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Abstract—Coordinated vehicle control strategies aim at opti-
mizing driving dynamics to increase traffic flow without impact-
ing safety. These control strategies are based on the knowledge of
the vehicles’ state information like position and velocity obtained
through Vehicle-to-everything (V2X) communications. Literature
on control strategies yet assumes perfect positions, whereas
position errors are in fact present and non negligible (e.g. GPS).
As a consequence, these localization errors impact the control
strategies by introducing uncertainty, which must be accounted
for to minimize the probability of accidents.

This paper qualifies and quantifies such uncertainty and
proposes strategies to reduce it in a collision avoidance scenario.
We notably relate these strategies to their impacts on traffic flow.
More specifically, we model coordinated automated vehicles as a
Model Predictive Control (MPC), integrate localization errors
and evaluate its impact of the output to avoid accident. We
then propose possibilities to mitigate accident-prone controls
and quantify them on traffic flow. Our study illustrates that
localization errors impact traffic flow by forcing future automated
vehicles to increase gaps or reduce speed.

I. INTRODUCTION

Location-based services are a cornerstone of future Cooper-
ative ITS (C-ITS). All traffic safety and efficiency applications
defined either in ETSI ITS, SAE or ISO are based on the
the knowledge of positioning information. Although GNSS
data is the primary source of position information, high def-
inition maps and on-board sensors are expected to be critical
complementary technologies. Position information will play
an even more critical role in future automated vehicle systems
due to the implementation of real-time control strategies.
Vehicles do not only need to be located roughly on a street
but rather exactly on a lane. It has yet been shown through
recent European projects (HIGHTS1, TIMON2) that GNSS-
only systems may not provide the precision required by future
automated vehicle system.

Automated vehicles systems may be classified in two cat-
egories. Vehicles with cruise control capabilities are known
as Adaptive Cruise Control (ACC) vehicles, whereas ACC
vehicles with additionally V2X communications (ITS-G5,
LTE-V2X) are known as Cooperative ACC (CACC) vehicles.
ACC/CACC vehicles not only promise to increase road safety
but also road capacity (increased flow). A detail survey on
control strategies for automated (ACC/CACC) vehicles may be
found in [1]. Signalized intersection clearance using central-
ized control algorithm proposed in [2] achieves a throughput

1http://hights.eu/
2https://www.timon-project.eu/

increase of up to 11% for different penetration levels of CACC
vehicles. Roundabout clearance strategies on automated (ACC
and CACC) vehicles achieve a throughput of around 3600
veh/hr [3]. Decentralized control algorithms minimizing en-
ergy loss while clearing an intersection achieved a throughput
of 9000 veh/hr [4]. Shladover et al. [5] further showed that a
lane capacity increase from 2200 veh/hr to 4000 veh/hr may
be achieved in a CACC-only traffic. Nevertheless, according
to van Arem et al. [6] penetration of CACC vehicles below
60% will not affect flow capacity.

These described benefits of ACC/CACC vehicles on the
flow capacity relates either to a decrease in inter vehicular
distance or to an increase in speed. Such benefits may only
be achieved if controllers of automated vehicles have perfect
knowledge of the environment (e.g. state information of other
vehicles). Unfortunately, state information is error prone. In
particular, localization is known to have non-negligible er-
rors, and the previously described state-of-art on coordinated
control strategies (e.g. [1]) assume perfect localization. Patel
et al. [7] showed that unaccounted localization errors in
automated vehicle controllers potentially leads to accidents.
How should control algorithms behave and account for lo-
calization errors when they are non negligible? Accordingly,
under localization errors, can automated vehicles truly reach
the promised flow capacity increase? How would the situation
evolve in mixed traffic scenarios? These are the questions we
address in this paper.

