
EURECOM
Department of Communication Systems

Campus SophiaTech
CS 50193

06904 Sophia Antipolis cedex
FRANCE

Research Report RR-17-335

RAN Slicing Runtime System for Flexible and Dynamic
Service Execution Environment

October 18th, 2017

Chia-Yu Chang and Navid Nikaein

Tel : (+33) 4 93 00 81 00
Fax : (+33) 4 93 00 82 00

Email : {Firstname.Lastname}@eurecom.fr

1EURECOM’s research is partially supported by its industrial members: BMW Group Research
and Technology, IABG, Monaco Telecom, Orange, Principaut de Monaco, SAP, ST Microelectron-
ics, Symantec.

RAN Slicing Runtime System for Flexible and Dynamic
Service Execution Environment

Chia-Yu Chang and Navid Nikaein

Abstract

Network slicing is one the key enabler to provide the required flexibility
and to realize the service-oriented 5G vision. Unlike the core network slic-
ing, RAN slicing is still at its infancy and several works just start to investi-
gate the challenges and potentials to enable a mutli-tenant and multi-service
RAN, toward a serviced-oriented RAN (SO-RAN) architecture. One of the
major concerns in RAN slicing is to provide different levels of resource iso-
lation and sharing as per slice requirements. Moreover, the control and user
plane processing may be customized allowing a slice owner to flexibly con-
trol its service. Enabling dynamic RAN composition with flexible functional
split for disaggregated RAN deployments is yet another challenge. In this pa-
per, we propose a RAN slicing runtime system through which the operation
and behavior of the underlying RAN could be customized and controlled to
meet slice requirements. We present a proof-of-concept prototype of the pro-
posed runtime system for LTE system, assess its feasibility and potentials,
and demonstrate the isolation, sharing, and customization capabilities with
three use cases.

Index Terms

Network slicing, RAN slicing, 5G, service orientation

Contents

1 Introduction 1

2 Related work 3

3 RAN Slicing Runtime System 5

4 Design Elements of Runtime 7
4.1 Design Challenge . 7
4.2 Runtime slice data . 8
4.3 Runtime services . 9

4.3.1 Context Manager . 9
4.3.2 Service Manager . 10
4.3.3 Virtualization Manager 10
4.3.4 Runtime forwarding engine 13

4.4 Runtime APIs . 14

5 Inter-slice resource partitioning and accommodation 16
5.1 Inter-slice resource partitioning 16

5.1.1 Algorithms . 17
5.1.2 Performance comparison 17

5.2 Radio resource accommodation 21

6 Proof of Concepts 23
6.1 Radio Resource and Function Isolation 23
6.2 Radio Resource Preemption and Multiplexing 24
6.3 Network function and state flexibility 25

7 Conclusions 25

v

List of Figures

1 Impact of service-oriented architecture on telecommunication in-
dustry. 2

2 High-level architecture of RAN slicing runtime system 6
3 Architecture of the runtime system. 8
4 Radio resource partition with different types of abstraction 12
5 Different stages to form vRBG and vRBG pool 13
6 Forwarding engine and UP processing chain 14
7 UP forwarding path in disaggregated RAN 15
8 Examples of radio resource partitioning 17
9 Performance of different slice priortization in resource partitioning 22
10 Examples of radio resource partitioning 22
11 Performance of different slice priortization in resource accommo-

dation . 22
12 Impact of time-varying inter-slice partitions on slice performance . 23
13 Impact of inter-slice partitioning on per-user goodput and latency . 24
14 Impact of preemption and multiplexing on RTT. 24
15 Impact of preemption and multiplexing on good-put and delay jitter 25
16 Flexible RAN deployment impact on good-put, delay jitter and RTT. 26

vi

1 Introduction

Fifth generation (5G) mobile networks is a paradigm shift beyond a new radio
and spectrum with the objective of improving overall efficiency and flexibility of
mobile networks. It is about evolution of computing for wireless networks (e.g.
central offices become data-centers) and enabling service-oriented architecture to
deliver networks on an as-a-service basis. Support of vertical markets is one of
the main driving forces behind this evolution to empower 5G business and value
creation. The underlying idea being to support multiple services and/or virtual net-
works on a single physical network infrastructure with different requirements is in
terms of service definition and agreement, control and management, and perfor-
mance. Through this service-oriented 5G vision, naturally the network infrastruc-
ture providers (e.g. operators and data-center owners), service providers (e.g. op-
erators and verticals), and network function providers (e.g. vendors) are decoupled
to allow an cost-effective network composition and sharing model to reduce both
capital expenditure (CAPEX) and operating expense (OPEX). Fig. 1 illustrates the
relationship between different providers and the transformation of value-chain in
telecommunication industry. For example, network infrastructure may be provided
by the operator as an intermediary between the vendors and data center owners
or by a combination of network equipments from vendors, data centers from ITs,
and transport network from operators. A service is built through a composition of
multi-vendor network functions, physical or virtual (PNF/VNF), that not only shall
meet the requirements of service providers such as performance and cost but also
that of network infrastructure providers in terms of PNF/VNF interoperability and
compatibility when the service is running on the infrastructure.

Network slicing is one of the key enabler to provide the required flexibility for
the envisioned service-oriented 5G. It enables the composition and deployment of
multiple logical networks over a shared physical infrastructure, and their delivery
as a service or slice. A slice can either be completely isolated from the other slices
down to the different sets of spectrum and cell site (as in most of current 3G/4G
deployment), or be shared across all types of resources including radio spectrum
and network functions (e.g. all layers of protocol stack), or be customized for a
subset of data user-plane (UP) and control-plane (CP) processing with an access
to a portion of radio resources in a virtualized form. In addition, a slice may span
across domain-specific resources each with different levels of isolation and shar-
ing with the objective of accommodating both service and infrastructure providers.
Here, domain boundaries could be administrative (e.g. an operator), network seg-
ment (e.g. radio access network), technology (e.g. 4G/5G) among the others,
and resources could be of different types including computing, storage, network,
hardware, radio, spectrum, and network functions. To this end, softwarization,
virtualization, and disaggregation are key slicing enablers to flexibly customize a
slice, automate its life-cycle management, and ease the development of network
functions and applications with the objective to accommodate the requirement of
an E2E service. They constitute the foundation for a multi-service and multi-tenant

1

architecture, and are realized by applying software-define networking (SDN), net-
work function virtualization (NFV), and cloud computing principles to mobile net-
works [1].

Several standardization bodies and organizations outline the crucial role of E2E
network slicing to fulfill the service-oriented visions of 5G, e.g., ITU [2], 3GPP [3]
and NGMN [4]. Also, prominent network architectures are proposed by 5G initia-
tives and projects, e.g., 5GPPP European program [5]. Many architectures and
prototypes leveraging cloud computing, SDN, and NFV principles have been pro-
posed for core network (CN) slicing [6–8] and radio access network (RAN) slic-
ing [9–11]. The challenge of CN slicing has been also addressed by 3GPP, and re-
alized through a dedicated core network (DECOR) [12] and evolved DECOR [13].
Nevertheless, RAN slicing remains a challenge in providing different levels of iso-
lation and sharing to allow a slice owner to customize its service across UP, CP,
and the control logics (CL) while increasing the resource utilization of RAN in-
frastructure. Note that the CL refers to the logic that makes the decisions for a
particular CP/UP function, e.g., CL decides on user handover and CP performs the
corresponding handover action.

To this end, the proposed RAN slicing runtime system provides following con-
tributions:

• Review the state-of-the-art on network slicing architecture with the particular
focus on RAN slicing (Section 2);

Content-aware
service optimization

Service selection &
composition

Infrastructure Selection &
Performance optimization

Interoperability
Network Infra.

Provider
(e.g. operator, vendor, IT)

Service Provider
(e.g. operators, verticals,

media, socials)

Over-the-top
Provider

(e.g. media, social, apps)

Network Function
Provider

(e.g. vendors, verticals,
3rd parties)

Figure 1: Impact of service-oriented architecture on telecommunication industry.

2

• Present a RAN slicing design in form of runtime system to enable different lev-
els of isolation and sharing among slices accessing the underlying RAN modules
and resources while allowing flexible service composition and customization
across UP, CP, and CL (Section 3 and 4);

• Propose and evaluate a practical set of radio resource abstractions and inter-slice
resource partition approach (Section 5);

• Build a concrete RAN slicing runtime system prototype on the top of Ope-
nAirInterface (OAI) [14] and FlexRAN [15] platform and then characterize its
performance through three case studies (Section 6).

2 Related work

The network slicing architecture has been surveyed widely and such concept
can be traced back to the idea of network sharing like the gateway core network
(GWCN) defined by 3GPP via sharing RAN and parts of CN. Additional sharing
models are possible and summarized in [16, 17]. In [9], a slice-based network
architecture is proposed with the “Network store” concept as a platform to facilitate
dynamic network slicing based on the virtualized network functions (VNFs) on
top of commodity infrastructures. The same idea is extended in [18] featuring
the “Network and application store” that simplifies the procedure to define each
slice. In [19], the modularized architecture is presented that is composed of several
building blocks each with various sub-functions to customize functionalities on
per service of slice. The network slice broker of resources is investigated in [20]
enabling the on-demand multi-tenant slice resource allocation. The generic slice as
a service model is presented in [21, 22] aiming to orchestrate customized network
slice as a service with mapped network functions from service level agreement
(SLA). A cloud-native network slicing approach presented in [23] allows to devise
network architectures and deployments tailored to the needs of service. In [24],
an E2E overarching architecture converged from optical to wireless is outlined to
enable the cross-domain slicing.

