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Abstract. The present article addresses the problem of inference in a multiscale com-
putational model of pulmonary arterial and venous blood circulation. The model we
consider is a computationally expensive simulator of physiological processes which,
given specific parameter values, solves a system of nonlinear partial differential equa-
tions and returns predicted pressure and flow values at different locations in the arterial
and venous blood vessels. The standard approach in parameter calibration for computer
codes is to emulate the simulator using a Gaussian Process (GP) prior. In the present
work, we take a different approach and emulate the objective function itself, i.e. the
residual sum of squares between the simulations and the observed data. We demon-
strate that this modified emulator achieves a reduction in the computational costs of
inference by two orders of magnitude (from 8 hours to 3 minutes CPU time).

1 Introduction
The present work is motivated by a partial differential equations (PDE) model of the
pressure and flow wave propagation in the pulmonary arterial and venous system under
normal physiological and pathological conditions. This model is an extension of pre-
vious studies, which considered only the arterial system or part of the venous system
[3]. The PDEs depend on various bio-physical parameters, related e.g. to blood vessel
geometry or fluid dynamics. These parameters can typically not be measured in vivo
and hence need to be inferred indirectly from the observed blood flow and pressure dis-
tributions. In principal, this is straightforward. Under the assumption of a suitable noise
model, the solutions of the PDEs define the likelihood of the data, and the parameters
can then be inferred in a maximum likelihood sense. However, a closed-form solution
of the maximum likelihood equations is typically not available, which calls for an iter-
ative optimization procedure. Since a closed-form solution of the PDEs is not available
either, each optimization step requires a numerical solution of the PDEs. This is numer-
ically expensive, especially given that the likelihood function is typically multi-modal,
and the optimization problem is NP-hard. In the present work, our goal is to reduce the
computational costs of inference with the concept of emulation. This is to be distin-
guished from the explicit numerical solution of the PDEs, which we henceforth refer to
as simulation (or simulator when referring to a specific solution).

2 Model
In our model of the pulmonary circulation, seven large arteries and four large veins

are modelled explicitly, while the smaller vessels are represented by structured trees



(Figure 1). A magnetic resonance imaging (MRI) based measurement of the right ven-
tricular output provides the inlet flow for the system.

Figure 1: Schematic of the pulmonary circulation consisting of large arteries, arterioles, venules and large
veins from Qureshi et al. [5]. Seven large arteries are considered in this model, i.e. the main pulmonary
artery (MPA), the left (LPA) and right (RPA) pulmonary arteries, the left interlobular artery (LIA), the
left trunk artery (LTA), the right interlobular artery (RIA), and the right trunk artery (RTA). The four
terminal arteries LIA, LTA, RIA, and RTA are connected to four large veins, i.e. the left inferior vein
(LIV), left superior vein (LSV), right inferior vein (RIV), and right superior vein (RSV), via structured
trees of resistance vessels.

The large arteries and veins are modelled as tapered elastic tubes, and the geometries
are based on measurements of proximal and distal radii and vessel lengths [5]. The
cross-sectional area averaged blood flow and pressure are predicted from a non-linear
model based on the incompressible Navier-Stokes equations for a Newtonian fluid [3].

The small arteries and veins are modelled as structured trees at each end of the termi-
nal large arteries and veins to mimic the dynamics in the vascular beds [5]. With a given
parent vessel rp, the radii of daughter vessels are scaled linearly with radius rd1 = αrp
and rd2 = βrp, where α and β are the scaling factors. The vessels bifurcate until the
radii of each terminal vessel is smaller than a given minimum radius rmin. The radius
relation over the bifurcations is

rξp = rξd1 + rξd2 , 2.33 ≤ ξ ≤ 3.0, (1)

where the exponent ξ = 2.33 corresponds to laminar flow, ξ = 3.0 corresponds to
turbulent flow [3], p represents parent vessel, and d1 and d2 represent daughter ves-
sels. With the definition of the area ratio η = (r2d1 + r2d2)/r

2
p and the asymmetry ratio

γ = (rd2/rd1)
2 it is possible to determine the scaling factors α and β according to the

relations α = (1 + γξ/2)−1/ξ and β = α
√
γ. The parameters, ξ, γ, rmin and a given root

radius r0, determine the size and density of the structured tree. The cross-sectional area
averaged blood flow and pressure in these small arteries and veins are computed from
the linearized incompressible axisymmetric Navier-Stokes equations [5].

