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Abstract

We study the design of interactive video servers consisting of disk arrays. In order to avoid the

hot{spot problem in video servers it is conventional wisdom to stripe the videos over the disk array

using Fine Grained Striping or Coarse Grained Striping techniques. Striping, however, increases

the seek and rotational overhead, thereby reducing the throughput of the disk array. Our results

indicate that the decrease in throughput is substantial when interactive delays are constrained to

be less than 1 second. We show that both a high degree of interactivity and high throughput are

achieved by using a narrow striping width and replicating the videos according to the user's request

pattern. Speci�cally, we �nd that striping over two disks gives the highest throughput when a tight

1 second constraint on interactive delays is imposed. We also demonstrate that localized placement

(i.e., no striping at all) performs nearly as well when a good estimate of the user request pattern is

available.
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1 Introduction

Consider designing a video server which makes available to its clients 10{100 constant{bit{rate (CBR)

encoded videos, with each video being 1 to 200 minutes long. Suppose a design constraint is that all

interactive delays | including delays after initial video start{up, after a pause/resume and after a

temporal jump | be less than, say, 1 second. Such a constraint gives the user a pleasurable interactive

experience with the system. In this paper we address the following question: How do we design such a

highly{interactive video server which can accommodate a large number of concurrent video streams at

reasonable cost?

One possibility is to endow the server with a huge RAM and to place all the prerecorded videos in

the RAM. The high transfer and access rates out of RAM will ensure that the design constraints are

met. This pure{RAM solution, once believed to be completely far{fetched, is now a realistic possibility

due to the rapid decline in RAM cost in recent years. Nevertheless, if the total amount of prerecorded

video content exceeds a few Gigabytes, as it would with a few MPEG{2 full{length movies, the pure

RAM solution becomes cost prohibitive, and a disk{array becomes necessary. The per{byte cost of disk

remains several orders of magnitude less than the per{byte cost of RAM.

Given that we are going to use a disk array for our video storage, the next issue is how are we going

to place the videos on the disk array in order to maximize the number of connections that the server

can simultaneously support? The most natural solution is localized placement, whereby each video �le is

contiguously placed on a disk. But if an entire video �le is stored on one disk, the number of concurrent

accesses to that �le is limited by the disk throughput, which leads to the well{documented hot spot

problem.

The hot{spot problem is that the great majority of the demand is often for a small subset of the

stored videos. Because each disk can service only a small number of concurrent streams, much of the

demand for the popular videos can go unsatis�ed, while the disks housing the less popular videos are

under{utilized. As an example, suppose that a video server houses 100 videos, each on its own disk;

also suppose that each disk can support up to six concurrent streams. If nearly all the demand is for

the �ve most popular videos, then the server will service only 30 concurrent streams, even though it

has the theoretical capacity to service 600 concurrent streams. This example shows that the hot{spot

problem, when not properly addressed, can lead to a tremendous reduction in server throughput.

To circumvent the hot{spot problem, it is conventional wisdom to stripe the videos across the disks.

By striping a video over a subset of the disks, the server can use the throughput of the entire subset

to generate streams emanating from the video. In fact, if each video is striped across the entire disk

array, then the hot{spot problem vanishes | all demand distributions can be equally accommodated.

Striping has an obvious reliability problem | if one disk fails, then all the video �les that are

partially contained in the disk become unavailable to the users. (With localized placement a given disk

stores portions of fewer videos, so disk failure has less impact on reliability.) The reliability problem

that results from striping can be partially mitigated through the use of RAID (redundant array of

inexpensive disks) technology.

But for video servers promising a high{degree of interactivity, striping engenders a more subtle

performance problem. Speci�cally, the smaller striping unit increases the relative seek and rotational

overhead, thereby decreasing the e�ective throughput of each disk in the array. As we shall show in

this paper, this decrease in throughput can be painfully signi�cant when interactivity constraints on

the order of a second or less are present.

For highly{interactive video servers, we show that if striping is used, it should be used with a narrow
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striping width. Furthermore, for the same number of disks, a simpler localized placement solution with

appropriate replication may perform nearly as well as the striping solution. Thus, for highly{interactive

video servers, the conventional wisdom to stripe videos may be awed.