In terms of the RAN slicing, the first approach is stemmed from the RAN
sharing concept such as Multi-Operator RAN (MORAN) and Multi-Operator CN
(MOCN). The MORAN approach can share the same RAN infrastructure but with
dedicated frequency bands for each operator whereas MOCN allows to also share
the spectrum among operators as standardized in LTE Release 8 [25]. These ap-
proaches can efficiently utilize available radio resources which are surveyed widely
as network virtualization substrate (NVS) in several works [26–28] that aims to
virtualize radio resources for different resource provisioning approaches to allow
several mobile virtual network operators (MVNOs) to coexist in a single physical
RAN. Authors of [29] propose application-oriented RAN resource sharing frame-
work with Quality of Service (QoS) guarantee. On a more general basis, RAN
virtualization [30, 31] provides functional isolation in terms of customized and

3

dedicated control plane functionalities for each MVNO. The above works con-
sider either radio resource sharing or functional isolation whereas little attentions
are given to be simultaneously satisfy both concerns.

To enable the network slicing concept in RAN, several 5G RAN design require-
ments and paradigms shall be fulfilled as elaborated in [32]. Future RAN design
patterns are explained in [33] along aspects of cloud computing, SDN/NFV and
software engineering. Moreover, 3GPP mentions RAN slicing realization prin-
ciples in [34, 35] such as RAN awareness slicing, QoS support, resource isola-
tion, SLA enforcement among the others. These principles can be enabled through
the software-defined RAN (SD-RAN) concept that decouples CP and UP. Several
works argue the level of centralization of CP functionalities. The fully central-
ized architecture is proposed in OpenRAN [36] and SoftAir [37] that will face the
challenge of real-time control under the inherent delay between the controller and
RAN. The SoftRAN [38] architecture statically refactors the control functions into
centralized and distributed ones based on the time criticality and central view re-
quirement. The SoftMobile approach [39] further abstracts the CP in layers based
on the functionalities to form the network graphs and performs control functionali-
ties through Application Programming Interface (API). As for the UP programma-
bility and modularity, the OpenRadio [40] and PRAN [41] are pioneered to de-
compose the overall processing into several functionalities that can be chained.
FlexRAN realizes a SD-RAN platform and implements a custom RAN south-
bound API through which programmable CL can be enforced with different levels
of centralization, either by the controller or RAN agent. Several on-going 5GPPP
projects are also working on the architecture design and slicing of SD-RAN, for
instance, METIS-II, 5G-NORMA, COHERENT, 5G-MoNArch, 5G-Picture, and
SliceNET.

With aforementioned enablers, several RAN slicing works are initiated. The
blueprint proposed as RadioVisor [42] aims to isolate the control channel mes-
sages, elementary resources like CPU and radio resource to provide customized
service for each slice. A fully isolation platform is provided in [43] with virtual
base stations (BSs) as different slices; however, there is no multiplexing benefits in
the radio resource allocation since the spectrum is disjointly partitioned. In addi-
tion, network function sharing and multiplexing are not considered in such work.
In [44], the radio resource scheduling is separated into intra-slice and inter-slice
scheduler; however, the resource abstraction/virtualization is not included and the
inter-slice scheduler only bases on traffic flows according to the required QoS.
Hence, it does share a portion of functions but without considering proper resource
isolation. In [10], a RAN slicing architecture is proposed that allows radio re-
source management (RRM) policies to be enforced at the level of physical resource
blocks (PRBs) through providing the virtualized resource blocks (vRBs) by a novel
resource visor toward each slice. Such work provides certain level of isolation
and sharing among resources while does not consider function isolation. Authors
of [11] introduce the idea of BS hypervisor to simultaneously isolate slice-specific
control logics and share the radio resources. The hypervisor groups the underly-

4

Table 1: RAN slicing state-of-the-arts comparison

State-of-the-arts Radio resource sharing CP function UP function
Network store [9] - Dedicated Dedicated

NVS [26] Physical or virtualied resource sharing - -
Yasir et al. [30] Physical resource sharing Dedicated Dedicated
FlexRAN [15] Physical or virtualied resource sharing Shared Shared

Radiovisior [42] Dedicated 3D resource grid allocation Dedicated Dedicated till programmable radio
Nakao et al. [43] Dedicated spectrum allocation Dedicated Dedicated
Rost et al. [44] Physical resource sharing Split into cell and user-specific Dedicated till real-time RLC

Ksentini et al. [10] Flexible between dedication and sharing Dedicated Shared
Hypervisor [11] Virtualzed resource sharing Split into cell and user-specific Dedicated till PHY layer

ing PRBs into vRBs through a set of abstractions and provides only relevant user
information to the corresponding slice. Such work exploits the prerequisites of
function isolation and resource virtualization while it does not consider customiza-
tion and multiplexing of CP/UP functions in both monolithic and disaggregated
RAN deployment.

TABLE 1 compares relevant related works in three dimensions: radio resource
sharing model, control plane function, and user plane function. To serve various
flavors of slice, the flexibility and proactiveness of these three dimensions shall be
achieved through RAN slicing. In that sense, we envision the runtime system that
leverages and extends the hypervisor approach [11] aiming to support various slice
requirements (e.g. isolation) and elastically improve multiplexing benefits (e.g.
sharing) in terms of (1) the new set of radio resource abstractions, (2) network
service composition/customization for modularized RAN, and (3) flexibly adapt-
ability to different deployment scenarios ranging from monolithic to disaggregated.

3 RAN Slicing Runtime System

We propose a RAN slicing runtime system that provides a flexible execution
environment to run multiple virtualized RAN instances with the required level of
isolation and sharing of the underlying RAN modules and resources. It allows slice
owners to (a) create and manage their slices, (b) perform their custom control log-
ics (e.g. handover decision) and/or custom UP/CP processing (e.g. PDCP and RRC
functions), and (c) operate on a set of virtual resources (e.g. resource block or spec-
trum) or capacity (e.g. rate) and accessing to their CP/UP state (e.g. user identity)
that are revealed by the RAN runtime. The isolation and customization properties
provided by runtime is in favor of the slice owners allowing them to control the
slice compositions and the behavior of the underlying RAN module as per service
requirements, whereas the sharing is in favor of infrastructure provider allowing
to efficiently and dynamically multiplex multiple tenants over resources, process-
ing, and states of common RAN module to reduce the expenditures. Here, RAN
module refers to a unit that comprises a subset of RAN functions and performs a

5

Slice 1

Slice 3

CP

Virtual
resources

Control Logics

Control Logics

RAN Runtime

RAN Module

Physical RAN Infrastructure

Resources StateCP/UP Processing

Sh
ar

ed
C

u
st

o
m

iz
e

d
Soft real-time slice

UP

State

Virtual
capacity State

Slice 2

Control Logics

CP State

Hard real-time slice

Figure 2: High-level architecture of RAN slicing runtime system

portion of RAN processing. 3GPPP defines 3 types of unit, namely (remote) radio
unit (RRU/RU), distributed unit (DU), and centralized unit (CU) [45].

The proposed RAN slicing runtime system is shown in Fig. 2, with the runtime
being the core component by which a running slice interacts with the RAN modules
to access resources and state, and control the underlying behavior. From the slice
owner perspective, the runtime provides an execution environment through which
a slice can perform customized processing, request resources, and access state. At
the same time, it enables infrastructure provider to manage the underlying RAN
module, enforce slice-specific policies, and perform access and admission control.
The runtime by itself is in charge of managing the life-cycle of slices, abstracting
the radio resources, share states, and applying changes into the underlying RAN
module to customize slices. It also implements a set of runtime APIs to enable
bidirectional interactions between different slices and RAN module to monitor or
control the underlying CP/UP processing, resources, and states while retaining the
isolation among slices.

A slice is formally represented to the runtime by a slice descriptor that defines
the slice service requirements in terms of resources, custom processing, and per-
formance. It is generally provided by the service orchestrator during the creation
of a slice, and indicates for each slice how radio resources are allocated, reserved,
preempted, or shared by the runtime, how the processing is pipelined, and what
are the average expected throughput and latency. The customization feature pro-
vided by the runtime allows a slice owner to only contain a portion of resources
and processing within the slice boundary and multiplex the remaining into the un-

6

derlying RAN module. To realize a flexible tradeoff between isolation and sharing,
the state of CP and UP processing is maintained in a database1 allowing to update
the processing pipeline (e.g. from customized to multiplexed or vice versa) on-
the-fly while retaining the service continuity and isolation on the input/output data
streams. Note that by maintaining the state, the network functions are virtually
turned into stateless processing allowing to update the service and recover the state
through the runtime. In addition, the overall CP processing of a BS are logically
separated into slice-specific and BS-common functions to increase the multiplexed
processing. Note that here we consider per function CP separation, for instance,
the masterinformationblock (MIB) and systeminformationblocks (SIBs) are broad-
casted commonly to all users hence are categorized into BS-common ones, whereas
the random access resources could be customized by a slice so as to reduce the la-
tency due to the common random access procedure.

In summary, in the proposed RAN slicing model, RAN functions are pipelined
to compose the desired RAN module, i.e., monolithic or disaggregated RAN in-
stances, either via multiplexed or customized CP and UP functions as per slice
requirements. The runtime system acts as the intermediate between customized
slices and underlying shared RAN module and infrastructure providing a unified
execution environment with substantial flexibility to achieve the required level of
isolation and sharing.

4 Design Elements of Runtime

This section details the main components of the RAN slicing runtime systems,
namely runtime data, services, and APIs.

4.1 Design Challenge

Based on the proposed runtime RAN architecture, we identify a number of
challenges that runtime should resolve:

• Allow each slice to interact with the underlying RAN and change the CP and UP
behavior that dynamically determined during its execution (section 4.2 and 4.3).