The goal of the paper is to ensure vehicles operate such
that collision avoidance uncertainty is low despite the presence
of localization errors. Our contributions are as follows: (i)
we propose a centralized control system based on a Model-
Predictive Controller (MPC) integrating a localization error
model; through extensive simulations, we qualify and quantify
the impact of localization errors on pure automated traffic;
(ii) we propose the concept of Operational Point (OP) for
MPC and observe the relationship between flow capacity and
collision avoidance uncertainty. We show how the shift of OP
can reduce uncertainty in collision avoidance; (iii) we evaluate
the impact of localization error on mixed traffic system. In a
nutshell, we show that automated vehicles will require to either
reduce speed or increase inter-distance to mitigate the impact
of localization errors.

The rest of this paper is organized as follows: Section II
describes the proposed MPC strategy including localization
errors. Section III evaluates the impact of localization errors,



suggest options to mitigate them and evaluate them on their
impact on traffic flows. Towards the end of the paper we draw
some conclusions in Section IV.

II. AUTOMATED VEHICLES COORDINATION WITH

LOCALIZATION ERRORS

A. System Description

As illustrated in Fig. 1, we assume a highway scenario,
where multiple vehicles with imperfect localization are follow-
ing one another in a coordinated mobility. If the first vehicle
has to brake on sensing an obstacle ahead, the following
vehicles would need to brake as well in a coordinated way.
We consider a centralized control system like a Cloud or Edge
Service, located either in the Cloud or in ITS-G5 or Cellular
infrastructures. All vehicles (CACC and Manually Driven
Vehicles (MDV)) are connected and transmit their position,
speed and acceleration estimates to the centralized controller
either via Cellular or DSRC communication systems [5]3. This
information is used by the centralized controller to compute
control inputs, which are subsequently sent back to only
CACC vehicles for collision avoidance4. The red ellipses
in Fig. 1 depicts the CACC and MDVs’ localization errors
impacting the centralized controller.

Fig. 1. Mixed coordinated driving, with a Cloud-based centralized controller

In such a scenario, we quantify the impact of localization
errors on the uncertainty of collision avoidance systems for
future automated vehicles (e.g. CACC). We propose a method
to alter dynamics (e.g. velocity or intervehicular distance) to
mitigate such uncertainty.

B. Localization Errors

Fig. 2 depicts our modeling of localization errors. In this
figure, vehicle i has a perceived location p∗i different from
its true location (pi) according to a localization error ei.
The perceived and true locations of the vehicle are denoted
by blue and green blocks respectively. The vehicle can be
located anywhere within a circle centered at the perceived
location p∗i with radius equal to ei. As a vehicle position
is usually computed in 2D, the localization error is also
in 2D. But without loss of generality, we consider in this
paper longitudinal motion only of vehicles on a single lane
to simplify our study. Thus, we transform this 2D scenario to

3Communication impairments and their impact on the centralized controller
are out of scope of this paper, and left for future work.

4MDV will only react as function of the CACC vehicles

Fig. 2. Localization error concept for an error magnitude of ei.

a 1D scenario (as shown in the bottom part of the Fig. 2). The
vehicle can be located anywhere between pi,1 and pi,2.

We assume that a vehicle position refers to its front bumper
and that the true occupied road length corresponds to the
vehicular length (li) from front to rear bumpers. The potential
area, where the vehicle may be located lies accordingly
between pi,1 to pi,3. As we can not be certain about the
occupancy between pi,1 to pi,3, in the proposed approach,
the vehicle is assumed to be at pi,1 and the new length of
the vehicle is li,e. Eq. (1a), and Eq. (1b) express the above
mentioned ideas mathematically.

li,e = li + 2 ∗ ei (1a)

pi,1 = p∗i + ei (1b)

Similarly, the perceived distance between vehicles d∗i,k is
the distance between the perceived locations of vehicles i and
k and is mathematically represented in Eq. (2). Kindly refer
to [7] for further details. Note that neither transmitting nor
receiving vehicles are aware of their true locations.

d∗i,k(n) = pi,1(n)− pk,1(n)− li,e > 0 (2)