This paper is organized as follows. In Section 2 we present the disk model and request distribution

model. In Section 3 we discuss uniform replication, whereby the same number of copies of each video is

stored in the disk array. We consider uniform replication both for localized placement and for striping

with a variety of striping widths. We consider both Fine Grained Striping (FGS) and Coarse Grained

Striping (CGS). We also present numerical results which indicate that uniform placement can lead to

unsatisfactory performance. In Section 4 we consider non{uniform replication, again for localized and

striping placement. We show that if the videos are replicated to reect the user's request pattern,

then the server can achieve satisfactory throughput; moreover, localized placement gives satisfactory

performance, and performs nearly as well as the best striping solution. In Section 5 we review the

existing literature on �le placement in video servers. In Section 6 we briey summarize our �ndings.

2 The Model

We can highlight the main points most easily by introducing the following simplifying assumptions:

� We assume that all videos are constant{bit{rate (CBR) encoded. For CBR encoding, the quan-

tization scale is dynamically changed to produce a near CBR bit stream. The resulting encoded

video is sent to the client at a constant rate. When the client receives the video, it accumulates

video in a small bu�er and briey delays playback.

� All videos have been encoded at the same rate, denoted by b.

� All video �les are the same size, denoted by B.

In our numerical experiments we use b = :375 Mbytes/sec and B = 3 Gbytes. We shall assume that

each disk has a capacity of 3 Gbytes; thus, each disk can hold exactly one video �le.

We investigate two di�erent video placement strategies:

� Localized placement: Each video �le is contiguously stored within a single disk. If there is su�cient

aggregate storage capacity in the disk array, multiple copies of the videos are stored on multiple

disks. We consider two video replication strategies: uniform replication, whereby each video has

the same number of copies; and non{uniform replication, whereby the di�erent videos may have

di�erent numbers of copies stored in the disk array.

� Striping placement: Each video �le is striped across a subset of disks in the disk array. If there is

su�cient aggregate disk storage, multiple copies of a video may be striped within the array. We

again consider two video replication strategies: uniform replication and non{uniform replication.

2.1 Model for User Request Pattern

Throughout our analysis we assume that the user demand for videos varies from video to video. Specif-

ically, if there are M videos with video 1 being the most popular and video M being the least popular,

then the probability that the mth most popular video is requested by a user is given by the Zipf

distribution [11]:

qm = K=m� ; m = 1; : : : ;M;
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where

K =
1

1 + 1=2� + � � �+ 1=M�

The Zipf distribution corresponds to a highly{localized user request pattern that has been typical at

movie rental stores. Note that the Zipf distribution depends on a parameter � > 0. Increasing �

increases the relative popularity of the most popular videos.

2.2 Disk Model

We assume that each disk consists of single platter side and a single arm. Let D denote the number of

disks in the array. We assume that D �M , so that all the videos can be stored in the disk array.

We assume throughout that the server serves the ongoing video streams in constant{time rounds.

During each round the server retrieves a �xed number of bytes for each client. Within a round, the

number of bytes retrieved by the server for a client is equal to the number of bytes transmitted to the

client. Speci�cally, with T denoting the round length, within each round and for every stream, the

server retrieves a block of video of bT bytes from the disk subsystem and sends to the network bT bytes.

We assume that each disk in the disk array uses the SCAN scheduling algorithm [7]. Speci�cally,

within each round, each disk arm sweeps across its entire platter exactly once with no back tracking.

Because we assume the SCAN scheduling algorithm, the overhead incurred within a round for a given

disk has the following form

disk overhead = lseek + Ilrot;

where I is the number of streams that the disk is servicing. The constant lseek is the maximum seek

time of the disk (the time to move the arm from the center to the edge of the platter, which is equal

to the time to move the arm from the edge to the center of the platter). The constant lrot is the per{

stream latency, which includes the maximum rotation time of the disk and the track{to{track seek time.

Table 1 summarizes our disk notation and the nominal values for the disk parameters. The nominal

parameters reect the current performance of high{speed disks [1].

parameter notation nominal value

disk size X 3 Gbytes

disk transfer rate r 2.5 MBytes/sec

maximum seek time lseek 20 msec

rotational latency lrot 10 msec

number of disks in array D 10{100

Table 1: Nominal values of disk parameters used in numerical studies.