• Provide different levels of resource isolation and sharing to allow a slice owner
to flexibly compose slice-specific RAN resources and processing from multi-
plexed and customized resources and CP/UP functions while maximizing the
multiplexing gain of the underlying RAN resources and modules (section 4.3).

• Provide APIs to enable the slice-specific CP, UP and control decisions to be
realized for both soft and hard real-time slices (section 4.4).
1This is regardless of whether a network function is stateful or stateless [46, 47].

7

RAN Module

RAN Runtime

Service Manager

Context Manager

Slice
Data

Runtime CP APIs

Runtime Slice APIs

Forwarding Engine
(Input and Output chain)

Runtime UP APIs

Runtime Environment

Virtualization Manager

Figure 3: Architecture of the runtime system.

Table 2: Slice context maintained by runtime system.

Slice Context Description
Slice identity Represents a unique slice identifier

Service registry identity Identifies to which runtime services a slice is registered to, e.g., service manager
Slice SLA Describes a business agreement between slice owner and infrastructure provider in
and policy terms of performance, resource, access control, and priority of a corresponding slice

Customized Specifies the in-slice custom CP/UP processing functions
processing If not specified explicitly, the default pipelined processing are applied to this slice.

User context
Identifies which pair of BSs and slices a user belongs to and also

the mapping between traffic flow and dedicated radio bearers (DRBs)2

Fig. 3 illustrates the main building blocks of runtime that consist of: (a) slice
data, (b) CP and UP functions to provide runtime services, and (c) API, that are
described in following subsections.

4.2 Runtime slice data

Slice data is the entity that stores both slice context and module context under
the control of context manager. They are used to customize and manage a slice in
terms of required runtime services, resources, processing, state, and users.

The slice context describes the basic information and prerequisites to instanti-
ate a slice service and manage users. It is provided by the slice orchestrator and
can be updated by the corresponding slice (cf. Fig. 2) following the agreement be-
tween slice owner and infrastructure provider. TABLE 2 describes the slice context
information maintained by the runtime in the slice data.

The module context includes CP and UP state information (belonging to slice
owners), module life-cycle management primitives such as start, configure, and
stop service (belonging to network function provider), and resources (belonging to
infrastructure provider). Unlike input or output data streams of the RAN module

2The 1:n:m relation of user-to-slice-to-BS mapping will make use of runtime CP APIs for network
slice selection operation.

8

Table 3: BS-common and user-specific functions

Process BS-common functions user-specific functions
Location tracking and Paging Tracking area update, CN paging RAN Paging

Handover and cell reselect Cell (re-)selection criterion User measurement configuration, Handover
Random access Common random access Dedicated random access

User attach procedures - Slice-based user association control
QoS maintenance and

-
QoS flow maintenance and

admission control slice-based admission control
Security function Common BS key management Slice-specific CP/UP key management

Bearer management Signaling radio bearer maintenance Dedicated radio bearer management
Radio resource allocation Common cell signal, e.g., CRS, PSS, SSS Per-slice dedicated resource reservation

System information Broadcast NAS, MIB, SIB information -

that are pipelined, the control-data state is maintained separately by the runtime
and revealed to each slice in real-time to allow efficient slice-specific processing. In
addition, such state may be shared among multiple slices subject to access control,
for instance when coordinated processing and/or decision making are required as
in case of handover decision of a user belonging to two slices. Note that in general
case, state only includes user-specific functions in CONNECTED (or INACTICE-
CONNECTED [48]) mode, and not necessarily the BS-common functions that are
executed independent of the number of instantiated slice even with no instantiated
slice or when operating in IDLE mode (cf. TABLE 3).

4.3 Runtime services

4.3.1 Context Manager

This service is managing both slice and module context by performing CRUD3

operation on the slice data. To create a slice context, the context manager firstly
performs slice admission control based on the provided slice description that de-
fines the required processing, resources, and states (as agreed between the slice
owner and infrastructure provider). Upon admission control, module context is
used by the context manager to register slice-specific life-cycle primitives to the
service manager and the requested resources and/or performance to the virtualiza-
tion manager. The former allows custom CP/UP processing to be applied on the
input/output data streams, whereas the latter enables resource partitioning and ab-
straction to be performed among multiple slices. At this stage, a slice starts to
consume the runtime services not only to manage its service but also to interact
with the underlying RAN module through runtime CP/UP APIs, and the context
manager will handle real-time CP/UP state information within the slices and the
underlying RAN module so as to keep the slice data in-sync with the instantaneous
state.

3CRUD includes four basic operations: create, read, update, and delete.

9

4.3.2 Service Manager

The service manager is the entity responsible for managing the life-cycle of a
slice when instructed by the slice owner or service orchestrator. Through service
manager, slice life-cycle operations can be triggered, which in turn enables both
slice owner and infrastructure provider to control and update slice service defini-
tion as per need and agreement. Based on the service definition and slice context,
the service manager determines the CP/UP processing chain for each slice and each
traffic flow, and programs the forwarding engine through a set of rules allowing to
direct the input and output streams across multiplexed processing operated by the
underlying RAN module and customized processing performed by the slice. Un-
like the context manager that handles the local slice context, service manager op-
erates on an E2E RAN service in support of service continuity when slice service
definition is changed. For example, a slice owner that performs customized UP
processing can opt in for a multiplexed pipelined processing to reduce its OPEX,
which cause changes in slice service definition. In addition, when the slice re-
quirements are violated (e.g. performance degradation), the service manager may
change the requested resources, allocation type, resource partitioning period, or
even update the service definition to comply with the service requirements. Ser-
vice manager is also in charge of taking a set of actions when detecting conflicts
among multiple slices based on a set of policy rules. Such conflict can happen at
the level of slice when service definition is changed or at the level of users when
they belong to multiple slices (1:n or m:n relationships). For instance, reserving
the resources and/or changing the allocation type of a slice may violate the per-
formance of another slice that requires high bandwidth. Another example is when
different user mobility measurements are requested by different slices that requires
a coordination to reconfigure the measurement with the largest common parame-
ters and least denominator. To this end, context manager relies on a set of policy
rules to decide whether to preempt one slice, reject another slice, or multiplex the
request.

4.3.3 Virtualization Manager

This service is in charge of providing the required level of isolation and sharing
to each slice. It performs partitioning on resources and states based on the slice and
module contexts, abstraction of physical resources and states to/from the virtual-
ized ones, and revealing virtual views to a slice that is customized and decoupled
form the exact physical resources and states. In the following paragraphs, we omit
state partitioning and abstraction as they can be realized through some well-known
approaches such as database partitioning and control access.

4.3.3.1 Inter-slice resource partitioning Resource partitioning is a periodic
process that happens every allocation window of T [11, 26]. It allows to dis-
tribute resources among multiple slices based on the requirements expressed in the

10

Table 4: Mapping between resource abstraction and allocation type.

Requested resources Abstraction types (Resource granularity) DL Resource allocation type

Resource block
vRBG Type 0 (Non-contiguous) Type 0, Type 1
vRBG Type 1 (Contiguous) Type 0, Type 2
vRBG Type 2 (Fixed position allocation) Type 2 localized

Capacity vTBS Type 0 (RBGs with min granularity) All Types

slice context and stored in slice data. Radio resource descriptor has two elements:
(1) resources type that defines whether the requested resources are of type physi-
cal/virtual radio resources in time or in frequency domain (this could be extended to
component carrier and space), or capacity in terms of rate, and (2) abstraction type
that maps physical radio resource allocation types, namely fixed position, contigu-
ous, non-contiguous, or minimum resource block groups (RBG), to virtual RBGs
(vRBG) or virtual transport block size (vTBS). In addition, different transmission
time interval (TTI) and sub-carrier spacing (SCS) can be applied depending on the
deployed frequency band and/or maximum user mobility to mitigate the impact of
the non-idealities (e.g. Doppler shift) for each slice.4

Besides aforementioned radio resource requirement provided by the slice owner,
the resource allocation shall also respect the policy defined by the infrastructure
provider, for instance, the allowable resource allocation type of underlying radio
access technologies (RATs). Take the DL resource allocation of LTE system for
instance5, there are three types of resource allocation: (i) Type 0 allocation is based
on the minimum granularity as resource block group (RBG) that comprises multi-
ple RBs, (ii) Type 1 categorizes RBGs into different subsets and only allocate RBs
within the same subsets, and (iii) Type 2 allocates contiguous virtual RBs (vRBs)
that can be physically contiguous (localized vRB) or non-contiguous (distributed
vRB). Then, four types of abstraction are introduced with RBG as the minimum
resource granularity, and their respective mapping to the DL resource allocation
type is shown in TABLE 4. It can be seen that the proposed vRBG and vTBS are
a superset of legacy resource allocation types and provide the required flexibility
not only for intra-slice resource allocation, but also inter-slice resource partitioning
as it will be detailed in Section 5. Fig. 4 illustrates an example of resource parti-
tioning among four slices over an allocation window of T with different types of
abstraction. The proposed abstraction allows RUNTIME to dynamically change the
mapping to resource allocation type, for instance changing allocation type 0/1 to
allocation type 2 in slice 3 and 4. Additional level of flexibility is achieved when
unused resources can be further multiplexed to increase the resource utilization
(see Section 5).

4This defines the allowed TTI and numerologies in correspondence with the SCS [49].
5Note that the UL resource allocation of LTE is a subset of DL resource allocation.