The system of nonlinear partial differential equations is available from Qureshi et
al. [5], and its numerical solution, which depends on various bio-physical parameters,
will henceforth be referred to as the ‘simulator’. Particular interest lies in the estimation
of the parameter ξ, because low values are indicative of the clinically relevant problem
of vascular rarefaction, as in pulmonary hypertension. Its estimation is performed in the
numerically stable range 2.65 ≤ ξ ≤ 3, keeping the other parameters of the model fixed
to biologically meaningful values from the literature, and by focusing on the pressure
change over time and location in the MPA.

Computational inference of the bio-physical parameters entails repeated forward
simulations for different parameter configurations. In this model a forward simula-
tion takes around 12 seconds of CPU time. Given the multi-modality of the objective



function, a standard global optimization algorithm requires a large number of forward
simulations, which comes at substantial computational costs even for the inference of
just a single parameter. In the following section, we discuss a faster method based on
the concepts of statistical emulation and Bayesian optimization.

3 Method
To perform efficient optimization of a computationally expensive objective function,
we let a statistical emulator guide the optimization process. The emulator, f(·), is
based on a Gaussian Process (GP) prior with kernel function kψ, which depends on
the hyperparameters ψ. These hyperparameters are inferred in a maximum a posteriori
sense. Unlike standard emulation, we aim to directly emulate the objective function
y(·) : X → R, where X is the bio-physical parameter space. We use the following
hierarchical Bayesian nonparametric regression model:

y | f , log σ ∼ N(f , σ2)

f(x) | φ,ψ ∼ GP(mφ(x), kψ(x,x′))

θ = {φ,ψ, log σ} ∼ P (φ)P (ψ)P (log σ),

where x,x′ ∈ X, y = [y(x1), . . . , y(xn)]>, f = [f(x1), . . . , f(xn)]> and we assume
throughout the analysis that m(x) = 0, ∀x ∈ X, as a consequence of data standard-
ization. The inputs have been scaled to the unit interval [0, 1]d throughout the analysis,
where d is the dimension of the input (parameter) space. The noise standard deviation
was fixed to a small value of σ = 10−3 to improve the conditioning of the covariance
matrix. For the log kernel lengthscale, log `, we assume a univariate interval prior with
linear decay in log domain such that the prior probability mass is concentrated in the
interval [log 0.05, log 0.80]. This concentration avoids length scales close to zero, which
would effectively overfit the data, and lengthscales close to 1, which would lead to over-
smoothing. These settings also improve the condition number of the matrix.

The starting point of the optimization should be a good initial guess of the objective
function, which is obtained by conditioning the GP on the objective function evaluated
at a set of design points in the input (i.e. parameter) space. In the present work, we
follow Jones et al. [1] and use a space filling Latin hypercube design, with the number
of initial input points set to 10× d.

To minimize the evaluation-costly objective function we use a sequential strategy
proposed in [1], called Efficient Global Optimization (EGO), which selects iteratively
the point with the highest expected improvement over the incumbent minimum. Let the
random variable improvement be I(x) = max{ymin − f(x), 0}, where

— f(x) ∼ N(m(x), s2(x)) is the marginal GP at the point of interest x;
— ymin = y(xmin) is the best function value known so far;
— I(x) > 0 if x has a lower function value than the incumbent solution;
— I(x) = 0 otherwise.

The expected improvement (EI) is the expected value of the random variable I(x)
and has the analytical formula [2]:

EI(x) = (ymin −m(x))Φ

(
ymin −m(x)

s(x)

)
+ s(x)φ

(
ymin −m(x)

s(x)

)
.

The problem of directly optimizing the objective function derived from the computa-
tionally expensive simulator, y(·), is now shifted to the optimization of the computa-
tionally cheap EI acquisition function, or minimizing − log EI(x). Even if this function
is multimodal, it can be efficiently optimized using standard state-of-the-art global opti-
mization solvers, like the Dividing Rectangles algorithm [4], as the computational costs
for obtaining EI are negligible to those required for computing y. Once the minimum



x? of − log EI(x) has been found, we compute the expensive objective function at the
new input x? and obtain the output y? = y(x?). The new data are added to the training
dataset and the GP hyperparameters are updated. The process continues iteratively until
convergence.

4 Illustration
We now illustrate the EGO algorithm on the ‘Sasena’ [7] function, shown in Figure 2 (a),
where at each iteration we sample the objective at the input that minimizes − log EI:

y(x) = 2 + 0.01(x2 − x21)2 + (1− x1)2 + 2(2− x2)2 + 7 sin(0.5x1) sin(0.7x1x2)

0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 5.