In main memory, the video server allocates to each stream a disk bu�er and a network bu�er. While

the disk array �lls the disk bu�er, the network drains the network bu�er, which has been previously

�lled. When the network has depleted the disk bu�er, the disk bu�er becomes the network bu�er and

vice versa. The roles of the two bu�ers continue to alternate throughout the life of the stream. Because

one such double bu�er is required for each stream, the amount of main memory required to support J

streams is 2JTb.
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The initial start{up delay as well as the responsiveness to an interactive request (pause/resume or

a temporal jump) is typically modeled to be twice the round length, 2T , when the SCAN algorithm is

used. This delay model is based on the worst{case assumption that the request of the user arrives just

after the start of a round, say round k, and arrives too late to be scheduled by the SCAN algorithm for

round k. The request has to wait for the start of the next round. The request is included in the disk

read schedule of round k+1 and the requested video data is read into the disk bu�er during round k+1.

The disk bu�er of round k + 1 becomes the network bu�er of round k + 2 and the transmission of the

requested video data out of the network bu�er starts at the beginning of round k + 2. Thus, the disk{

subsystem introduces a maximum delay of two rounds, i.e., 2T . We shall assume that the maximum

disk{subsystem delay is constrained to .5 sec. Therefore, we use a round length of T = .25 sec. Note

that the total interactive delay also includes transmission delays as well as client de{smoothing and

decoding delays. These additional delays add another .25 sec to .5 sec to the .5 sec disk{subsystem

delay, giving a total delay on the order of .75 sec to 1.0 sec. Thus, with a round length of .25 sec the

system is able to give the user a pleasurable interactive experience with less than 1 second delay for all

interactions.

3 Uniform Replication

In this section we will consider two placement strategies: localized placement and striping placement.

If D > M , the disk array will contain multiple copies of some or all of the videos, with each copy on a

di�erent disk. Throughout this section we assume that the videos are uniformly replicated, i.e., D=M

is a positive integer and that each video has the same number D=M copies in the disk array.

3.1 Localized Placement

Consider one of the D disks, and suppose that this disk is servicing I ongoing streams. Then within a

round this disk will transfer I blocks of data to main memory, with each block consisting of bT bytes.

The disk transfers each of these blocks at rate r. Thus the total disk transfer time within a round

is IbT=r. The total disk overhead within a round is lseek + Ilrot. Thus the amount of time the disk

requires to service the I ongoing streams in a round is IbT=r+ lseek + Ilrot. Because the time required

to service the I streams in a round must be no greater than the round length itself, we have

T � lseek + Ilrot + I
T b

r
:

Rearranging the terms in the above equation, the maximum number of streams that a disk can support

is:

I =

$
T � lseek

lrot +
Tb

r

%
:

Because there are D disks, the maximum number of streams that the disk array can service for a given

round time T is:

J localmax = D

$
T � lseek

lrot +
Tb

r

%
: (1)

Because the demand for the various videos is typically non{uniform, the disk array will most likely

serve substantially less than J localmax streams. In the worst case, all requests will be for the same video,
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in which case the number of streams serviced is

J local
min

=
D

M

$
T � lseek

lrot +
Tb

r

%
: (2)

3.2 Striping Placement

With full striping each video is striped over all of the disks. There are essentially two di�erent striping

techniques: Fine Grained Striping (FGS) and Coarse Grained Striping (CGS) [4, 6].

Fine Grained Striping

With Fine Grained Striping each block is segmented into D equal{sized parts, called stripes, and each

of the disks stores one of the block's stripes. When the server retrieves a block from the disk array, it

reads all D stripes of the block in parallel. Let J denote the number of ongoing streams at the server.

Consider one of the D disks. Within a round this disk will transfer J stripes to main memory, with

each stripe consisting of bT=D bits. The disk transfers each of these stripes at rate r. Thus the total

disk transfer time within a round is JbT=rD. Within this same round, the disk overhead is lseek+Jlrot.

Thus the amount of time required to service the J ongoing videos in a round is JbT=rD+ lseek+ Jlrot.

Because the time required to service the J streams in a round must be no greater than the round length

itself, we have

T � lseek + Jlrot + J
Tb

rD
:

It follows from the above inequality that the maximum number of streams the server with FGS can

support for a given round time T is

J
stripe

FGS
=

$
T � lseek

lrot +
Tb

rD

%
: (3)

Note that full striping with FGS can support J
stripe

FGS
streams for any request pattern.