11

Fr
eq

u
e

n
cy

60kHz SCS
(Slice 2 dedicated resource)

15kHz SCS (Slice 4 dedicated resource)

15kHz SCS (Slice 3 dedicated resource)

BS-common broadcast

15kHz SCS
(Slice 4 dedicated resource)

30kHz SCS (Slice 1 dedicated resource)

60kHz SCS
(Slice 4 dedicated resource)

15kHz SCS (Slice 3)

Unallocated resources

Unallocated resources
15kHz SCS (Slice 3) Unallocated resources

Slice 1: vRBG Type 2
(Resource allocation type 2)

Slice 2: vRBG Type 1
(Resource allocation type 0/2)

Reshuffled Slice 3: vRBG Type 1
(Resource allocation type 0/1)

Slice 4: vTBS Type 0
(Resource allocation type 0/1
and reshuffled to type 2)

Reshuffled Slice 3: vRBG Type 1
(Resource allocation type 2)

Time domain: Allocation window (T)

Figure 4: Radio resource partition with different types of abstraction

4.3.3.2 Radio resource abstraction Resource abstraction serves for two main
purpose: (1) isolate resources by presenting a virtual view of the resources that
is decoupled from its exact physical location, and (b) increase multiplexing gain
by adjusting allocation types to share unused resources. The former simplifies the
intra-slice resource scheduling operation and prevents other slices to access or even
infer the resources allocated to others (in favor of slice owner), and the latter al-
lows to maximize the resource efficiency and utilization (in favor of infrastructure
provider). Take the 3 MHz case of LTE system as an example in Fig. 5, where
the total PRB is 15 PRBs, PRBG granularity is 2 PRBs, giving a total of 8 PRBGs
partitioned among 4 slices. These PRBGs are firstly aggregated from PRBs and
then partitioned for each slice based on the number of required resources and the
type of allocation (e.g. fixed, contiguous, non-contiguous). Then they are virtual-
ized into vRBGs and allocated based on the abstraction type. For instance, fixed
position resources is requested by slice 1 and hence no virtualization is performed
(i.e. PRBG). In contrast, slice 4 only requests a capacity, and thus its PRBGs are
abstracted to vTBS with the capacity value. PRBGS of slice 2 and 3 are virtualized
into vRBGs via abstracting the exact frequency/time locations and dimensions;
and are pooled together to maintain their relative frequency dependencies among
virtualized resources but without revealing their absolute physical frequency de-
pendencies. Take the slice 3 that uses resource allocation type 1 as an example,
only PRBGs within the same subset can be scheduled at the same time. In that
sense, vRBGs are pooled to indicate an exclusive condition between vRBG pool
1 (i.e. PRBG0, PRBG6) and vRBG pool2 (i.e. PRBG 5). Hence, the intra-slice
scheduler of slice 3 will allocate resources to each user from either vRBG pool 1
or pool 2.

4.3.3.3 Radio resource accommodation and multiplexing After the radio re-
source partitioning and virtualization, each slice can perform intra-slice resource
scheduling to users and the runtime will map the scheduling decision into PRBs
and allocate corresponding control channel elements (CCEs) to transport the con-

12

PRB 7

PRB 6

PRB 5

PRB 4

PRB 3

PRB 2

PRB 1

PRB 0

PRB 14

PRB 13

PRB 12

PRB 11

PRB 10

PRB 9

PRB 8

PRBG 0
(Slice 3)

PRBG 5
(Slice 3)

PRBG 7
(Slice 4)

Slice1
vRBG Type 2

(Fixed position)

Slice2:
vRBG Type 1
(Contiguous)

Slice3:
vRBG Type 0

(Non-contiguous)

vRBG0

vTBS1

vRBG pool1 vRBG pool2vRBG1

a) PRB
aggregation

c) PRBG
virtualization

d) vRBG
pooling

[NOTE]
PRBG subset 0: PRBG0, PRBG2, PRBG4, PRBG6
PRBG subset 1: PRBG1, PRBG3, PRBG5, PRBG7

PRBG 0

PRBG 1

PRBG 2

PRBG 3

PRBG 4

PRBG 5

PRBG 6

PRBG 7

b) PRBG
partition

PRBG0 PRBG1

vRBG1vRBG0

vRBG0 vRBG1

Slice4:
vTBS Type 0

(Min granularity)

vTBS1
w/ capacity

PRBG 3
(Slice 2)

PRBG 4
(Slice 2)

vRBG1

vRBG0

PRBG 1
(Slice 1)

PRBG 2
(Slice 1)

PRBG0

PRBG1

PRBG 6
(Slice 3)

vRBG2

vRBG2

Figure 5: Different stages to form vRBG and vRBG pool

trol information (CI). Note these CIs are used to indicate the user about the posi-
tions of allocated PRB as well as necessary physical layer information (e.g. modu-
lation and coding scheme (MCS), new data indication, HARQ process indication,
etc.) for successful reception or transmission. With limited control region to ac-
commodate CCEs6, the runtime will leverage the unallocated resources after not
only to carry the CI but also to increase the multiplexing gain in the data plane (cf.
Fig. 4).

4.3.4 Runtime forwarding engine

The forwarding engine manages CP and UP input and output streams, or sim-
ply data streams, between RAN and users across multiplexed and customized pro-
cessing. Fig. 6 shows an example of how the forwarding engine manages the UP
processing chain in downlink (from RAN to users). Input flows of the RAN mod-
ule for each slice are forwarded either to the customized (i.e. slice 1 and 2) or
the multiplexed (i.e. slice 3) processing chain based on the rules applied by the
service manager. After the first stage of the processing, the outputs flows are fur-
ther forwarded to the corresponding entry points in the multiplexed chain or the
output endpoint. Note that, more complex forwarding rules can be applied if per-
function customization is required, for instance, customized MAC function to man-

6In LTE, up to 3 symbols are used as the control region in most cases.

13

SDAP
function

PDCP
function

RLC
function

MAC
function

PHY
function

Slice 1

SDAP PDCP RLC MAC

Slice 2

SDAP PDCP

OutputInput

RAN module

Runtime
system

Slice

Flow input (slice 1)

Flow input (slice 2)

Flow input (slice 3)

Forwarding
(output)

Forwarding
(Input)

C
u
st
o
m
iz
ed

M
u
lt
ip
le
xe
d

Figure 6: Forwarding engine and UP processing chain

age intra-slice scheduling while multiplexing other functions. Such forwarding en-
gine leverages match-action abstraction following SDN principles to establish the
input/output forwarding path between runtime and slice in both directions [50,51].

Furthermore, the forwarding engine not only is able to direct data in a mono-
lithic RAN but also in a disaggregated RAN, where the RAN infrastructure is
decomposed into CU, DU, and RU with several possible functional splits in be-
tween [34]. Note that in the proposed slicing model, RAN disaggregation and func-
tional splits are controlled and maintained by the infrastructure provider, whereas
RAN service customization is managed by the slice owner. Fig. 7 shows the in-
put/output forwarding path between CU, DU, and RU to compose a distributed
UP processing chain with 3GPPP function splits option 2 between CU and DU
and option 6 between DU and RU. The input and output endpoints of RAN module
will perform the infrastructure-dependent packet processing like encapsulation and
switching/routing for fronthaul/midhaul transportation which is transparent to the
slice owner. However, when adopting flexible function split and placement [52],
the CP/UP state information has to be efficiently shared among disaggregated RAN
infrastructures. TABLE 5 summarizes the main UP state information that must be
maintained in the slice data. Also note these depicted chains are applied for the
downlink direction but the same forwarding engine can be applied at the uplink
with different processing chain composition.

4.4 Runtime APIs

The runtime APIs are exposed both in the north-bound towards slices and in the
south-bound towards the underlying RAN module allowing to manage a slice and
control the underlying RAN module. In the north-bound, the APIs provides inter-
faces and communication channels to connect a slice to the runtime as a separate
process, whether it is local or remote, allowing to consume the services. Hence,
each slice can be executed in isolation from each others either at host or guest level

14

SDAP
function

PDCP
function

Slice 1

SDAP PDCP

Slice 2

SDAP PDCP

OutputInput
Flow input (slice 1)
Flow input (slice 2)
Flow input (slice 3)

Slice 1

SDAP PDCP

OutputInput RLC
function

MAC
function

RLC MAC

PHY
function

OutputInput

Forwarding
(output)

Forwarding
(Input)

Forwarding
(Output)

Forwarding
(Input)

Forwarding
(Output)

Forwarding
(Input)

Fronthaul
(Split option 2)

RUDUCU
Midhaul

(Split option 6)

RAN module

Runtime
system

Slice-specific
processing

Figure 7: UP forwarding path in disaggregated RAN

Table 5: UP network functions and the decoupled states

Layer Network function Network state

PHY

RF processing Carrier frequency, Spectrum bandwidth
DFT/IDFT Point of FFT, Output indexes

Multi-antenna processing Transmission mode, Beamforming matrix
(De-)Modulation Modulation order, Reference symbol information

Bit-rate processing Information of coding, Scrambling, Rate matching, CRC

MAC
HARQ process HARQ index, User identity, Redundancy version

(De-)Multiplexing (De-)Mutltiplexed logic channel identities
Dynamic scheduling and priority handling Priorities between logic channels and users

RLC
ARQ error correction Status report parameters, Polling information

segmentation and reassemble Size of corresponding PDU and SDUs
SDU discard Discard criterion, e.g., window information

PDCP

Header (de-)compression Header compression profile, state and parameters
Integrity protection/verification Integrity protection algorithm and parameters

(De-)Ciphering Ciphering algorithm and parameters
Reordering and duplicate detection Sequence number of queued PDUs

SDAP
Mapping between QoS flow and DRB QoS flow identity, QoS profile, mapping policy

Marking QoS flow identity QoS flow identity

leveraging well-know OS and virtualization technologies, such as container or vir-
tual machine. The slice APIs allow a slice to register to the runtime services, man-
age its service in coordination with the runtime and high-level service orchestra-
tor, and customize the CP/UP processing. In the south-bound, the runtime CP/UP
APIs enables a slice to take control of its service by requesting resources, applying
control decisions, and accessing states. When a slice is deployed locally, the run-
time APIs exploits the inter-process communication mechanism to allow a slice
to perform real-time operation (e.g. MAC function) with hard guarantees. Remote
slices on the other hands, communicate with the runtime through the asynchronous
communication interface and can perform non-time-critical operation (e.g. PDCP
function).