C. Mixed Traffic Modeling

In this paper we consider longitudinal motion of multiple
vehicles on a single lane containing CACC enabled vehicles
and MDV as illustrated in Fig. 3. We assume a MDV is driven
by a human and is without any control capabilities. We model
a reaction time as the perception reaction time of a human
driver (tprt) [8], and a visibility limited to the front vehicle
only. Moreover, we define tprt,i:=[ti,i−1, ti,1] as the pair of
perception response time of a MDV i compared to the vehicle
in front and the first vehicle respectively. If all vehicles in
front of vehicle i, i.e.: i−1, i−2...3, 2 are MDVs, then MDV
i will react ti,i−1 seconds after vehicle i− 1 and ti,1 seconds
after vehicle 1, where ti,1= ti,i−1 + ti−1,i−2+...+ t2,1. Thus
the reaction time of a MDV is proportional to the number of
other MDVs immediately ahead.



Fig. 3. Delays in commencing reaction of manually driven vehicles with
respect to the first vehicle

All human drivers cannot reach the maximum braking
capacity umin

i . In order to account for different drivers’ max-
imum attainable braking capacity, we randomize the braking
capability of MDVs between 50 % and 100% of the maximum
braking capacity using a human factor (fh). Assuming MDVs
brake at their individual maximum attainable braking capacity
after their corresponding perception response time (tprt) and
come to a halt in tsi seconds, the braking profile of manually
driven vehicles can be given by Eq. (3):

ui(n) =

{

fh · umin
i c · ti,1 < n ≤ c · T s

i

0 otherwise
∀ i ∈ Zc (3)

where T s
i = ti,1 + tsi . Values in seconds are multiplied

with constant c = 10 and converted to instances (1 second
= 10 instances). n is any instant in the prediction horizon N
(n ∈ 1...N ). Z is the set of all CACC vehicles amongst nv

vehicles, 0 ≤ size{Z} ≤ nv . Note: Zc is complement set of
Z which is the set of all MDV. Zc is a null set ( Zc=∅) if
there are no MDVs.

On the other hand, CACC vehicles are assumed to start
implementing control action simultaneously on the reception
of controls inputs from the centralized controller. The fre-
quency of received control inputs is defined by the controller’s
update frequency. Thus, we can assume vehicle 1 and vehicle
4 implement their controls simultaneously (refer to Fig. 3).
CACC vehicles implicitly warn following MDVs of their
braking through braking lights. Accordingly, the reaction time
of a MDV(i) behind a CACC vehicle will be much shorter than
a MDV(k) behind another MDV i.e.: ti,1 < tk,1, as indicated
in Fig. 3.

As described in Section II-A, the centralized controller has
a full knowledge (at instant n=0) about the state parameters
of all MDVs and CACC vehicles, including their vehicular
constraints. Our proposal is to calculate control inputs for
CACC vehicles taking into account CACC vehicles and
MDVs at each instant n over time horizon N (n = 1...N ).
CACC vehicles implement control inputs derived from
Eq. (11), whereas MDVs implement the braking model
described in Eq. (3).

D. Centralized MPC-based Control System

We model our centralized controller as a Model Predictive
Control (MPC) system. MPC is well-known method to provide
sequence of actions to be followed over a finite horizon. MPC
is a popular choice for trajectory planning in robotics due to

their capabilities to handle system constraints and to satisfy
fast convergence.

The state variable xi of a vehicle i (i ∈ 1...nv) is defined
as the position pi,1, velocity vi tuple in Eq. (4).

xi = [pi,1 vi]
T (4)

The relation between position, velocity, acceleration and
jerks is given by Eq. (5).