A quick comparison of (1) and (3) shows that the localized layout can support a larger number of

simultaneous streams. This is because each disk wastes a larger fraction of the round with seeks and

rotations when Fine Grained Striping is employed. However, because each video �le is spread over all

D disks, the the full striping layout can support J
stripe

FGS
streams independent of the request pattern.

Coarse Grained Striping

With Coarse Grained Striping (also refered to as Data Interleaving in [5]) each block is stored on a

separate disk. The blocks are typically assigned to the disks in a round{robin manner, that is, if block

n is stored on disk 1 then block n+ 1 is stored on disk 2, and so on. When the server retrieves a block

from the disk array it reads the entire block from one disk. Therefore CGS has less overhead than FGS

(recall that with FGS the server has to access D disks to retrieve one block). The drawback of CGS,

however, is its large interactive delay. Speci�cally, with TCGS denoting the round length of the CGS

server, the start{up latency and the responsiveness to interactions is typically modeled as (D+1)TCGS.

This interactive delay is based on the following worst{case scenario: The user requests video data from

a disk, say disk d. The request arrives just after the start of a round, say round k. Even though disk

d has a free slot in round k, that is, it has free disk transfer capacity to accommodate the request, the

request arrives too late to be scheduled by the SCAN algorithm for round k. The delay model further

assumes that none of the other disks in the array has a free slot in round k, that is, all other disks have

already exhausted their disk transfer capacity. In CGS video servers with round{robin block assignment
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the disk schedules circle around the disks in a round{robin fashion, that is, the disk schedule of disk d

in round k is used by disk d+ 1 in round k + 1, and so on. Therefore, in the considered scenario, disk

d does not have a free slot in the next D � 1 rounds. The next free slot at disk d is in round k +D.

The requested video data is read into the disk bu�er during this round. The transmission out of the

network bu�er starts at the beginning of round k+D+1. Thus, the disk{subsystem introduces a delay

of (D+1)TCGS. We assume (as before in the case of localized placement and FGS) that the maximum

disk{subsystem delay is constrained to .5 sec. Therefore we use a round length of TCGS = :5sec=(D+1).

Note that the round length depends on the number of disks in the array; in order to satisfy the imposed

constraint of interactive delays the CGS server has to reduce its round length when the number of disks

grows. Recall that the FGS scheme satis�es the .5 sec constraint on the maximum disk{subsystem

delay with a round length of T = .25 sec (independent of the number of disks). For ease of comparison

of CGS with FGS we express the round length of CGS in terms of the round length of FGS:

TCGS =
2T

D + 1
: (4)

We proceed to analyze the throughput of the CGS server when a tight constraint on interactive

delays is imposed. Let J denote the number of ongoing streams at the server and consider one of the

D disks. Within a round this disk will transfer J=D blocks to the disk bu�er (assuming that the blocks

accessed in a round are evenly divided among the disks). Each block consists of bTCGS bits. The disk

transfers the blocks at rate r. Thus the total disk transfer time within a round is JbTCGS=rD. Within

this same round, the disk overhead is lseek+Jlrot=D. Since the time required to service the J=D streams

in a round must be no greater than the round length itself, we have

TCGS � lseek + Jlrot=D + J
TCGSb

rD
:

The maximum number of streams the server with CGS can support for a given round time TCGS is

J
stripe

CGS
=

$
TCGS � lseek
lrot

D
+ TCGSb

rD

%
: (5)

For ease of comparison with FGS we substitute (4) into (5) and obtain:

J stripe
CGS

=

$
T �

D+1

2
lseek

D+1

2D
lrot +

Tb

rD

%
: (6)

We provide a detailed numerical comparison of (3) and (6) in Section 3.3. We note here that for

the trivial case of one disk, D = 1, FGS and CGS can support the same number of streams. We also

note that for D � d2T=lseek � 1e CGS is not able to support any streams with a constraint of 2T on

the maximum disk{subsystem delay.

