
Periodic Broadcasting with VBR-Encoded Video

Despina Saparilla Keith W. Ross Martin Reisslein
Dept. of Systems Engineering Institut EURECOM GMD FOKUS

University of Pennsylvania 2229, route des Crˆetes Berlin, Germany
Philadelphia, PA 19104 Sophia Antipolis, France reisslein@fokus.gmd.de

saparill@eurecom.fr ross@eurecom.fr

Abstract–We consider designing near video on demand (VoD) systems
that minimize start-up latency while maintaining high image quality. Re-
cently non-uniform segmentation has been used to develop periodic broad-
casting techniques for near VoD. These techniques give significant reduc-
tions in start-up latency as compared with more conventional uniform seg-
mentation. All of these schemes assume, however, that the videos are CBR-
encoded. Since a CBR-encoded video has a larger average rate than an
open-loop VBR encoding with the same image quality, there is potential to
obtain further performance improvements by using VBR video. In this pa-
per we develop a series of multiplexing schemes for the periodic broadcast-
ing of VBR-encoded video, which are based on smoothing, server buffering
and client prefetching. Two key but conflicting performance measures ex-
ist when using VBR video: latency and packet loss. By introducing small
additional delays in our multiplexing schemes, our traced-based numerical
work shows that the schemes can achieve nearly 100% link utilization with
negligible packet loss. When the ratio of the CBR rate to the VBR average
rate is a modest 1.8, start-up latency can be reduced by a factor of four or
more for common scenarios.

I. I NTRODUCTION

True Video on Demand (VoD) services permit subscribers to
schedule an arbitrary starting time for a video of their choice.
With true VoD, clients can select a video from a large number
of video files stored on central video servers. Requested videos
are transmitted to a large populationof clients through a network
(e.g., cable, ADSL, or a LAN), and a distinct stream is dedicated
to each user. True VoD is referred to as user centered since
server and network bandwidth are strictly divided among the
system’s users [1] [2]. As the number of users increases, server
and network bandwidth is quickly depleted. Consequently, true
VoD is often considered inefficient and too costly to offer as a
service.

To provide scalable VoD, various techniques based on a data
centered approach have been developed, in which the server di-
vides its bandwidth among distinct video objects and each video
file is broadcast to the receivers. Broadcasting allows many
clients to share a single server stream and, thus, achieves effi-
cient utilization of both network bandwidth and server capac-
ity [3] [4]. Techniques in which many clients share a common
server stream provide near VoD. With near VoD, users experi-
ence a delay of the order of seconds to tens of minutes before
the commencement of the video of their choice. In some near
VoD techniques, this start-up latency is due to a delay at the
server during which requests for the same object are batched
and served together using a single server stream [5]. In another
set of near VoD techniques, the server periodically broadcasts
each video object at fixed time intervals and clients must wait
until the beginning of the broadcast session before viewing the
video of their choice. Techniques of this latter type are referred
to as periodic broadcasting schemes [1] [6] [7] [2].

When the number of users is large, periodic broadcasting can
be an efficient means to distribute stored video. Periodic broad-

casting scales nicely, as the start-up latency is completely inde-
pendent of the number of clients. The start-up latency depends,
however, on the particular periodic broadcasting scheme and the
number of videos that that are broadcast. In broad terms, the
fewer the number of videos, the greater the number of copies of
each video that can be broadcast, and the lower the initial start-
up latency. Fortunately, for movies on demand, a large fraction
of the demand is typically for the 10-20 most popular movies.

One simple periodic broadcasting scheme is to broadcast mul-
tiple entire copies of each video, with a new copy broadcast ev-
ery fixed interval of time (e.g., a new copy of Star Wars broad-
cast every 20 minutes) [5]. We refer to such schemes as peri-
odic broadcasting with uniform segmentation. In such a scheme,
the maximum start-up latency experienced by a user is equal to
the length of the video divided by the number of copies broad-
cast. This latency can be long for full-length MPEG-2 encoded
movies sent over channels on the order of 100 Mbps. For exam-
ple, when ten movies, each encoded at 3 Mbps and each two-
hours-long, are broadcast over a 100 Mbps channel, the maxi-
mum start-up latency is 40 minutes. Beginning with the seminal
paper [2], a number of non-uniform segmentation schemes have
recently been proposed [1] [6] [7] [2]. Loosely speaking, these
schemes reduce the initial start-up latency by broadcasting the
earlier portions of the video more frequently and the latter por-
tions less frequently.