˙pi,1 = vi; v̇i = ui; u̇i = ji (5)

A discrete time linear control system represented by Eq. (6)
is used, where values for constants are given by Eq. (7),

xi(n+ 1) = Axi(n) +Bui(n) (6)

A =

[

1 ∆t
0 1

]

B =

[

(∆t)2/2
∆t

]

(7)

where ∆t is the time between two consecutive instances n
and n+1. Vehicle and road constraints in terms of minimum
and maximum values of position, velocity, acceleration are
accounted for in Eq. (8a), and Eq. (8b),

[

pmin
i,1

vmin
i

]

≤ xi(n) ≤

[

pmax
i,1

vmax
i

]

(8a)

umin
i ≤ ui(n) ≤ umax

i (8b)

where (·)min
i , (·)max

i corresponds to minimum and maxi-
mum value of that parameter for vehicle i. umin

i and umax
i

stand for maximum braking and maximum acceleration capa-
bilities. Restricting jerks (j) within certain acceptable bounds
ensures smooth braking for CACC vehicles and is imple-
mented using Eq. (9). Note: MDVs have a braking profile
defined by Eq. (3) and thus jerks corresponding to MDVs can
not be optimized.

jmin
i ≤ ji(n) ≤ jmax

i (9)

Collision avoidance is achieved by ensuring the perceived
distance between vehicles is always positive (see Eq. (2))5.
Starting and terminal position and velocity can be represented
as constants xi(0) and xi(N). pi(0) and pi(N) indirectly
defines the range of the vehicle and the path it needs to follow
in a 1D scenario. Eq (10) finally ensures the terminal velocity
of all vehicles reach zero and this signifies a braking scenario.

vi(N) = 0 (10)

The cost function (J) is set to maximize comfort. We
accordingly aim at minimizing the 2-norm of its control
inputs ‖ui(n)−ui(n− 1)‖2 to penalize strong deviations. By
integrating all of previously defined, the optimization model
for a centralized mixed vehicle braking coordination scenario
can be represented as:

5The control system knows neither the true positions nor the true distance
between vehicles. It computes control inputs using perceived positions and
perceived distance between vehicles.



minimize J =

nv
∑

i=1

N
∑

n=1

‖ui(n)− ui(n− 1)‖2 (11)

subject to

Eq. (1a), (1b), (2), (3), (4),

(5), (6), (7), (8a), (8b), (9), (10)

If perceived distance between vehicles d∗i,k(0) ≤ 0 the
constraint set by Eq. (2) can not be fulfilled and thus the
simulation is unfeasible and the algorithm is not run. In the
case of a pure automated vehicle scenario (no MDVs), Eq. (3)
is ignored. The centralized controller will aim at solving
the convex optimization problem represented by Eq. (11).
Depending on the input parameters (notably the location
errors), it may fail and not return any control input, thus
creating uncertainty in collision avoidance. If collisions are
inevitable, this methodology will also not return any control
input. Solving such a scenario is out of scope of this paper.
In this paper, we rely on CVX [9] toolbox on MATLAB to
solve Eq. (11).

III. SIMULATIONS AND ANALYSIS

A. Simulation Parameters

We simulate a 6 vehicle (n=6) braking scenario6. The
location of potential collision is assumed to be the origin (0
in 1D space), and vehicles are moving towards the origin.
The initial (true) location of the first vehicle (p1(0)) is fixed
to 95.9m, considering that this is the distance at which at
least one DSRC/ITS-G5 safety message would be received
with 99.5% probability [10] 7. pmin

i > 0 ensures vehicles stop
before the collision. If i + 1 represents the vehicle following
vehicle i, then pi+1 > pi signifies overtaking is forbidden in
a single lane scenario. For all vehicles, vmin is set to zero,
implying that vehicles cannot backup. umax = 0, guarantees
a pure deceleration scenario, and jmin and jmax values are
capped to -0.25 and 0.25 m/s3 respectively. Simulations
performed in this paper don’t require pmax and vmax. The
time horizon N of simulations were set to 16s (160 instants),
where a second is divided into 10 instants. This is motivated
by the fact that GNSS/GPS update frequency and Cooperative
Awareness Message (CAM)/ Basic Safety Message (BSM)
transmission frequency is 10 Hz [11].