3.3 Group Striping

Now consider group striping. In this scheme, we stripe each video �le over W � D disks. We refer to

W as the striping width. A little thought shows that in this strategy (i) each disk contains data from

W video �les and (ii) if W � M , then the disks can be partitioned into groups of size W such that

each copy of a video �le is striped within a group. Group striping with D = 6 disks, M = 3 movies and

di�erent striping widths W is illustrated in Figure 1.
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W = 6 (full striping)
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W = 3

W = 2

W = 1 (localized placement)

Figure 1: Group striping of M = 3 movies (denoted by 1, 2, and 3) over D = 6 disks with striping

widths of W = 1, 2, 3, and 6. We use uniform replication in this example; thus there are D=M = 2

copies (denoted by A and B) of each movie stored in the disk array.

We consider group striping both with FGS and CGS. With FGS each block is segmented into W

stripes, and each disk in the striping group stores one of the block's stripes. With I denoting the

number of streams serviced by a given striping group with FGS, we have

T � lseek + Ilrot + I
T b

rW
:

It follows from the above inequality that the maximum number of streams the striping group can

support with FGS for a given round time T is

IFGS =

$
T � lseek

lrot +
Tb

rW

%
: (7)

With CGS the blocks of a video are stored on the W disks in a striping group in a round{robin

fashion, with each disk storing an entire block. With a derivation that parallels the analysis of CGS for

full striping we obtain for the maximum number of streams a striping group can support with CGS:

ICGS =

$
T �

W+1

2
lseek

W+1

2W
lrot +

Tb

rW

%
: (8)

Table 2 shows the number of connections that can be supported by a striping group with FGS and

CGS as a function of the width of the striping group. Focusing for now on the FGS results, we see

from this table that the maximum number of streams grows sub{linearly with the width of the striping
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Width of Maximum Number Maximum Number

Striping Group of Streams of Streams

with FGS with CGS

1 4 4

2 8 8

3 10 10

4 11 12

5 13 14

10 16 15

20 19 5

50 21 0

100 22 0

Table 2: Maximum number of streams that can be supported by an isolated striping group with Fine

Grained Striping (FGS) and Coarse Grained Striping (CGS).

group. For example, if we increase the number of disks from 50 to 100, only one more additional stream

can be supported! This sublinear growth is due to the increased relative seek and rotational overhead

that comes from Fine Grained Striping. We note, however, for the particular system values considered,

that increasing the width from 1 to 2 allows for linear growth. Comparing the results for FGS and

CGS we see that CGS can support one more stream with W = 4 and W = 5. This is due to the

fact that CGS has less overhead; CGS accesses one disk to retrieve one block whereas FGS accesses

W disks. However, the number of streams CGS can support drops o� sharply for larger W , and for

W � d2T=lseek � 1e = 23 CGS can not support any streams with a 1 second constraint on interactive

delays. This is because the round length of CGS depends on the interactive delay constraint and the

number of disks in the striping group, i.e., TCGS = :5sec=(W +1). For larger striping widths the round

length has to be shortened in order to meet the interactive delay constraint. Once the round length is

shorter than the seek latency, lseek, however, there is no time left in the round to transfer video data. In

summary, CGS performs slightly better than FGS for moderate striping widths but extremely poorly

for large striping widths. We use FGS throughout the rest of this paper.

The maximum number of streams that group striping with FGS can support is

J stripe
max

(W ) =

�
D

W

�$
T � lseek

lrot +
Tb

rW

%
: (9)

Note that (9) is maximized at W = 1, that is, localized placement beats striping for all striping widths

with respect to the maximum number of possible of streams.

The worst{case request distribution is such that all requests are for the same video. In this case,

the number of videos that can be served by the disk array is

J
stripe

min
(W ) =

�
D

max(M;W )

�$
T � lseek

lrot +
Tb

rW

%
: (10)

Note that J
stripe

min
(W ) is maximized at W =M . Thus we see that J stripe

max
(W ) decreases with the striping

width but J
stripe

min
(W ) increases with the striping width (for W �M).

Table 3 gives J
stripe

min
(W ) and J stripe

max
(W ) for D = 20 disks and M = 10 videos for a range of widths

W . It is interesting to note from Table 3 that for small widths there is a large di�erence between the
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minimum and maximum streams, i.e., the number of streams that can be supported with small widths

depends largely on the request pattern. However, the request pattern has little inuence on the number

of streams for the larger striping widths.

Striping Width Minimum Number Maximum Number

of Streams of Streams

1 8 80

2 16 80

3 20 60

4 22 55

5 26 52

10 32 32

20 19 19

Table 3: Minimum and maximum number of streams that can be supported by a disk array with D = 20

disks and M = 10 videos.