15

5 Inter-slice resource partitioning and accommodation

5.1 Inter-slice resource partitioning

The radio resources partitioned by the runtime in an allocation window time T
(in millisecond) is denoted as N in the number of Hz of frequency domain. These
resources can be specifically quantized into a resource grid with Tb TTIs in time do-
main and Nb PRBs in the frequency domain with respect to the base TTI (TTIbase)
and base SCS (SCSbase) used by the infrastructure provider, e.g., a 20MHz LTE
radio bandwidth in a 10ms allocation window is separated into 100 PRBs each with
180kHz bandwidth7 and 10 TTIs each with 1ms duration. Then, there are |S| slices
requesting the radio resources as S =

{
s1, · · · s|S|

}
. For the i-th slice (i.e. si), its

radio resource requirement includes: (a) SCSi comprises the applicable SCSs, (b)
Ti and Ni are the number of requested TTIs in time and PRBs in frequency do-
main, and (c) gi is the granularity which can be contiguous, non-contiguous, fixed
position (with its fixed position as FixFi and FixTi) or minimum granularity as
introduced in section 4. The fixed position can provide isolation and the guarantee
for SLA but limit the possible allocation position. The contiguous granularity is
more suitable for the constant traffic pattern (e.g. streaming) as it can reduce the
latency due to contiguous allocation and minimize the overhead of signaling. The
non-contiguous granularity, on the other hand, accommodates better variable/mix
traffic pattern as it can combine fragmented resources into a flexible transport size.
The minimum granularity is adopted to the slices that requests capacity (i.e. vTBS
Type 0 abstraction) allowing any feasible allocations to be applied.

In following, an example of resource partition is provided in Fig. 8 with 7 slices
(i.e. |S| = 7) and each slice has different requested granularities: g1 = Fixed,
g2 = g3 = Contiguous, g4 = g5 = Non-contiguous, and g6 = g7 = Minimum.
The largest rectangular of unallocated resource is marked which is an important
criterion for further resource multiplexing. Since such unallocated rectangular re-
source can potentially fit in any granularity of time (i.e. TTI) and frequency domain
(i.e. SCS) and can be utilized for control information transportation, BS informa-
tion broadcasting/multicasting, or sharing between slices. It can be observed from
Fig. 8a and 8b that although both partitioning satisfy the required resources for all
slices, only one achieves a larger unallocated rectangular region. Such resource
packing is obtained by combining different levels of granularity when partition-
ing resources, e.g. s4, s5 are discontinuous in frequency and time separately, and
both s6 and s7 use the minimum granularity. Hence, the inter-slice resource par-
tition has two complementary goals: (a) satisfy as many requests as possible, and
(b) maximize the size of unallocated rectangular region for further multiplexing.
Such problem becomes a two-dimensional knapsack problem when the granular-
ity of all requests is continuous, which makes the complexity NP-hard [53]. In
that sense, finding an optimal inter-slice resource partition becomes inefficient and

7Remaining bandwidth is the guard band without transporting any information.

16

Slice 1
(Fixed)

Slice 2

Slice 6

Slice 5

Slice 4
Slice 3

Sl
ic

e
 7

Time domain (Tb=10)

Fr
eq

 d
o

m
ai

n
 (

N
b
=

1
0

0
)

Largest
unallocated
rectangular

(40PRB, 3ms)

(a) Contiguous granularity

Slice 1
(Fixed)

Slice 2

Slice 5

Slice 3

Slice 4

Time domain (Tb=10)

Fr
eq

 d
o

m
ai

n
 (

N
b
=

1
0

0
)

S4

Slice 5

Slice 6

S7

S6

S7

Largest
unallocated
rectangular

(70PRB, 3ms)

(b) Slice-specific granularity

Figure 8: Examples of radio resource partitioning

we propose algorithms that can efficiently partition resources and provide close to
optimal performances.

5.1.1 Algorithms

Our proposed approach is presented in Alg. 1 that firstly prioritizes slices ac-
cording to their identities pID and then partitions resources based on their gran-
ularity, i.e., gpID. As each slice can support more than one SCSs, the remapping
from infrastructure base SCS (SCSbase) via SCSMap (·) function is used to derive
the corresponding values of the target SCS for both requested resources (RegFscs,
RegTscs) and fixed position (FixFscs, FixTscs). The proposed granularity-based
partitioning includes four algorithms: fixed position (Alg. 2), contiguous (Alg. 3),
non-contiguous (Alg. 4) and minimum granularity (Alg. 5). Finally, a resource grid
re-mapping is done using RGReMap (·) function to map the grid of optimal SCS
(i.e. OptSCS) to the ones of other SCSs.

When applying fixed position algorithm, the FindFixExact (·) function checks
the feasibility of fixed position, whereas the FindExact (·) function is used for the
contiguous algorithm to examine all feasible contiguous allocation positions over
the resource grid. Then, we pick the position with the largest unallocated rectan-
gular using the FindMaxUnUse (·) function. Among the non-contiguous case, the
FindAvail (·) function outputs any available places for allocation without requiring
a contiguous portion. Then, the priority is given to the allocation of non-contiguous
portions over the time with the highest unallocated resources using the sort (·) func-
tion. Finally, the minimum granularity algorithm applies the same function but fills
the allocation sequentially without any prioritization. The complexity of the pro-
posed approach is proportional to the number of SCSs (|SCS|), number of slices
(|S|) and the size of resource grid (Nb×Tb) and is with polynomial time complex-
ity.

5.1.2 Performance comparison

As mentioned before, resource partitioning are processed sequentially based
on the slice priority, and therefore high priority slices will impact the available

17

Algorithm 1: Inter-slice Resource Partition Algorithm
Input : Tb and Nb represents the size of resource grid in the partition window

S is the set of slices
Output: RGMap is the resource grid allocation map

OptSCS is the set of applied SCS of each slice
Sat is the set of slice satisfaction index

begin
foreach si ∈ S do

Sat [i] = 0 ; /* Initialize satisfaction index of each slice */
OptSCS [i] = 0 ; /* Initialize the selected SCS of each slice */
foreach scs ∈ SCSi do

[RegFscs [i] , RegTscs [i]] = SCSMap (Ni, Ti, scs, SCSbase) ; /* Map to
different SCSs */

[FixFscs [i] , F ixTscs [i]] = SCSMap (FixFi, F ixTi, scs, SCSbase) ; /* Map to
different SCSs */

foreach scs ∈ SCS do
for i = 1 to Nb · scs/SCSbase do

for j = 1 to Tb · SCSbase/scs do
RGMapscs [i] [j] = 0 ; /* Initialize resource grid allocation */

while isempty (S) == false do
pID = prioritize (S, priority) ; /* Get the most prioritized slice index within S */
switch gpID do

case Fixed do
[Sat [pID] , OptSCS [pID] , RGMap] = FixPos RP (pID,S, RGMap) ;

(cf. Alg. 2)
case Contiguous do

[Sat [pID] , OptSCS [pID] , RGMap] = Con RP (pID,S, RGMap) ; (cf.
Alg. 3)

case Non-contiguous do
[Sat [pID] , OptSCS [pID] , RGMap] = NonCon RP (pID,S, RGMap) ;

(cf. Alg. 4)
case Minimum do

[Sat [pID] , OptSCS [pID] , RGMap] = Min RP (pID,S, RGMap) ; (cf.
Alg. 5)

if Sat [pID] == 1 then
S = SetDiff (S, pID) ; /* Remove satisfied slice from set S*/
RGMap = RGReMap (RGMap,OptSCS [pID] , scs) ; /* Remap resource grid

to other SCSs */

regions for low priority slices. In following, we evaluate five different priortization
orderings:

1. Optimal: Exhaustive search all possibilities to get the best ordering.

2. Random: Randomize the slice ordering.

3. Greedy: Use the greedy method to prioritize slice that can generate the
largest unallocated rectangular region.

4. Granularity: Sort slices based on the level of granularity as follows fixed
position, contiguous, non-contiguous, and minimum granularity.