We consider localization errors to follow a zero-mean
Gaussian distribution with standard deviation φ. The actual
localization error ei is drawn for each vehicle i from the Gaus-
sian distribution. The perceived localization p∗i is generated in
2D by adding the error ei to the true localization value pi in
Cartesian coordinates. x component of these parameters is then
chosen to convert it to a 1D scenario. ei remains constant for a
each vehicle over N instances. The initial velocity (vp) ranges

6The scale of this scenario is sufficient to evaluate automated vehicles, as
braking is fully coordinated and shock-waves are not created.

7We leave a more detailed investigation of such detection range to future
work

TABLE I
GENERAL PARAMETERS

Symbol Parameter description Value

g gravitational constant 9.88m/s2

li true length of any vehicle 4m
∆t sampling time 0.1s
N sampling horizon 160 instants (16 s)

TABLE II
COORDINATED ACCIDENT AVOIDANCE - AUTOMATED VEHICLES ONLY

Std of
localization
error φ (m)

Collisions avoided
with localization

errors using proposed
approach

Collisions avoided
with true position

information

4 117 500
2 323 500
1 484 500

0.5 500 500
0.3 500 500

from 5 to 30 m/s at intervals of 5 m/s. The initial velocity for
each vehicle vi[0] is set to vp ± 5%.

We define a simulation sample as the set of vehicle state
parameters (velocity, inter-distance, location error). We simu-
late 100 samples per initial velocity vp. We therefore simulate
600 samples for each φ value. Further parameters are shown
on Table I.

B. Traffic with Automated Vehicles Only

In this scenario, we only consider CACC vehicles and
assume homogeneous capabilities, in particular φ is the same
for all CACC vehicles8. Despite the std of error φ being
constant, the magnitude of error for each vehicle is different.
We vary φ from the most precise to very imprecise situations,
i.e Φ = [4; 2; 1; 0.5; 0.3]. We assume that occupants of CACC
vehicles may choose their preferred headway distance from 5
m up to 1.1 · vi m, the latter bound being taken from [5]. The
maximum braking capacity of CACC vehicles is set to 0.6·g,
which is the mean braking capacity among all vehicles [12].

Only the perceived positions and perceived distance between
vehicles are used to compute the CACC control inputs and
evaluate collision avoidance according to Eq. (11). The true
position is never known to the controller. We summarize
the performance of coordinated collision avoidance subject
to localization errors in Table II. As expected, for any value
of φ, the number of collisions avoided using the proposed
algorithm with localization errors is less than or equal to
the collisions avoided when true positions are known, but
see a strong drop for values of φ greater than 1 m. Even
under perfect localization conditions, the maximum number
of collisions avoided is 500 out of a total of 600.

We further illustrate the impact of velocity on collision
avoidance in Table III. We observe that the number of col-
lisions avoided increases with velocity up to a certain limit.
This comes from the fact that the higher velocity is, the higher

8This will be relaxed in future work to model different qualities of
automated vehicles.



TABLE III
COLLISIONS AVOIDED AS A FUNCTION OF VELOCITY AND STANDARD

DEVIATION OF ERROR

Velocity vp (m/s)
5 10 15 20 25 30

4 1 11 26 36 43 0

Std of position
2 26 65 66 84 82 0

error φ (m)
1 93 96 98 100 97 0
0.5 100 100 100 100 100 0
0.3 100 100 100 100 100 0

TABLE IV
ICONS USED AND THEIR SIGNIFICANCE

Icon Collisions avoided
with localization

errors using proposed
approach

Collisions avoided
with true position

information

x Yes Yes
· Uncertain –
© – No
⊙ No No

is the upper limit of the inter-vehicle distance (1.1 ·vp is
higher). However, if the velocity is too high (around 30 m/s),
vehicles will not be able to stop before the presumed obstacle
regardless of the inter-distance (all entries for vp = 30m/s
are 0). Collisions might still be avoided by adjusting other
parameters, such as the permitted jerks used in Eq. (9) (this
equation restricts how quickly vehicles can reach maximum
braking), but this is out of scope of this paper.