All of the existing work on near VoD systems with periodic
broadcasting is based on the assumption that the videos are Con-
stant Bit Rate (CBR) encoded [1] [6] [7] [2]. The CBR encod-
ing technique modifies the quantization scale during compres-
sion, which causes quality degradation in the encoded video.
(With CBR encoding, the bit-rate of resulting encoded video ac-
tually fluctuates around the target CBR rate; but the video can be
transmitted at the CBR rate and a small smoothing buffer at the
client ensures continuity [8] [9].) For open-loop VBR encoding,
the quantization scale remains constant throughout the encoding
process, which often produces highly variable bit rates. Digital
video distributionsystems using satellite and cable have avoided
using VBR video due to its burstiness. Nevertheless, for a given
movie or sporting event and for the same quality level, the av-
erage bit rate for CBR video is typically 2 times or more the
average bit rate of VBR video [9] [10]. Therefore with VBR
video there is potential for increased system efficiency.

Although non-uniform segmentation can greatly reduce start-
up latency, for many practical circumstances the start-up latency
remains unacceptably high for CBR-encoded video. When
a near VoD system broadcasts full-length MPEG-2 encoded
movies over channels on the order of 100 Mbps, the initial laten-
cies can be large. For example, when ten movies, each encoded

at 3 Mbps and each two-hours- long, are broadcast over a 100
Mbps channel, the maximum initial start-up latency is more than
17 minutes. In this paper we develop non-uniform segmenta-
tion schemes with VBR-encoded video that significantly reduce
the initial start-up latency without appreciably degrading image
quality. In particular, for situations of practical interest, as the
one described above, the start up latency can be reduced by a
factor of 4 or more when the CBR/VBR average bit-rate ratio is
a modest 1.8.

In order to obtain dramatic reductions in start-up latency with
VBR- encoded video, we must allow for some small fraction of
packet loss (due to link buffer overflow). The loss, however, will
not be noticeable if it is extremely rare. Therefore, the challenge
is develop a near VoD scheme that uses VBR-encoded video and
yet has low packet loss, on the order of10�6 or less. (Such
losses can be effectively hidden by the use of error concealment
techniques [11].)

This paper is organized as follows. In Section 2 we show
how non-uniform segmentation can be combined with buffer-
less statistical multiplexing [12] to create a near VoD scheme
using VBR-encoded video. We present a methodology that ex-
plores the trade-off between start-up latency and packet loss. In
Section 3 we study a specific segmentation scheme and present
results from trace-driven simulations for bufferless multiplex-
ing. The bufferless multiplexing scheme does not provide suf-
ficiently low loss probabilities, but it does set the stage for a
series of more sophisticated schemes described in Section 4,
which increasingly offer higher performance. The first of these
schemes combines smoothing with bufferless multiplexing, pro-
viding significant performance gains. The second scheme uses
server-buffer multiplexing, further increasing performance. The
third scheme uses client prefetching [13] [14] [15], and leads to
yet further improvements. We provide extensive numerical ex-
amples that show that the aforementioned schemes can lead to
dramatic reductions in initial start-up latency while keeping the
loss probability negligible. In Section 5 we show that our VBR
multiplexing schemes can dramatically reduce the CBR start-up
latency.

II. N EAR VOD WITH VBR-ENCODED VIDEO

We now present the key components of the general periodic
broadcasting technique for VBR-encoded video. LetM be the
number of encoded videos to be broadcast and letN (m) be
the number of frames in themth video. All videos are VBR-
encoded. In order to keep the presentation simple, we assume
that each video has a frame rate ofF frames per second. The
trace sequence of each prerecorded video is fully known; let
xn(m); n = 1; : : : ; N (m);m = 1; : : : ;M indicate the number
of bits in thenth encoded frame of themth video. Finally, we
denote the shared bandwidth between server and clients byC

Mbps. All video streams sent by the server share theC Mbps.
(The shared channel could be a cable or a digital satellite chan-
nel, for example.)