Let us now suppose that the request pattern follows the Zipf distribution with parameter � = 1. For

a �xed number of disks, D, and a �xed number of videos, M , we now determine the number of streams

that can be typically supported by each of the placement schemes. We make this determination using

the following simulation experiment. For a given placement strategy and target number of streams, S,

we generate S requests from the Zipf distribution and determine the number of requests that can be

supported (which will be no greater than S). We repeat the experiment 1000 times, creating 1000 � S

requests. If 95% of these requests can be supported, we then increment S and repeat the entire

procedure. The procedure continues until the 95% criterion is violated.

The S determined in this procedure is the number of customers that a service provider could plan

to support at the peak hour on any given day. Speci�cally, if the provider allows for S requests each

evening during the peak hour, it should be able to support about 95% of the �rst{choice requests over

the year.

Table 4 presents the results of this procedure for 10, 20, and 100 disks. We observe that for the case

of uniform replication, the striping widthW = 2 gives signi�cantly more connections than does localized

placement (W = 1). Further increasing the striping width decreases the number of connections.

Striping Width, W Number of Streams Number of Streams Number of Streams

10 disks 20 disks 100 disks

1 10 25 136

2 21 46 245

5 21 43 225

10 16 32 160

Table 4: Number of streams that can be supported by a disk array with D = 10, 20, and 100 disks and

M = 10 videos for di�erent striping widths W ; Zipf request pattern with � = 1.
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4 Non{Uniform Replication

Examining Table 4 we see that the number of streams that can typically be supported is signi�cantly

lower than the maximum number of possible streams. For example, for 20 disks the disk subsystem has

a capacity of 80 streams, whereas only 46 streams can typically be supported with the optimal striping

width (W = 2); similarly, for 100 disks the disk subsystem has a capacity of 400 streams, whereas only

245 streams can typically be supported with the optimal striping width (W = 2). We are therefore

motivated to consider non{uniform replication in order to further increase the number of streams that

can typically be supported.

In this section we permit non{uniform replication for both localized and striping placement. Let

Cm be the number of copies of video m stored in the disk array. Because the size of each video �le

equals the capacity of a single disk,
MX
m=1

Cm = D:

Adapting the theory of the previous section, we obtain the maximum number of video{m streams that

can be supported with localized placement:

J local
max

(m) = Cm

$
T � lseek

lrot +
Tb

r

%
:

For striping, if WCm � D for all m = 1; : : : ;M , then copies of the same video can be striped over

disjoint groups of disks, and the maximum number of streams for video{m is

J stripemax (m;W ) = Cm

$
T � lseek

lrot +
Tb

rW

%
:

Now let us suppose that the user request pattern for theM videos has a known distribution (perhaps

a Zipf distribution with known parameter �). We consider replicating the videos such that the replication

distribution is approximately equal to the request distribution. In particular, we replicate using the

following algorithm:

1. Cm = bqmDc, m = 1; : : : ;M .

2. If Cm > D=W , set Cm = bD=W c, m = 1; : : : ;M .

3. If Cm = 0, set Cm = 1.

4. Calculate C = C1 + � � �+ CM .

5. If C > D, decrement Cm for the least popular video with Cm > 1, then for the next to least

popular with Cm > 1, etc., until C = D.

6. If C < D , increment Cm for the most popular video with Cm < bD=W c, then for the next to

most popular video, etc., until C = D.

This algorithm ensures that there is at least one copy present for each of the M videos. After

determining the number of copies of each video, we must assign the copies to the various groups of

disks. For this, we use of the tennis{player{seeding heuristic: we place the most popular videos with
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the least popular videos in a group, and we place moderately popular videos with other moderately

popular videos in a group.

Table 5 summarizes uniform and Zipf replication for 20 disks. We see from the table that Zipf

replication for striping widths of 1 and 2 roughly doubles the number of connections.

W Uniform Replication Zipf Replication Maximum Number of Streams

1 25 52 80

2 46 80 80

5 43 52 52

10 32 32 32

Table 5: Number of streams that can be supported by a disk array with D = 20 disks and M = 10

videos.