In traffic flow theory, flows are defined using velocity and
intervehicular distances. We therefore use scatter plots of
simulation samples, plotted in a two-dimension velocity/inter-
distance domain, with the corresponding traffic flow value in
gray scale in Fig. 4- 6. Large inter-distance and low speed lead
to low flows, while high flows may only be reached for large
velocities at low inter-distance. Our objective is to visually
illustrate the impact of location errors on the distribution of
avoided collisions in the figures and its impact on traffic flows.

Accordingly we need to define our methodology. On one
hand, Collision Avoided (CA) samples are samples where
control inputs avoided an accident despite localization errors.
CA samples are represented by ‘x’. Would the true position be
known, CA samples would obviously also avoid accident. On
the other hand, Probable Collision (PC) samples are samples
where the controller is unable to provide control inputs.
This does not strictly imply collision, but simply defines an
uncertainty in the controller. PC samples are represented by
‘·’. A sample might be classified as a PC sample in two cases:

(A) not feasible - due to localization errors, the perceived
distance between vehicles is less than or equal to zero.
In this case, the algorithm is not run as the constraint
represented by Eq. (2) is not satisfied.

(B) not solvable - due to localization errors, the perceived
inter-vehicular distance is greater than zero but lower than
the required inter-vehicular distance to avoid collision.

Accordingly, we further need to know if PC samples would
lead to collision avoidance would the true position be known.

Collisions which take place (despite the information of true
location) are marked as ‘©’. However, in real-time operation,
controller would not know this and would attempt to avoid
this situation at any cost. Table IV summarizes the different
icons used.

We represent the collision avoidance statistics for each of
the 600 samples for φ = 4 and φ = 2 in Fig. 4 and
Fig. 5. We observe there are different regions with different
concentration of CA to PC samples. PC represents uncertainty
as the algorithm cannot guarantee collision free braking. Thus
PC should be avoided and the objective is to make CACC
vehicles operate in the region with a majority of CA samples.
We illustrate such region as a convex hull, which is defined
with the following parameters:

• α - the target ratio of CA to PC samples; it represents
the confidence in the system.

• β - the ratio of PC samples outside convex hull to the
total PC samples; this represents the percentage of PC

samples avoided by operating in the convex hull.
• margin - a truncation margin for CA to remove extreme

CA samples. A low margin will provide a more compact
hull.

Let the Operating Region (OR) for the controller be the
area inside the convex hull. All samples inside OR form the
reference database. The margin parameter is used to avoid
regions with low number of CA samples and high number of
PC samples from getting into the OR. The controller therefore
needs to find a margin 9 that creates an OR by maximizing
α and β. Consider Fig. 6, and Fig. 5 depicting collision
avoidance statistics for φ = 2 and margin values of 0.15 and
0.5. α values are 2.098 and 1.990 and β values are 0.487
and 0.415 respectively for margin values of 0.15 and 0.5
which implies the uncertanity is lower with margin value 0.15.
A lower margin also makes the hull more compact, which
also moves the OR away from the preferred high traffic flow
configuration. This implies that the uncertainty in the system
can be reduced by changing the margin, but at the cost of a
reduced flow capacity.

Comparing Fig. 4 and 5, we can observe the impact of loca-
tion error on the convex hull (i.e. the OR) while maintaining
the same value of margin. The OR is large for φ = 2, it
is significantly reduced for φ = 4. Accordingly, localization
errors de facto reduces traffic flow. The number of PC samples
signifying uncertainty are more for higher values of φ.