Our basic periodic broadcasting scheme for VBR traffic
works as follows. Each video is divided intoK segments prior
to broadcasting. The server broadcastsMK simultaneous video
streams, each of which repeatedly sends a single segment of a
video. Frames from theMK streams are statistically multi-

plexed into the broadcast channel without buffering. Bits are
lost whenever the broadcast rate exceeds the channel rate. The
server broadcasts each video stream at rateF frames per second,
the consumption rate of the videos. A client that wishes to see
a particular video tunes to the stream that is repeatedly broad-
casting the first segment of that video. The user then waits until
the beginning of the segment starts to arrive. We refer to the
maximum delay experienced by the user as the start-up latency.
At the next broadcast of the first segment the client begins to re-
ceive and concurrently display frames from the beginning of the
segment. As with the CBR schemes, the client downloads the re-
maining segments of the video according to a specific download
strategy [7] [6]. The choice of download strategy depends on
the ability of the client to employ pipelining, i.e., on its ability to
receive frames from a number of video streams simultaneously.
The download strategy is specified byq, the number of simulta-
neous streams from which the client can download frames at any
time. For example, forq = 4, the client downloads segments at
their next occurrence for at most four streams at a time.

A central characteristic of a periodic broadcasting scheme
(CBR and VBR) is the manner in which the videos are seg-
mented. In general, each video is divided intoK segments
according to a series of terms referred to as broadcast se-
ries [1] [6] [7] [2]. Let [e1; e2; : : : ; eK�1; eK] be a general
broadcast series. The series specifies that the first segment of
each video consists ofe1 units, the second segment ofe2 units,
etc. Without any loss of generality, sete1 = 1. LetNi(m) in-
dicate the number of frames in theith segment of themth video
The broadcast series implies that successive segment sizes are
related byNi(m) = eiN1(m); i = 2; : : : ;K The size of the
first video segment is determined by the equation

N1(m) =
N (m)

(e1 + e2 + : : :+ eK�1 + eK)
: (1)

Thus, a broadcast series[e1; e2; : : : ; eK�1; eK] and video
lengthN (m) completely specifies all segment sizes.

An important requirement of a periodic broadcasting scheme
is that it must allow the delivery of the video in a continuous
and timely fashion. In other words, the delivery scheme must
permit the display of the decoded video at the client without
interruptions. This requirement is referred to as the continu-
ity condition. Whether a certain scheme satisfies the continu-
ity condition, givenF andN (m), depends on the value ofq
and the specific form of broadcast series used. For example,
considerq = 1, i.e., the client can download frames from only
one stream at a time. In this case, the uniform broadcast series
[1; 1; : : : ; 1] is the only type of series that results in a feasible de-
livery scheme. Whenq = 2, the series of increasing terms given
in [6] and [7] both satisfy the continuity requirement. Finally, in
the extreme case whenq = K, a larger set of broadcast series
results in feasible delivery schemes. For example the geometric
series[1; 2; : : : ; 2K�1] meets the continuity condition.

As a specific example, consider the continuity condition for
[1; 2; : : : ; 2K�1]. The broadcasting strategy for this series is il-
lustrated in Figure 1 forK = 4 and just a single video. Since
q = K, the client can download frames from all video streams
simultaneously. As a result, each of the four segments can be
received at its next broadcast. The following argument shows

segment 2
segment 1

segment 3
segment 4

Fig. 1. Broadcasting strategy for geometric series withek = 2
k�1.

that the continuity condition is indeed satisfied for this broad-
cast series andq combination. Consider two successive video
segments of sizesNi(m) andNi+1(m). The continuity condi-
tion is satisfied if the second segment becomes available before
or at the time the broadcast of the previous segment ends. Since
the sizes of the two segments are related byNi+1 = 2 �Ni(m),
the broadcasts of the segments either begin or end at the same
time. In the case when the broadcasts begin simultaneously, seg-
menti + 1 becomes available early and can be downloaded and
stored by the client in the playback buffer. In the case when the
broadcasts end at the same time, a broadcast of segmenti + 1

immediately follows that of segmenti, and continuity is main-
tained.