5. Granular & Greedy: Use two sequential sorting, firstly based on the granu-
larity and secondly based on the greedy.

18

Algorithm 2: Fixed Position Resource Partition (FixPos RP)
Input : k is target slice index of the set of slice S

RGMap is the resource grid allocation map
Output: Sat is the slice satisfaction index

OptSCS is the selected SCS for the target slice
OutMap is the output resource allocation map

begin
MaxRec = 0 ;
OutMap = RGMap;
Sat = OptSCS = 0 ; /* Initialize the output satisfaction and optimal SCS index*/
foreach scs ∈ SCSk do

if FindFixExact (RegFscs [k] , RegTscs [k] , scs, RGMapscs, F ixFscs [k] , F ixTscs [k])
then

Sat = 1 ; /* Slice with identity k is satisfied*/
tMap = RGMapscs;
for i = 0 to ReqFscs [k]− 1 do

for j = 0 to ReqTscs [k]− 1 do
tMap [i+ FixFscs [k]] [j + FixTscs [k]] = k ;

tRec = FindMaxUnUse (tMap) ; /* Find the maximum unallocated rectangular
resources */

if tRec > MaxRec then
OptSCS = scs ;
MaxRec = tRec ;
OutMapscs = tMap ;

Algorithm 3: Contiguous Resource Partition (Con RP)
Input : k is target slice index of the set of slice S

RGMap is the resource grid allocation map
Output: Sat is the set of slice satisfaction index

OptSCS is the selected SCS for the target slice
OutMap is the output resource allocation map

begin
MaxRec = 0 ;
OutMap = RGMap;
Sat = OptSCS = 0 ; /* Initialize the output satisfaction and optimal SCS index*/
foreach scs ∈ SCSk do

[PosF, PosT] = FindExact (ReqFscs [k] , ReqTscs [k] , scs, RGMapscs);/* Find
possible positions */

for pos = 1 to |PosF | do
Sat = 1 ;
tMap = RGMapscs;
for i = 0 to ReqFscs [k]− 1 do

for j = 0 to ReqTscs [k]− 1 do
tMap [i+ PosF [pos]] [j + PosT [pos]] = k ;

tRec = FindMaxUnUse (tMap) ; /* Find the maximum unallocated rectangular
resources */

if tRec > MaxRec then
OutSCS = scs ;
MaxRec = tRec ;
OutMapscs = tMap ;

The results are shown in Fig. 9 with 7 slices and each requests a time-varying
and uniformly-distributed resources with Ni = [10, 50] PRBs and Ti = [1, 10]

19

Algorithm 4: Non-Contiguous Resource Partition (NonCon RP)
Input : k is target slice index of the set of slice S

RGMap is the resource grid allocation map
Output: Sat is the set of slice satisfaction index

OptSCS is the selected SCS for the target slice
OutMap is the output resource allocation map

begin
MaxRec = 0 ;
tIdxCount = 0 ;
OutMap = RGMap ;
Sat = OptSCS = 0 ; /* Initialize the output satisfaction and optimal SCS index*/
foreach scs ∈ SCSk do

[PosF, PosT] = FindAvail (RGMapscs) ; /* Find all available resource to be
allocated */

for j = 1 to Tb · scs/SCSbase do
aIdx [j] = find (PosT [∗] == j) ; /* Find available allocation portion at time

index j */
if |aIdx [j]| ≥ ReqFscs [k] then

tIdxCount = tIdxCount+ 1 ; /* Increase possible time index count by 1
*/

if tIdxCount ≥ ReqTscs [k] then
Sat = 1 ;
tMap = RGMapscs;
Torder = sort

(
1 : Tb · scs

SCSbase
, aIdx, descend

)
; /* Sort time indexes base on

descending order of aIdx */
for j = 1 to ReqTscs [k] do

PossibleFIdx = PosF [aIdx [Torder [j]]] ;
for i = 1 to ReqFscs [k] do

tMap [i+ PossibleFIdx [i]] [Torder [j]] = k ;

tRec = FindMaxUnUse (tMap) ; /* Find the maximum unallocated rectangular
resources */

if tRec > MaxRec then
OutSCS = scs ;
MaxRec = tRec ;
OutMapscs = tMap ;

TTIs under several levels of SCS, i.e. SCS = SCSi = {15, 30, 60} kHz,∀i.
Fig. 9a shows the average satisfaction ratio of all 7 slices and of slices with dif-
ferent granularity levels (i.e. fix, contiguous, non-contiguous and minimum), and
the optimal ordering reaches the highest satisfaction ratio (82% on average for all
7 slices), whereas the randomized ordering represents the worst case. From the
figure, it can be observed that the Granular (79%) and the Granular & Greedy
(81%) orderings outperform the Greedy approach and are very close to the optimal
ordering. The resource grid utilization ratio is shown in Fig. 9b with percent-
age of partitioned resources, largest unallocated rectangular, and other unallocated
resource in box plot. Note that the largest unallocated rectangular is used as a
metric to characterize the multiplexing gain of inter-slice partitioning with differ-
ent SCS/TTI requirement. The randomized and greedy ordering has the largest
unallocated rectangular ratio (20% and 23% on average) at the cost of a lower
partitioning percentage (73% and 71% on average). In contrast, the partitioned re-

20

Algorithm 5: Minimum granularity Resource Partition (Min RP)
Input : k is target slice index of the set of slice S

RGMap is the resource grid allocation map
Output: Sat is the set of slice satisfaction index

OptSCS is the selected SCS for the target slice
OutMap is the output resource allocation map

begin
MaxRec = 0 ;
OutMap = RGMap;
Sat = OptSCS = 0 ; /* Initialize the output satisfaction and optimal SCS index*/
foreach scs ∈ SCSk do

[PosF, PosT] = FindAvail (RGMapscs) ; /* Find all possible position to be
allocated */

if |PosF | ≥ ReqFscs [k]×ReqTscs [k] then
Sat = 1 ;
tMap = RGMapscs;
for pos = 1 to ReqFscs [k]×ReqTscs [k] do

tMap [PosF [pos]] [PosT [pos]] = k ;

tRec = FindMaxUnUse (tMap) ; /* Find the maximum unallocated rectangular
resources */

if tRec > MaxRec then
OptSCS = scs ;
MaxRec = tRec ;
OutMapscs = tMap ;

source utilization ratio and the largest unallocated rectangular ratio are very close
for both exhaustive search (84% and 12%) and Granular & Greedy ordering (85%
and 10%), confirming the efficiency of the proposed algorithm.

5.2 Radio resource accommodation

After inter-slice partitioning and intra-slice scheduling, the runtime then ac-
commodates these decisions to physical resources. In Fig. 10, an example is shown
based on the inter-slice partitioning outcome in Fig. 8b. The intra-slice schedul-
ing result is shown in Fig. 10a with the gray portions refer to the scheduled parts
whereas transparent portions are unscheduled, and we can see the same largest
unused rectangular region. However, a larger region is formed in Fig. 10b via
remapping scheduling results of s4 and s7 while still fulfill their abstraction types.

Like the inter-slice partitioning, we can use almost the same algorithms to
pack such intra-slice scheduling results within its partitioned region considering
different priority orderings. Here, we assume the traffic arrival rate of each slice
is in proportional to the requested radio resource and times with an time-varying
uniformly-distributed random variable p = [0.65, 1.0]. Then, we evaluate different
orderings in Fig. 11 compare with the inter-slice partitioning result. We can see
that there are approximately 1.5% (Random) to 3% (Greedy, Granular, Granular
& Greedy) increasing in the largest unallocated rectangular; however, most of the
increment is at the other unallocated region. Such phenomenon is due to some un-

21

Exhaustive Random Greedy Granular Granular & Greedy
0

10
20
30
40
50
60
70
80
90

100

P
e
rc

e
n
ta

g
e
 (

%
)

Average slice satisfaction ratio of different slice prioritization

All slices Fix slice Contiguous slice Non-contiguous slice Min-granular slice

(a) Average slice satisfaction ratio

Optimal Random Greedy Granular Greedy & Granular
0

10
20
30
40
50
60
70
80
90

100

P
e
rc

e
n
ta

g
e
 (

%
)

Resource Grid Utilization Ratio of different slice prioritization

Partitioned resource Largest unallocated rectangular resource Other unallocated resource

(b) Resource grid occupation ratio

Figure 9: Performance of different slice priortization in resource partitioning

Slice 1
(Fixed)

Slice 2

Slice 5

Slice 3

Slice 4

Time domain (Tb=10)

Fr
eq

 d
o

m
ai

n
 (

N
b
=

1
0

0
)

Slice 6

Largest
unallocated
rectangular

(70PRB, 3ms)

S6

S4

S7

S7

(a) Inter-slice

Slice 1
(Fixed)

Slice 2

Slice 5

Slice 3

Slice 4

Time domain (Tb=10)

Fr
eq

 d
o

m
ai

n
 (

N
b
=

1
0

0
)

Slice 6

S7
Largest

unallocated
rectangular

(70PRB, 4ms)

S6

(b) Slice-specific granularity

Figure 10: Examples of radio resource partitioning

Inter-slice result Random Greedy Granular Granular & Greedy
0

10
20
30
40
50
60
70
80
90

100

P
e
rc

e
n
ta

g
e
 (

%
)

Resource Grid Utilization Ratio of different slice prioritization

Partitioned resource Largest unallocated rectangular resource Other unallocated resources

Figure 11: Performance of different slice priortization in resource accommodation

scheduled intra-slice resources are not close to the largest unallocated rectangular
and can not contribute, e.g., s2 and s3 in Fig. 10.

22

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Time (ms) 10
4

0

2000

4000

6000

8000

G
o

o
d

p
u

t
(k

B
/s

)

Slice 1 Slice 2 Slice 3

(a) Aggregated good-put

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Time (ms) 10
4

0

5

10

15

20

L
a

te
n

c
y
 (

m
s
)

Slice 1 Slice 2 Slice 3

(b) Average latency

Figure 12: Impact of time-varying inter-slice partitions on slice performance

6 Proof of Concepts

To validate the concept of RAN slicing runtime system and explore different
use-cases, we implemented and built an LTE-based prototype of runtime follow-
ing aforementioned design in section 4. The runtime is developed based on the
FlexRAN agent [15], which operates on the top of the OAI platform [14]. The
main functionalities of the proposed runtime services and CP/UP APIs are imple-
mented and integrated with the agent. To map a user to a slice and populate the
slice context information, we used internal OAI user identities together with the
radio network temporary identifier (RNTI) generated by the MAC layer to deter-
mine user slice identifier. Note that in a real deployment, a user communicates
this information through RRC and non-access-stratum procedures. A template is
used to describe slice resource requirements in terms of vRBG type 0/1 and vTBS
type 0, resource isolation, and slice priority in both downlink and uplink direction.
We created three remote slices using asynchronous communication channel with
the runtime that embeds control logics and operates on virtualized resources and
states based on the modified version of FlexRAN controller and it software de-
velopment kit (SDK). In following, we present the results of three considered use
cases to demonstrate the performance tradeoff between isolation and sharing and
flexibility in changing the RAN service definition.