Table 6 summarizes uniform and Zipf replication for 100 disks. We see from this table that Zipf

replication greatly increases the typical number of connections for localized placement (W = 1) and

striping with W = 2. Notice that W = 2 with Zipf replication increases the number of supported

connections from 245 to 400, which is the maximum number of connections the disk subsystem can

support. But we now notice that for the larger system with D = 100 disks localized placement performs

nearly as well as striping with W = 2 and signi�cantly better than the larger striping widths (W = 5

and W = 10).

W Uniform Replication Zipf Replication Maximum Number of Streams

1 136 388 400

2 245 400 400

5 225 260 260

10 160 160 160

Table 6: Number of streams that can be supported by disk array with D = 100 disks and M = 10

videos.

In summary, if videos are replicated to reect a known user request pattern, than the number of

connections that are typically supported can approach the maximum number of connections possible.

Furthermore, the optimal striping width is small, and for large systems localized placement performs

nearly as well as does striping with the optimal striping width.

Next, we study the robustness of the non{uniform replication approach to unpredictable changes in

the user request distribution. We study how the Zipf replication performs when the actual user request

distribution di�ers from the expected user request distribution. (The videos are replicated according to

the expected user request distribution.) For this study we focus on the video server with D = 100 disks

and M = 10 movies. We assume that the expected user request distribution is the Zipf distribution

with parameter � = 1. We replicate the movies according to this distribution in the disk array. We

furthermore assume that the actual user request distribution is the Zipf distribution with the parameter

� in the interval [0.25, 3]. Note that a larger � increases the popularity of the most popular movie. With

a parameter of � = 1, for instance, on average 34 % of the requests are for the most popular movie,

whereas with � = 2 on average 65 % of the requests are for the most popular movie. In Figure 2 we
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Figure 2: Number of streams as a function of the Zipf parameter � of the actual user request distribution.

The movies are replicated according to the expected user request distribution, which is assumed to be

the Zipf distribution with parameter � = 1.

plot the number of streams that can be supported as a function of the Zipf parameter � of the actual

request distribution. We observe from the �gure that the server with striping width W = 2 can support

400 connections over a wide range of the Zipf parameter. This indicates that a narrow striping width of

W = 2 gives good robustness, that is, the server can support the maximum number of connections even

when there is some uncertainty about the actual user request distribution. With localized placement

(W = 1) the server can support close to 400 connections when the user request distribution is fairly

well known. The number of streams drops o� quickly when the actual user request distribution deviates

from the expected user request distribution. However, localized placement is still able to support more

connections than group striping with W = 5 over a relatively wide range of � from 0.6 to approximately

1.8. The larger striping widths 5 and 10 give excellent robustness, but the maximum number of streams

with these larger striping widths is small.

4.1 Estimating the User Request Pattern

We are advocating that the videos should be replicated in a fashion that reects the user request

pattern. But how can a video service provider determine the user request pattern? Let us propose a

partial solution to this problem in the context of movies on demand. Suppose that the service provider

has an estimate, q1; : : : ; qM , of the request pattern forM movies that are currently stored on the server.

Further suppose that at the end of the current evening the provider has observed that the demand

for the evening was p1; : : : ; pM . We recommend that the new estimate of the user request pattern be

updated according an exponential moving average:

qm = (1� �)qm + �pm;
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where 0 < � < 1 is the dampening factor. The choice of an appropriate � is up to the service provider. If

the demand distribution evolves rapidly, then � should be relatively large, .2 or higher. If, on the other

hand, the demand distribution evolves slowly, with occasional unusual and unpredictable demands, then

� should be set to a small value.

The exponential moving average is a reasonable scheme for dynamically estimating the user request

pattern when the collection of o�ered movies does not change. But how should the distribution be

modi�ed when a new movie is introduced? To answer this question, movie{on{demand service providers

should study the strategies used by VCR tape rental companies, who have had to address a similar

problem. Obviously, the new distribution will have to take in account the past success that the movie

(or a similar movie) has had in the big{screen movie theaters.

Of course it is also possible to dynamically copy movies that experience unexpected high demand.

This is indicated when a particular movie proves to be much more popular than expected early on in

the evening. If one disk with that particular movie (assuming localized placement) is still unused, this

disk can be used exclusively to produce a new copy. In this case there are no seek or rotational delays

involved and the transfer of the movie is limited only by the the disk transfer rate. With the parameters

of Table 1 it takes B=r = 20 minutes to copy the movie. If all of the disks storing the unexpectedly

popular movie are already serving clients, the copy should be made from the disk serving the fewest

clients. In this case seek and rotational latencies are incurred and copying the movie takes therefore

longer.