Start-up latency is defined as the maximum delay experi-
enced by a user before the commencement of a video. This
latency is equal to the maximum access time of the first seg-
ment of the video, which equals the broadcast duration of the
segment. We letL(m) indicate the start-up latency for themth

video. We haveL(m) =
N1(m)

F
. For a general broadcast se-

ries[e1; e2; : : : ; eK�1; eK] wheree1 = 1, the start-up latency is
given by:

L(m) =
N (m)

F �

P
K

i=1 ei
: (2)

As seen from (2), the start-up latency associated with a periodic
broadcasting scheme is decreased for higher values ofK. Addi-
tionally, for a given value ofK, the start-up latency is decreased
when a fast growing broadcast series is utilized.

With VBR video, there are two performance measures, start-
up latency and loss probability. As we shall see, there is a
trade-off between these two measures. We define the proba-
bility of loss to be the long-run fraction of bits lost from the
video streams during broadcasting. To determine this fraction,
we index each video stream by a tuple(m; k), wherem indi-
cates the video andk the specific video segment that is sent by
the stream. Loss of bits occurs when the aggregate bit rate of
the traffic (i.e., from allMK streams) exceeds the link’s capac-
ity, C. Let yt(m; k) denote the number of bits sent by stream
(m; k) during frame timet. Then,yt(m; k) can be expressed as
a function of the trace sequencexm(n) as follows:

yt(m; k) = xm(j) (3)

wherej is given by

j =

k�1X
i=1

Ni(m) + remainder

�
t

Nk(m)

�
: (4)

Note thatj represents the index for the frame of themth video
(i.e., j = 1; : : : ; N) that is sent during frame timet. Observe
also that the value ofj depends on the resulting segment sizes
after division of the video. We next determineyt, the total

number of bits that reach the link during frame timet. Given
yt(m; k) for m = 1; : : : ;M , k = 1; : : : ;K, yt is computed as
yt =

P
M

m=1

P
K

k=1 yt(m; k).
In our bufferless model, bits are lost from the video streams

if the aggregate amount of traffic that arrives at the link during
frame timet exceeds the link’s capacity. Thus, loss occurs in
frame timet if yt > C

F
.

We express the long-run fraction of traffic lost byPloss. We
have:

Ploss= lim
T!1

of bits lost up to frame timeT
total # of bits sent up to frame timeT

= lim
T!1

P
T

t=1(yt � C=F)+P
T

t=1 yt
: (5)

Small start-up latency and small loss probability are conflict-
ing objectives. The start-up latency is minimized for high val-
ues ofK. On the other hand, the aggregate amount of traffic
that reaches the link in a frame time increases withK in ap-
proximately a linear fashion. Thus, the fraction of bits lost in
the long-run also increases withK. In the next section, we
present numerical results from the simulation of a specific pe-
riodic broadcasting scheme that illustrate the tradeoff between
start-up latency and loss probability.

III. N UMERICAL EXAMPLE: GEOMETRIC SERIES

To illustrate the use of VBR video with periodic broadcast-
ing, we focus our numerical work on one download strategy and
broadcast series. The techniques developed in this paper can be
applied to an arbitrary download strategy and broadcast series
(as long as the continuity condition holds). Specifically, we use
q = K and the geometric series[1; 2; : : : ; 2K�1] to segment the
videos. As a consequence, the client can download each of the
K segments at their next occurrence. Recall from Section 2 that
a periodic broadcasting scheme utilizing the above broadcast se-
ries and pipelining combination satisfies the continuity condi-
tion. In our numerical example, we also make the assumption
that receiver storage is not a constraining factor. In other words,
we assume that playback buffers at the clients are large enough
to receive and store all incoming segments without loss. When
receiver storage is a constraint, an approach presented in [6], in
which segment sizes are restricted to a maximum valueW , can
instead be employed.