C. Reducing Uncertainty and Impact on Traffic Flow

In the previous subsection, we illustrated the uncertainties
created by location errors and creation of a convex hull as the
the controller operation area with reduced uncertainty. We next
outlay a method to further reduce such uncertainty within the
convex hull through traffic adaptation and quantify its impact
on traffic flow. The controller can identify uncertainty values in
different areas within its convex hull. Conceptually speaking,

9A change in margin affects the OR and the reference database changes as
well.
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Fig. 4. CACC only vehicles - collision avoidance statistics for φ = 4 m and
a margin of 0.5
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Fig. 5. CACC only vehicles - collision avoidance statistics for φ = 2 m and
a margin of 0.5

the approach consists of moving the operational point within
its convex hull (changing velocity and intervehicular distance
parameters) of a sample from a high uncertainty area to an
area with less uncertainty. An automated vehicle controller has
various options to do so, such as increasing jerk tolerance,
reducing speed or increasing intervehicular distance. In this
paper, we propose to investigate the impact of the latter two.

As illustrated in Fig. 7, a sample represented by ‘ ’ is
classified in the upper circular area, which experiences a high
uncertainty and will need to move to a more reliable zone.
It can do so by adjusting velocity or intervehicular distance
according to one of the three options, illustrated using three
green arrows in Fig. 7:

• Keep Flow - Reduce average distance between vehicles
and reduce average velocity.
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Fig. 6. CACC only vehicles - collision avoidance statistics for φ = 2 m and
a margin of 0.15
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Fig. 7. Alternative Operational Point (OP) to ensure better collision avoidance

• Keep Velocity - Maintain average velocity but reduce the
distance between vehicles.

• Keep Distance - Maintain the same average distance
between vehicles and reduce the velocity.

As evident, the latter two will reduce the flow, and accordingly
impact the benefit of automated vehicles in future automated
road transport systems. Depending on original classification
of the sample and the OR, the first Keep Flow approach may
not be feasible.

More specifically, the proposed flow adaptation is described
as follows. Consider a sample (e.g. the triangle in Fig. 7)
obtained from live traffic data. We define tile as an area
bounded by CA samples within a given range of speed and
intervehicular distance. If the ratio α in one of the three options
(tiles) is bigger than that of the tile in which the sample is



TABLE V
SIMULATION RESULTS: MIXED VEHICLE SCENARIO

Number of
CACC vehicles

(na)

Collisions avoided
with localization

errors using proposed
approach

Collisions avoided
with true position

information

1 0 270
2 2 329
3 47 376
4 259 430
5 449 458

classified, the operational point must be moved.
Let us consider for example a sample with 15m average

distance between vehicles and a 25m/s average velocity.
Assuming a operational point tolerance of 5%, the tile is
defined for this sample with distance and speed between
14 to 16m and 24 to 26m/s respectively. The α value for the
tile in which the sample is classified is 2.6. Compared to this,
three other options (potential operational points) are displayed
in Fig. 6, all of which have smaller α values. Accordingly,
the operational point must be moved. The sample is actually
superimposed on top of Fig. 6 and a zoomed in image of the
same has been plotted in Fig. 7. α values for options 1 to 3
are 7, 34, Inf respectively. All considered options have better
α value compared to the tile in which the original sample was
classified. Option 3 should be suggested which is the safest,
as the α is the highest, but the flow would be lower. Whereas
if the same flow needs to be maintained, option 1 should be
suggested. No matter which option, all options are better than
the actual sample. In this way, vehicles can operate in a region
with less uncertainty.

For clarity, we restate important terms: OR is area inside
the convex hull; Operating point is the value of the average
distance between vehicles and average velocity for any sample;
Tile is an area bounded by CAs with an area smaller than OR,
in which an Operating Point may lie.

