, and A. Sampath, “Delay estimation and fast iterative
scheduling policies for LTE uplink,” in 10th International Symposium on

Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks

(WiOpt), Paderborn, Germany, May 14-18, 2012, 2012, pp. 89–96.