5 Related Work

There is a large body of literature that addresses striping and placement strategies for continuous stored

media which is complementary to the problems addressed in this paper. The tutorial by Gemmel et al.

[5] gives a general introduction to the issues involved in video server design.

Gafsi and Biersack [4] study video servers with full striping, i.e., each video is striped over all the

disks in the server; group striping is not considered. Gafsi and Biersack introduce Mean Grained Striping

(MGS), a striping technique whereby each block is striped over a di�erent subset of the disks. Roughly

speaking, MGS is similar to CGS if the blocks are striped over few disks; if the blocks are striped over

many disks MGS is similar to FGS. Gafsi and Biersack compare the maximum number of supported

streams, the start{up latency and the bu�er requirement of the FGS, MGS, and CGS schemes. They

�nd that CGS can support roughly three times as many streams as FGS. However, they also �nd that

the worst{case start{up latency with CGS is approximately �ve times larger than the start{up latency

with FCS. The full{striping video servers studied in [4] have typically start{up latencies of the order of

tens of seconds. We have shown in this paper that given a 1 second constraint on interactive delays,

FGS and CGS can support about the same number of streams when a small striping width is used. We

have also shown that CGS performs extremely poorly for larger striping widths.
�Ozden et al. [6] study FCS and CGS in video servers with full striping. Their focus is on �nding the

block size that maximizes the maximum number of streams the server can support while concurrently

minimizing the server cost. A great deal of attention is devoted to the analysis of the scheduling of user

requests in the CGS scheme. �Ozden et al. �nd that for the same server cost CGS can support roughly

three to four times as many streams as FCS. However, start{up latencies and interactive latencies,

which are a key design constraint in this paper, are not studied in [6].

Vin et al. [10, 8] study striping for VBR media. Their striping technique is similar to CGS in that
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each disk stores a �xed{size block. Due to the VBR nature of the stored videos, however, the number

of blocks (and hence the number of disks) accessed in a �xed{length round varies. Their model assumes

that the movies are uniformly replicated. It also assumes that the user request distribution is uniform,

that is, a user is equally likely to request any of the stored movies. Vin et al. argue that the number of

streams that the disk array can support is limited by the the most heavily loaded disk. They develop

an analytical model for the work load of the most heavily loaded disk. This model is used to determine

the block size for striping that maximizes the number of supported streams.

Chervenak et al. [2] study the performance of video servers in Video on Demand (VoD) systems that

do not allow for any interactivity, such as VCR actions, and have a 60 second start{up delay. Their

study is restricted to localized placement and full striping; group striping is not considered. Chervenak

et al. �nd that for their non{interactive VoD system full striping outperforms localized placement. We

have shown in this paper that this results does not hold for highly interactive video servers.

Flynn and Tetzla� [3, 9] study block assignment schemes for CGS. They consider the round{robin as-

signment scheme and di�erent permutation based schemes. They investigate the impact of the di�erent

assignment schemes on reliability and response time of the server.

6 Conclusion

We have studied the placement of videos on disk arrays of interactive video servers. We have taken a

critical look at the conventional wisdom to to use wide striping, (i.e., to stripe the videos over the entire

disk array) in order to avoid the hot{spot problem. Our numerical studies based on the parameters of

current high performance disks demonstrate that wide striping results in low throughput when tight

constraints on interactive delays are imposed. We advocate localized placement (i.e., no striping at

all) or striping with a narrow striping width to achieve high throughput in highly interactive video

servers. In order to overcome the hot{spot problem we propose to replicate the videos according to an

estimate of the user's request pattern. We have outlined how such an estimate can be obtained. We

have demonstrated that localized placement is the placement strategy of choice when a good estimate

of the user's request pattern can be obtained. Besides giving high throughput and good responsiveness

to interactions, localized placement is simple, allows for straightforward disk scheduling and avoids the

reliability problems that arise with striping. If only a rough estimate of the user's request pattern

can be obtained we recommend to stripe over two disks. We have demonstrated that a striping width

of two gives high throughput and responsiveness even when the actual user's request pattern di�ers

signi�cantly from the estimate.
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