D. Traffic with mixed Traffic

For the sake of completeness, mixed vehicle simulations
were also performed. In the presence of MDVs, CACC ve-
hicles will have to behave like MDVs, i.e.: observe larger
inter vehicular distances. Thus we assume the time headway
observed by all vehicles is between vehicles is the recom-
mended distance of 1.8 s ± 20% [13]. Moreover the presence
of human factor fh randomizes the maximum achievable
braking capacity of MDVs where as for CACC vehicles it
is fixed to mean braking capacity of 0.6·g [12]. Moreover, we
assume MDVs use GNSS based localization techniques, with
a std of error of 4 m, whereas CACC vehicles use advanced
localization techniques and compute localization with a std of
error of 30 cm. Rest of the parameters remain the same. The
perception response time of a manually driven vehicle tprt is
drawn from a normal distribution N (1.33, (0.27)2) [8] and
is capped between 0.8 s and 1.8 s. Other parameters are kept
the same.
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Fig. 8. Mixed vehicle analysis with 2 CACC vehicles out of 6: collision
avoidance statistics

10 20 30 40 50 60 70

Average distance between vehicles [m]

5

10

15

20

25

30

A
v
e

ra
g

e
 v

e
lo

c
it
y
 o

f 
v
e

h
ic

le
s
 [

m
/s

]

Collisions

Collisions Avoided

Probable Collisions
1000

2000

3000

4000

5000

6000

7000

8000

9000

F
lo

w
 [

v
e

h
/h

r]

Fig. 9. Mixed vehicle analysis with 4 CACC vehicles out of 6: collision
avoidance statistics

Simulation results for mixed vehicle scenario is summarized
in Table V. The number of collisions avoided with localization
error (values in second column) is always lower than the
number of collisions that could have been avoided had true
position been known (values in third column). We use values
in the third column as baseline for comparison to evaluate
the performance. We observe that as the number of CACC
vehicles increase, the number of collisions avoided increase.
This can be attributed to two main reasons: 1. CACC vehicles
are assumed to have better localization capability and lower
standard deviation of error 2. CACC vehicles can adjust its
controls based on the state of neighboring vehicles and thus aid
in avoiding accidents. Results corresponding to two CACC and
four CACC vehicles (out of six) has been plotted in Fig. 8, 9
respectively. In this mixed vehicle scenario, CACC vehicles
would imitate MDVs and thus vehicles will have similar inter



vehicular distances and thus the distribution of samples is
dense. A convex hull if drawn would be so so tight that the
methodology described earlier will not be successful. If we
compare plots of CACC only traffic and of Mixed vehicle
traffic (e.g.: Fig. 5 and Fig. 9) using the flow bar on the right,
we observe that flow capacity in general of CACC only traffic
can be much larger compared to the flow capacity of a mixed
traffic scenario.

IV. CONCLUSIONS

Advanced centralized vehicle control techniques aim at
improving flow capacity using parameters like location, ve-
locity, etc of vehicles. In circumstances where vehicles need
to brake and come to a halt, they are expected to be able to
avoid collisions. But the presence of localization errors creates
uncertainty in collision avoidance. Vehicles must operate such
that collision avoidance uncertainty is low. In this paper we
have presented a method that proposes different options with
alternate parameters where vehicles should operate such that
collision avoidance uncertainty is reduced in an environment
with varied localization errors.

We first create a database which relates localization errors,
uncertainty in collision avoidance and flow capacity for a wide
range of vehicle state parameters like average velocity, inter-
vehicular distances, etc. For a given traffic scenario uncertainty
in collision avoidance is computed by referencing the sample
data with the database. The proposed method is then imple-
mented to evaluate uncertainty values of three options and the
one with the least uncertainty should be chosen.

We observe that higher the localization error more is
the uncertainty. The best way to reduce uncertainty whilst
maintaining the same flow would be to reduce localization
error, which unfortunately is not always feasible. Other ways
to reduce uncertainty include reducing velocity or increasing
intervehicular distances or both, but these usually impact the
flow capacity.

Future work will involve creating a model where localiza-
tion error changes over time for every vehicle to simulate an
even more realistic scenario. Moreover simulations need to
be carried out on a much larger scale to generate a reference
database with different parameters for proposed method to be
effectively implemented.
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