We obtained 7 MPEG encoded movies from the public do-
main [16] [17] [18]. The trace of each movie gives the number
of bits in each frame. The seven encoded movies were used to
create 10 “pseudo traces” each 160,000 frames long. Table 1
summarizes statistics associated with the resulting traces. The
10 traces used in the numerical study were created from the 7
movies in the following manner. The first five traces were cre-
ated using the encoded movies in [18]. Since each of the orig-
inal movies is 40,000 frames long, the trace sequence of each
movie was repeated four times. Each resulting trace sequence
of 160,000 frames was then multiplied by a constant to bring
the average bit rate to 2 Mbps. The sixth trace was created by
repeating four times the first 40,000 frames of the MPEG en-
coding obtained from [17] and then manipulated such that its

Frames GoPs

Trace peak/mean st. dev (Mbits) peak/mean st. dev (Mbits)
bond 10:1 2:11 4:2 1:10

lamps 18:4 3:06 3:3 1:57

mr. bean 13 2:34 5:0 0:48

soccer 6:9 1:91 3:7 1:87

terminator 7:3 1:86 2:8 2:13

wiz. of oz 8:4 2:48 3:2 3:48

star wars 1 10:9 2:45 3:7 2:37

star wars 2 13:2 2:34 4:4 2:57

star wars 3 12 2:31 3:1 2:77

star wars 4 8:5 2:14 3:2 2:96

TABLE I

TRACE STATISTICS

average bit rate is 2 Mbps. Finally, the MPEG encoding ob-
tained from [16] was first divided into four parts 40,000 frames
each. The resulting movie segments were repeated four times to
create 4 different trace sequences of 160,000 frames. The trace
sequences were finally multiplied by constants to create the last
four traces illustrated in Table 1 with average bit rates equal to
2 Mbps. Although the ten pseudo traces are not traces of ac-
tual movies, we believe that they reflect the characteristics of
MPEG-2 encoded movies (highly bursty, long-range scene de-
pendence, average rate about 2 Mbps).

In summary, we haveM = 10VBR-encoded videos (F = 25

frames/sec) each of which has 160,000 frames, i.e.,N (m) =

N = 160; 000 frames, and a length of approximately 107 min-
utes. As illustrated in Table 1, the traces used in the numerical
study have high peak/mean ratios and standard deviations.

Our numerical study of the periodic broadcasting scheme fo-
cuses on start-up latency and probability of loss. The start-
up latency is computed according to (2) for a general periodic
broadcasting scheme. Using the sum of a geometric series with
ek = 2k�1 as the sum of the generic broadcast series yields

L =
N

F � (2K � 1)
(6)

for each video. The probability of loss is expressed by the ex-
pected fraction of bits lost from the video streams during broad-
casting as shown in (5). In general, to obtain an accurate ap-
proximation ofPloss, it is necessary to perform a simulation
of the periodic broadcasting scheme over a large number of
frame times. In our case, however, the use of geometric series
[1; 2; : : : ; 2K�1] for segmenting the videos introduces a peri-
odicity in the aggregate traffic patternyt. The same aggregate
traffic pattern repeats everyNK frame times whereNK is the
size of the largest segment of each video. As a result, we can
determinePloss by simulating the system for the firstNK frame
times. Thus, we compute the loss probabilityPloss as follows:

Ploss=

P
NK

t=1(yt �C=F)+P
NK

t=1 yt
: (7)

To obtain confidence intervals on the loss probability, we per-
form multiple independent replications of the broadcasting in
which the broadcast traffic pattern varies. To allow for repli-
cations using the available set of traces, we introduce a random
shift in what we consider the starting point of each trace. In each
replication of the broadcasting scheme, 10 random numbers are

drawn from a uniform distribution between[1; 160000] to de-
termine random starting points for each of the traces. Starting
from the random points, a perturbed trace of 160,000 frames is
obtained for each of the videos by wrapping each trace around
until the original starting point is reached. In each replication,
the segmentation of the videos is performed in the manner spec-
ified by the broadcast series using new perturbed traces.

A. Bufferless Statistical Multiplexing

In this subsection, we study the performance of the periodic
broadcasting scheme when the original VBR traffic is statisti-
cally multiplexed over a bufferless link. The results illustrate the
start- up latency and probability of loss levels achieved by dif-
ferent values ofK. We only consider values ofK that generate
start-up latencies in the range 0-16 minutes and loss probabili-
ties below 0.1. The start-up latencies resulting from differentK

values are independent of the link’s capacity. Recall that when
the geometric series is used to segment the videos, start-up la-
tency decreases exponentially withK. It is easily seen from (6)
that for start-up latencies below 2 minutes,K must be at least 6.
Start-up latencies below half a minute result from values ofK

that are at least 9. As the number of segmentsK increases, the
probability that bits will be lost from the video streams also be-
comes higher. Our results specify this tradeoff between start-up
latency and the probability of loss.