6.1 Radio Resource and Function Isolation

To demonstrate the impact of inter-slice partitioning, we deploy three slices
with three different traffic patterns, high bit rate with traffic variability for slice
1, medium bit rate for slice 2, and low bit rate with periodic traffic for slice 3.
Each slice contains 5 users. Different partitioning policies are applied at differ-
ent time intervals: a) fair partitioning that allocates 33% of total resources to each
slice before t1, b) greedy partitioning between t1 and t2 that allocates 60% of re-
sources to slice 1, and 20% to slice 2 and 3, and c) proportional partitioning after
t2 that allocates 50% to slice1, 40% to slice 2, and 10% for slice 3. For the intra-
slice scheduling, we apply a simple fair scheduling among users. From the results
presented in Fig. 12, it can be observed that the aggregated goodput and average

23

Fair partition Greedy Proportional
0

2000

4000

6000

8000

10000

12000

14000

16000

G
o
o
d
p
u
t
(k

B
/s

)

DL goodput of different inter-slice partitions
user1

user2

user3

user4

user5

user6

user7

user8

user9

user10

user11

user12

user13

user14

user15

(a) Goodput
Fair partition Greedy Proportional

0

10

20

30

40

50

60

70

80

L
a
te

n
c
y
 (

m
s
)

DL latency of different inter-slice partitions
user1

user2

user3

user4

user5

user6

user7

user8

user9

user10

user11

user12

user13

user14

user15

(b) Latency

Figure 13: Impact of inter-slice partitioning on per-user goodput and latency

64 768 2048 4096 8192

Packet Size (byte)

0

50

100

150

200

250

300

R
T

T
(m

s
)

Slice 1 (preemption)

IDT 1.0(s) IDT 0.8(s) IDT 0.4(s) IDT 0.2(s)

(a) Slice 1

64 768 2048 4096 8192

Packet Size (byte)

0

50

100

150

200

250

300

R
T

T
(m

s
)

Slice 2 (multiplex)

IDT 1.0(s) IDT 0.8(s) IDT 0.4(s) IDT 0.2(s)

(b) Slice 2

64 768 2048 4096 8192

Packet Size (byte)

0

50

100

150

200

250

300

R
T

T
(m

s
)

Slice 3 (neither preempt nor multiplex)

IDT 1.0(s) IDT 0.8(s) IDT 0.4(s) IDT 0.2(s)

(c) Slice 3

Figure 14: Impact of preemption and multiplexing on RTT.

latency can significantly fluctuate when adopting different inter-slice partitions.
However, the changes of the inter-slice partitioning have no impact on the decision
of the intra-slice scheduling function, as shown in Fig. 13. This confirms the ca-
pability of runtime in providing isolation among slices and providing performance
guarantee, as listed in section 4.1.

6.2 Radio Resource Preemption and Multiplexing

In this experiment, we demonstrate the impacts of resource multiplexing and
preemption on the perceived performance in a three-slice scenario. Besides the
applied abstraction/virtualization, different slice policies are explored: Slice 1 can
preempt all other slices to get its desired resources when needed, slice 2 can uti-
lize the unallocated resource to increase the multiplexing gain when available, and
slice 3 can neither preempt nor multiplex resources. We firstly show the measured
round trip time (RTT) in Fig. 14 with different packet size and inter-departure time
(IDT). Obviously, a lower RTT is achieved for slice 1 as it has the ability to pre-
empt other two slices; hence, such slice has the highest flexibility in adapting the
resources to its instantaneous workload. As for the multiplexing, slice 2 utilizes all
the unallocated resourced, and can opportunistically improve the RTT compared to
slice 3 that is limited to its partitioned resources.

When examining the good-put and delay-jitter in Fig. 15, it can be seen that
slice 1 can flexibly adapt its data rate as a function of workload by preempting the
resources from other slices, i.e., from 3 Mbps to 6 Mbps, whereas slice 2 experi-

24

0 5 10 15 20 25 30 35

Time (second)

0

2

4

6

8

10

12

14
G

o
o
d
p
u
t
(M

b
p
s
)

Slice 1 Slice 2 Slice 3

0 5 10 15 20 25 30 35

Time (second)

0

2

4

6

8

J
it
te

r
(m

s
)

Slice 1 Slice 2 Slice 3

Figure 15: Impact of preemption and multiplexing on good-put and delay jitter

ences a data rate drop from its desired 10 Mbps to 8Mbps. The same trend can be
observed in the delay-jitter for slice 1, 2, and 3.

6.3 Network function and state flexibility

We showcase the capability of the runtime to change the service definition of
the underlying RAN module from monolithic to disaggregated deployments from
the infrastructure provider perspective. For this purpose, we consider three possi-
ble RAN deployments at different time instances without creating any slices: (a)
monolithic eNodeB deployment at t1, (b) disaggregated Cloud-RAN deployment
using split option 8 at t2, and (c) using split option 7 at t3. Our considered C-RAN
deployment uses UDP/IP based Ethernet transportation over the fronthaul interface
with one RRU gateway in the middle to route the traffic. The results are shown in
Fig. 16 in terms of the good-put, delay jitter and RTT when a 15 Mbps traffic flow is
transferred in downlink direction. Surprisingly, no good-put drop is observed when
changing the split. This is because the considered split (i.e. performing cell pro-
cessing at the RRU) only requires RAN module reconfiguration without any state
synchronization, which explains why the good-put remains unchanged among dif-
ferent deployments. As for the delay jitter and RTT, they are increased at t2 and t3
due to some Ethernet packet loss when changing the split as well as the extra time
spent for the Ethernet transportation (e.g. packetization [54], compression) along
the fronthaul links and RRU gateway.

As mentioned, the functional splits is determined by the infrastructure provider
rather than the slice owner. Hence, the runtime system shall make sure the SLA
is maintained when there is any change in the service definition. Moreover, it shall
transfer the CP/UP states when the functional split includes user-specific process-
ing (3GPPP option 1 to 6), as listed in TABLE 5.

7 Conclusions

In this work, we propose the RAN slicing runtime system that serve as a flex-
ible execution environment to run multiple customized slice instances with the re-
quired level of isolation while sharing underlying RAN modules and infrastructure.

25

t1 t2 t3
14.5

14.6

14.7

14.8

14.9

15

15.1

15.2

15.3

15.4

15.5
G

o
o

d
p

u
t

(M
b

p
s
)

t1 t2 t3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

D
e

la
y
 j
it
te

r
(m

s
)

t1 t2 t3
40

50

60

70

80

90

R
o

u
n

d
 t

ri
p

 t
im

e
 (

m
s
)

Figure 16: Flexible RAN deployment impact on good-put, delay jitter and RTT.

We elaborate on the design of such system and identify the required functionalities
in both control and user plane. A new set of radio resource abstractions are defined
to efficiently provide resource isolation among different slices. On the user-plane,
the forwarding engine of runtime is introduced to compose the input and output
data stream for a flexible processing pipeline composition. We also propose the
inter-slice resource partition approach that satisfies requests of various granulari-
ties and maintains a large multiplexing region with acceptable complexity. Finally,
we showcase the proposed runtime system in three use cases that exactly match
aforementioned RAN slicing challenges using the OAI and FlexRAN platforms.

References

[1] P. Rost, A. Banchs, I. Berberana, M. Breitbach, M. Doll, H. Droste, C. Man-
nweiler, M. A. Puente, K. Samdanis, and B. Sayadi, “Mobile network ar-
chitecture evolution toward 5G,” IEEE Communications Magazine, vol. 54,
no. 5, pp. 84–91, 2016.

[2] IMT-2020 Deliverables, ITU-T Focus Group, 2017.

[3] TR 23.799 Study on Architecture for Next Generation System (Release 14),
3GPP, Dec. 2016.

[4] NGMN Alliance, “Description of network slicing concept,” Tech. Rep., 2016.

[5] 5G PPP Architecture Working Group, “View on 5G architecture,” White Pa-
per, 2016.

[6] Y. H. Kim et al., “Slicing the next mobile packet core network,” in Wireless
Communications Systems (ISWCS), 2014 11th International Symposium on.
IEEE, 2014, pp. 901–904.

[7] T. Taleb, M. Corici, C. Parada, A. Jamakovic, S. Ruffino, G. Karagiannis,
and T. Magedanz, “EASE: EPC as a service to ease mobile core network
deployment over cloud,” IEEE Network, vol. 29, no. 2, pp. 78–88, 2015.

26

[8] Z. A. Qazi, M. Walls, A. Panda, V. Sekar, S. Ratnasamy, and S. Shenker, “A
High Performance Packet Core for Next Generation Cellular Networks,” in
Proceedings of the Conference of the ACM Special Interest Group on Data
Communication. ACM, 2017, pp. 348–361.

[9] N. Nikaein, E. Schiller, R. Favraud, K. Katsalis, D. Stavropoulos, I. Alyafawi,
Z. Zhao, T. Braun, and T. Korakis, “Network store: Exploring slicing in future
5G networks,” in Proceedings of the 10th International Workshop on Mobility
in the Evolving Internet Architecture. ACM, 2015, pp. 8–13.

[10] A. Ksentini and N. Nikaein, “Toward Enforcing Network Slicing on RAN:
Flexibility and Resources Abstraction,” IEEE Communications Magazine,
vol. 55, no. 6, pp. 102–108, 2017.

[11] X. Foukas, M. Mahesh K., and K. Kontovasilis, “Orion: RAN Slicing for a
Flexible and Cost-Effective Multi-Service Mobile Network Architecture,” in
The 23rd Annual International Conference on Mobile Computing and Net-
working (MobiCom ’17). ACM, 2017.

[12] TR 23.707 Architecture enhancements for dedicated core networks; Stage 2
(Release 13), 3GPP, Dec. 2014.