At the first iteration the function is evaluated at the LH design (white dots). The GP is

Figure 2: EGO algorithm with Matérn ν = 5/2 kernel. (a) Sasena function, scaled to [0, 1]2, to be
minimized. (b) EGO 1st iteration and training inputs (white dots). (c) 5th iteration. (d) 25th and last
iteration. The red diamond represents the next evaluation point and it is the minimizer of − log EI.

trained on the data. We can see that at the beginning, with our initial design and chosen
number of design points, we already have a fairly good picture of our objective function.
Then iteratively the acquisition function is optimized, the new sampled points are added
to the dataset and the GP is trained again. From this illustration, we see that the EI
function is higher when the predicted mean is smaller than the incumbent minimum,
Figure 2 (b) and (d), and is also higher when the variance is high, Figure 2 (c).

5 Simulation
In order to assess the proposed inference scheme for the pulmonary model, we simulated
noise-free pressure data p0 (18432-dimensional vectors, from 18 locations measured at



Table 1: Performance of different kernels for RSS minimization.

Kernel nr of iterations ≈ time (min) ξmin −
∑n

i=1 logP (ri | ξi,D−i)
Neural Network 17 3.5 2.7649 18.8147

Squared Exponential 30 6.1 2.7645 13.7417

Matérn ν = 5/2 43 8.7 2.7602 13.4098

1024 time points) from the PDE model with ξ0 = 2.76. We then created a space filling
Latin Hypercube design for ξ in [2.65, 3], and carried out a forward simulation for each
element of the design, obtaining a set of simulations {ξi,pi, i = 1, . . . , n}. As objective
function we chose the residual sum of squares (RSS) between the simulations and the
observations, r̃i = ‖pi − p0‖2, and we fitted a GP to the training data D = {ξ, r},
where the vector r is the standardized RSS vector r̃. We then applied the emulation-
based approach and the EGO algorithm described in the previous sections, with input
xi = ξi and output yi = ri.

6 Results
Table 1 shows results of the emulation-based global minimization of the expensive RSS
for three different kernel functions: Neural Network (NN), Squared Exponential (SE)
and Matérn with ν = 5/2; see equations 4.29, 4.9 and 4.17 in [6] respectively. The
second column reports the number of iterations to convergence, and the third column
shows the corresponding CPU time. The convergence criterion we used was 5 consec-
utive steps having ‖ξi − ξi−1‖ < 10−6 or 5 consecutive function evaluations leading
to differences in their values below |ri − ri−1| < 10−6. We also imposed a maximum
number of iterations of 1000, and we stopped iterating when the improvement over the
incumbent minimum was less than 10−12. The fourth column of Table 1 reports the esti-
mated minimum across three different kernels, and shows that the inferred parameter is
consistently close to the true value of ξ0 = 2.76. The fifth column of Table 1 shows the
negative sum of log leave-one-out predictive probabilities, where D−i denotes the train-
ing dataset with the ith sample removed. The Matérn kernel has the best out-of-sample
predictive performance compared to the other covariance functions. The table shows
the trade-off between the number of iterations, the computational time, the accuracy in
the estimation of the parameter, and the predictive power. Figure 3 (a) shows the 1st, and
(b) the 7th and last iteration of the EGO algorithm. Figure 3 (c) shows model validation
diagnostics, following the procedure described in [1]. While the specific illustration is
given for the NN kernel, all three covariance functions passed the validation in terms
of (c, left) actual function value vs cross-validated predictions, (c, middle) standardized
leave-one-out cross validated residuals (ri −m−i(ξi))/s−i(ξi) being in [−3, 3], and (c,
right) standardized cross-validated residuals vs theoretical values from a sample of n
independent standard normal variables.

7 Conclusion
Our aim was to perform inference in a computationally expensive and novel model of
the double-sided arterial and venous pulmonary blood circulation. The parameter of
interest, ξ, governs the vessel parent-to-daughter radius relation (1), with low values
indicating vascular problems of clinical interest. As ξ increases, the number of vessels
in the structured tree will also increase; similarly, as it decreases, the number of vessels
will also decrease, simulating the vascular rarefaction clinical condition.

In previous studies with state-of-the-art non-emulation-based global optimization al-
gorithms, like genetic algorithms or the method proposed in [8], we found that the



Figure 3: EGO algorithm with NN kernel. (a) 1st iteration. (b) 17th and last iteration. (c) Model validation.

number of required function evaluations was in the order of 2 × 103. Given that the
computational costs of a single forward simulation are about 12 seconds, the total com-
putational costs are in the order of 8 hours. The results shown in Figure 3 show that
the proposed emulation-based approach achieves a substantial reduction in the number
of forward simulations, to values as low as just 17 iterations, which corresponds to a
total reduction of the computational complexity by two orders of magnitude, to just 3
minutes.

In our future work, we plan to apply the proposed emulation scheme to the Holzapfel-
Ogden soft tissue mechanics model of the heart [9], where the computational costs of
a single forward simulation are in the order of an hour, and the overall computational
savings promise to be even more substantial.
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