In Figure 2, the probability of loss,P loss, is plotted against
start-up latency for three levels of link capacity. The figure
shows the average loss probability and 90% confidence inter-
vals for the average, whose length is smaller than 10% of the
estimated mean. As the figure illustrates, the loss probability
associated with each start-up latency value, or equivalently with
each value ofK, varies according to link capacity. Each point
on the curve for a single bandwidth level corresponds to a spe-
cific value ofK. Depending on the available link capacity, fea-
sibleK values range between 3 and 10. LowerK values result
in start-up latencies that exceed 16 minutes while higher values
generate loss probabilities above 0.1. Figure 2 illustrates the
tradeoff betweenPloss and start-up latency with varyingK. For
start-up latency values below 2 minutes, the probability of loss
is high (i.e., in the order of10�4 or higher) for all the levels of
link bandwidth examined. While this loss-latency tradeoff is a
key characteristic of periodic broadcasting with VBR-encoded
video, it is not an issue for broadcasting CBR-encoded video.
The constant rate traffic in the CBR schemes allows the chan-
nel’s bandwidth to be allocated among the videos in a manner
that guarantees no loss due to channel overflow.

The results obtained for bufferless statistical multiplexing
of the VBR-encoded streams indicate that if it is desirable to
achieve latency values below 2 minutes, high probabilities of
loss will be incurred resulting in unacceptable levels of quality
degradation in the decoded video. This has motivated us to re-
fine our multiplexing schemes to improve performance. In the
following sections, we examine three different methods for lim-
iting loss. The first is GoP smoothing on the VBR traces prior
to broadcasting. The second is buffered statistical multiplexing
by the addition of a finite buffer at the server link. The third
uses prefetching of video frames during periods of time when
the shared link’s bandwidth is under utilized.

−2 0 2 4 6 8 10 12 14 16
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

P
lo

ss

Start−up latency (min)

C=85 Mbps
C=145 Mbps
C=205 Mbps

Fig. 2. Bufferless statistical multiplexing.

IV. I MPROVING PERFORMANCE

A. GoP Smoothing

We investigate the effect of GoP smoothing on the perfor-
mance of the broadcasting scheme. We first obtain results for
the case when the video traces are smoothed over each GoP pe-
riod for link capacities ranging from 85 to 205 Mbps. The re-
sults are plotted in Figure 3. The total start-up latency shown
in the plot is the sum of the maximum access time for the first
video segment and the delay introduced due to smoothing over
one GoP period. This additional delay is equal to the length of
a GoP period. For example, when the GoP size is equal to 12
frames and the broadcast rate is 25 frames per second, the ad-
ditional start-up delay introduced due to smoothing equals 0.48
seconds.

We observe a significant improvement in the loss probability
due to GoP smoothing for all three link capacities studied. Note
that improvement inPloss occurs at the expense of only a small
increase in the total playback delay, i.e., an additional delay of
0.48 seconds.

We now focus on the case whenC = 145 Mbps. Our numer-
ical study aims at examining the effect of further smoothing on
the loss probability. Instead of smoothing the video traces over
each GoP period, we employ smoothing of each trace over inter-
vals that consist of a larger number of GoP periods. The results

0 2 4 6 8 10 12 14 16
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

P
lo

ss

Start−up latency (min)

C=85 Mbps
C=145 Mbps
C=205 Mbps

Fig. 3. Bufferless multiplexing with smoothing over each GoP period.

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

P
lo

ss

Total start−up latency (min)

1 GoP
10 GoP
30 GoP
60 GoP
104 GoP
120 GoP

Fig. 4. Smoothing over many GoP periods (C = 145Mbps).

are shown in Figure 4. We concentrate on values ofK equal
to 6 and 7, since for smallerK Ploss is zero for all smoothing
policies. Let us first consider the cluster of points in the 1.5-2.8
minute interval on the latency scale. These points correspond
to different smoothing policies forK = 6. Clearly, smoothing
over intervals of 10 or 30 GoP periods, results in a considerable
decrease inPloss. Smoothing over intervals of 60 to 120 GoP
periods introduces a longer smoothing delay without affecting
Ploss. Thus, whenK = 6, smoothing over intervals longer than
30 GoP periods is not only unnecessary but also undesirable. We
refer to points that correspond to longer total start-up latencies
with no further improvement inP loss asdominated. Now con-
sider the leftmost cluster of points in the 0.5-2 minute latency
interval for whichK = 7. These points are non-dominated in
the sense there is always an improvement inPlosswith increasing
latency. We observe however that the decrease inPloss achieved
by smoothing over longer periods is not significant relative to
the added delay introduced by smoothing.