[13] TR 23.711 Architecture enhancements for dedicated core networks; Stage 2
(Release 14), 3GPP, Sep. 2016.

[14] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and C. Bon-
net, “OpenAirInterface: A flexible platform for 5G research,” ACM SIG-
COMM Computer Communication Review, vol. 44, no. 5, pp. 33–38, 2014.

[15] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. P. Kontovasilis,
“FlexRAN: A Flexible and Programmable Platform for Software-Defined Ra-
dio Access Networks.” in CoNEXT, 2016, pp. 427–441.

[16] A. Khan, W. Kellerer, K. Kozu, and M. Yabusaki, “Network sharing in
the next mobile network: TCO reduction, management flexibility, and op-
erational independence,” IEEE Communications Magazine, vol. 49, no. 10,
2011.

[17] L. Doyle, J. Kibilda, T. K. Forde, and L. DaSilva, “Spectrum without bounds,
networks without borders,” Proceedings of the IEEE, vol. 102, no. 3, pp. 351–
365, 2014.

[18] K. Katsalis, N. Nikaein, E. J. Schiller, A. Ksentini, and T. Braun, “Network
Slices Towards 5G Communications: Slicing the LTE network,” IEEE Com-
munications Magazine, vol. 55, no. 8, 2017.

27

[19] X. An, R. Trivisonno, H. Einsiedler, D. von Hugo, K. Haensge, X. Huang,
Q. Shen, D. Corujo, K. Mahmood, D. Trossen et al., “End-to-End Archi-
tecture Modularisation and Slicing for Next Generation Networks,” arXiv
preprint arXiv:1611.00566, 2016.

[20] K. Samdanis, X. Costa-Perez, and V. Sciancalepore, “From network shar-
ing to multi-tenancy: The 5G network slice broker,” IEEE Communications
Magazine, vol. 54, no. 7, pp. 32–39, 2016.

[21] I. Chih-Lin, S. Han, Z. Xu, S. Wang, Q. Sun, and Y. Chen, “New Paradigm of
5G Wireless Internet,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 3, pp. 474–482, 2016.

[22] X. Zhou, R. Li, T. Chen, and H. Zhang, “Network slicing as a service: en-
abling enterprises’ own software-defined cellular networks,” IEEE Commu-
nications Magazine, vol. 54, no. 7, pp. 146–153, 2016.

[23] S. Sharma, R. Miller, and A. Francini, “A Cloud-Native Approach to 5G
Network Slicing,” IEEE Communications Magazine, vol. 55, no. 8, pp. 120–
127, 2017.

[24] A. Tzanakaki, M. Anastasopoulos, I. Berberana, D. Syrivelis, P. Flegkas,
T. Korakis, D. C. Mur, I. Demirkol, J. Gutiurrez, E. Grass et al., “Wireless-
Optical Network Convergence: Enabling the 5G Architecture to Support Op-
erational and End-User Services,” IEEE Communications Magazine, 2017.

[25] TS 23.251 Network sharing; Architecture and functional description, 3GPP,
Jan. 2009.

[26] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, “Nvs: A substrate
for virtualizing wireless resources in cellular networks,” IEEE/ACM Trans-
actions on Networking (TON), vol. 20, no. 5, pp. 1333–1346, 2012.

[27] X. Costa-Pérez, J. Swetina, T. Guo, R. Mahindra, and S. Rangarajan, “Ra-
dio access network virtualization for future mobile carrier networks,” IEEE
Communications Magazine, vol. 51, no. 7, pp. 27–35, 2013.

[28] R. Mahindra, M. A. Khojastepour, H. Zhang, and S. Rangarajan, “Radio ac-
cess network sharing in cellular networks,” in Network Protocols (ICNP),
2013 21st IEEE International Conference on. IEEE, 2013, pp. 1–10.

[29] J. He and W. Song, “AppRAN: Application-oriented radio access network
sharing in mobile networks,” in Communications (ICC), 2015 IEEE Interna-
tional Conference on. IEEE, 2015, pp. 3788–3794.

[30] Y. Zaki, L. Zhao, C. Goerg, and A. Timm-Giel, “LTE mobile network virtu-
alization,” Mobile Networks and Applications, vol. 16, no. 4, pp. 424–432,
2011.

28

[31] C. Liang and F. R. Yu, “Wireless virtualization for next generation mobile
cellular networks,” IEEE wireless communications, vol. 22, no. 1, pp. 61–69,
2015.

[32] P. Marsch, I. Da Silva, O. Bulakci, M. Tesanovic, S. E. El Ayoubi,
T. Rosowski, A. Kaloxylos, and M. Boldi, “5G radio access network archi-
tecture: design guidelines and key considerations,” IEEE Communications
Magazine, vol. 54, no. 11, pp. 24–32, 2016.

[33] K. Katsalis, N. Nikaein, E. Schiller, R. Favraud, and T. I. Braun, “5G archi-
tectural design patterns,” in Communications Workshops (ICC), 2016 IEEE
International Conference on. IEEE, 2016, pp. 32–37.

[34] TR 38.801 Study on new radio access technology: Radio access architecture
and interfaces (Release 14), 3GPP, Mar. 2017.

[35] TR 38.804 Study on new radio access technology: Radio Interface Protocol
Aspects (Release 14), 3GPP, Mar. 2017.

[36] M. Yang, Y. Li, D. Jin, L. Su, S. Ma, and L. Zeng, “OpenRAN: a software-
defined ran architecture via virtualization,” in ACM SIGCOMM computer
communication review, vol. 43, no. 4. ACM, 2013, pp. 549–550.

[37] I. F. Akyildiz, P. Wang, and S.-C. Lin, “Softair: A software defined network-
ing architecture for 5g wireless systems,” Computer Networks, vol. 85, pp.
1–18, 2015.

[38] A. Gudipati, D. Perry, L. E. Li, and S. Katti, “SoftRAN: Software defined
radio access network,” in Proceedings of the second ACM SIGCOMM work-
shop on Hot topics in software defined networking. ACM, 2013, pp. 25–30.

[39] T. Chen, H. Zhang, X. Chen, and O. Tirkkonen, “SoftMobile: control evolu-
tion for future heterogeneous mobile networks,” IEEE Wireless Communica-
tions, vol. 21, no. 6, pp. 70–78, 2014.

[40] M. Bansal, J. Mehlman, S. Katti, and P. Levis, “Openradio: a programmable
wireless dataplane,” in Proceedings of the first workshop on Hot topics in
software defined networks. ACM, 2012, pp. 109–114.

[41] W. Wu, L. E. Li, A. Panda, and S. Shenker, “Pran: Programmable radio ac-
cess networks,” in Proceedings of the 13th ACM Workshop on Hot Topics in
Networks. ACM, 2014, p. 6.

[42] A. Gudipati, L. E. Li, and S. Katti, “Radiovisor: A slicing plane for radio
access networks,” in Proceedings of the third workshop on Hot topics in soft-
ware defined networking. ACM, 2014, pp. 237–238.

29

[43] A. Nakao, P. Du, Y. Kiriha, F. Granelli, A. A. Gebremariam, T. Taleb, and
M. Bagaa, “End-to-end network slicing for 5G mobile networks,” Journal of
Information Processing, vol. 25, pp. 153–163, 2017.

[44] P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori, V. Sciancalepore,
N. Sastry, O. Holland, S. Tayade, B. Han, D. Bega et al., “Network Slicing to
Enable Scalability and Flexibility in 5G Mobile Networks,” IEEE Communi-
cations Magazine, vol. 55, no. 5, pp. 72–79, 2017.

[45] TS 38.401 NG-RAN; Architecture description (Release 15), 3GPP, Aug. 2017.

[46] J. Matias, J. Garay, N. Toledo, J. Unzilla, and E. Jacob, “Toward an SDN-
enabled NFV architecture,” IEEE Communications Magazine, vol. 53, no. 4,
pp. 187–193, 2015.

[47] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network functions:
Breaking the tight coupling of state and processing.” in NSDI, 2017, pp. 97–
112.

[48] J. Kim, D. Kim, and S. Choi, “3GPP SA2 architecture and functions for 5G
mobile communication system,” ICT Express, 2017.

[49] J. Vihriälä, A. A. Zaidi, V. Venkatasubramanian, N. He, E. Tiirola, J. Medbo,
E. Lähetkangas, K. Werner, K. Pajukoski, A. Cedergren et al., “Numerol-
ogy and frame structure for 5G radio access,” in Personal, Indoor, and Mo-
bile Radio Communications (PIMRC), 2016 IEEE 27th Annual International
Symposium on. IEEE, 2016, pp. 1–5.

[50] OpenvSwitch, http://openvswitch.org/.

[51] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast pro-
grammable match-action processing in hardware for SDN,” in ACM SIG-
COMM Computer Communication Review, vol. 43, no. 4. ACM, 2013,
pp. 99–110.

[52] C.-Y. Chang, N. Nikaein, R. Knopp, T. Spyropoulos, and S. S. Kumar, “Flex-
CRAN: A Flexible Functional Split Framework over Ethernet Fronthaul in
Cloud-RAN,” in Communications (ICC), 2017 IEEE International Confer-
ence on. IEEE, 2017, pp. 1–7.

[53] A. Caprara and M. Monaci, “On the two-dimensional knapsack problem,”
Operations Research Letters, vol. 32, no. 1, pp. 5–14, 2004.

[54] C.-Y. Chang, R. Schiavi, N. Nikaein, T. Spyropoulos, and C. Bonnet, “Impact
of packetization and functional split on C-RAN fronthaul performance,” in
Communications (ICC), 2016 IEEE International Conference on. IEEE,
2016, pp. 1–7.

30