Finally, observe that smoothing over very long intervals (i.e.,
intervals of 120 GoP periods), results in additional delays which
are significant enough to also cause dominance between clusters
of points that correspond to differentK values. In particular, di-
vision of the video files into 7 segments when smoothing over
intervals of 120 GoP periods is implemented, results in higher
latency than division into 6 segments with smoothing over 1
GoP period. In conclusion, smoothing over a higher number of
GoP periods does not have an adverse effect when low start-up
latencies are desirable.

B. Buffered Statistical Multiplexing

In this section we consider buffered statistical multiplexing
(with no smoothing) of the video streams by introducing a finite
buffer of sizeB at the server link. We varyB in the range 72
to 8700 Mbits, corresponding to an additional start-up delay of
0.5 to 60 sec. (The added delay is equal toB=C seconds, which
is the maximum possible delay that can be introduced due to
buffering.) The results are shown in Figure 5 forC = 145Mbps.
The total start-up latency in the buffered case is the sum of the
maximum access time for receiving the first video segment plus
an added delay due to the buffer. To facilitate comparison of
results, we include the case of bufferless statistical multiplexing.

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

P
lo

ss

Total start−up latency (min)

B=0 Mbits
B=72 Mbits
B=725 Mbits
B=1450 Mbits
B=4350 Mbits
B=7250 Mbits
B=8700 Mbits

Fig. 5. Buffered statistical mutliplexing (C = 145Mbps).

Figure 5 shows results forK = 6; 7. We observe that a buffer
of size 72 Mbits has a significant positive effect on the loss prob-
ability in comparison to the case of bufferless statistical multi-
plexing with no smoothing. For instance, a start-up latency of
approximately 1.7 minutes (K = 6) can be achieved withPloss

equal to zero. Bufferless statistical multiplexing, on the other
hand, results inPloss in the order of10�2. Increasing the size of
the buffer to values higher than 72 Mbits, whenK = 6, results
in dominated points. WhenK = 7, increasing the size of the
buffer achieves consistent improvement inPloss. Note however,
that the improvement inPloss becomes less significant as the
buffer sizes increase. The most dramatic improvement occurs
for an increase of the buffer size from 0 to 72 Mbits. Increas-
ing the buffer size from 4350 to 8700 Mbits, however, results
in a significant added delay of 0.5 minutes for a more moder-
ate improvement inPloss. Using a buffer of 8700 Mbits when
K = 7 generates a dominated point. Thus, in this example, uti-
lizing buffers that introduce (maximum) delays longer than 30
seconds is not desirable. To limit loss it is instead preferable to
use a smallerK.

C. Join-the-Shortest Queue Prefetching

The Join-the-Shortest-Queue prefetching protocol was orig-
inally developed for the client centered streaming of VBR-
encoded video over a shared bufferless link [13]. Before we
discuss how the JSQ protocol can be applied to the data cen-
tered near VoD systems studied in this paper, we briefly discuss
its underlying idea. The JSQ protocol is based on the observa-
tion that due to the VBR nature of the multiplexed video streams
there are frequent periods of time during which the shared links’
bandwidth is under utilized. During these periods the server can
prefetch video frames from any of the ongoing video streams
and send the prefetched frames to the buffers in the appropriate
clients. As a result, many of the clients will typically have some
prefetched reserve in their buffers. The JSQ protocol also speci-
fies the policy for selecting the prefetched frames. According to
the JSQ policy, within each frame period the server repeatedly
selects frames from the connections that have the smallest num-
ber of prefetched frames in their client buffers. Empirical work
with MPEG-1 traces in [13] indicates that prefetching combined
with the JSQ policy gives dramatic reductions in loss. In particu-

lar, if each client dedicates a small buffer to the video streaming
application, JSQ prefetching allows for almost 100% utilization
on the shared link with negligible loss. For a detailed discussion
of the JSQ protocol for client centered video streaming we refer
the reader to [13].

We proceed to explain how to apply the JSQ protocol to the
data centered near VoD system. We introduce the concept of
virtual buffers. We assign to each stream(m; k) a virtual buffer
which tracks the buffer contents of a client that is tuned in
to stream(m; k) at all times and repeatetly displays segment
(m; k). Note that the system ofMK virtual buffers receiving
MK distinct video streams constitutes a client centered video
streaming system. The JSQ protocol of [13] can therefore read-
ily be applied to the system of virtual buffers. We first describe
in detail the protocols’ operation in the system of virtual buffers.
We then explain how the system of virtual buffers relates to the
actual near VoD system.

In explaining the details of the JSQ protocol we divide time
into slots of length1=F . Let pt(m; k) denote the number of
prefetched frames in virtual buffer(m; k) at the beginning of
slot t. Let �t(m; k) denote the number of frames that arrive
to virtual buffer (m; k) during slott. At the end of each slot
one frame is removed and displayed, provided the virtual buffer
holds one or more frames. Thus

pt+1(m; k) = [pt(m; k) + �t(m; k)� 1]+: (8)

If the frame scheduled to be displayed at the end of the slot does
not arrive in time, the virtual buffer is starved and the frame is
considered lost. The server skips the transmission of a frame
that will not meet its deadline at the virtual buffer. For each
of theMK virtual buffers the server keeps track of the buffer
contentspt(m; k) through (8).

During each slot of length1=F seconds the server decides
which frames to transmit from theMK ongoing streams. This
is done according to the JSQ prefetch policy. The maximum
number of bits that can be transmitted in a slot isC=F . The JSQ
prefetch policy attempts to balance the number of prefetched
frames across all virtual buffers. In describing the policy we
drop the subscriptt. Let z be a variable that keeps track of
the total number of bits sent within a slot. At the beginning of
the each slot the server determines the stream(m�; k�) with the
smallestp(m; k) and checks whether

z + x�(m� ;k�)(m
�) � C=F; (9)

where �(m�; k�) is the frame of videom� considered for
transmission. If (9) holds, we transmit the frame, increment
p(m�; k�) and updatez. If (9) is violated, we remove the stream
(m�; k�) from consideration and find a new stream(m�; k�)
that minimizesp(m; k). If (9) holds for the frame of the new
stream(m�; k�), we transmit the frame and updatep(m�; k�)
andz. We then continue the procedure of transmitting frames
from the streams that minimize thep(m; k)’s. Whenever a
frame violates (9) we skip the corresponding stream and find
a new stream(m�; k�). Once all streams have been skipped,
we setp(m; k) = [p(m; k) � 1]+ for all m = 1; : : : ;M and
k = 1; : : : ;K and move on to the next slot.

To employ the JSQ protocol in the near VoD system, the
server needs to schedule the broadcast of the frames of theMK

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

P
lo

ss

Start−up latency (min)

bufferless multiplexing
JSQ prefetching

Fig. 6. Comparison of JSQ prefetching and bufferless statistical mutliplexing.

video streams as if they were being sent to theMK distinct vir-
tual buffers. The clients tune in to a video and store the frames of
the currently displayed segment that arrive early while retriev-
ing and displaying each frame as its deadline arrives. Note that
prefetching does not interfere with the continuity condition.

How do the virtual buffers relate to the buffers in the clients
of the near VoD system? When the geometric broadcast series
ek = 2k�1 is used, the lengths of any two successive segments
(m; k) and(m; k + 1) satisfyNk+1(m) = 2 � Nk(m). Hence,
each two segments either begin or end at the same time. First,
consider the case when the two segments end at the same time,
i.e., the ends of segments(m; k) and(m; k + 1) coincide. In
this case the client starts to receive and display the next broad-
cast of segment(m; k+1) immediately after segment(m; k) has
ended. During the broadcast of segment(m; k + 1), the buffer
contents of the client in the near VoD system and the buffer con-
tents of the virtual buffer in the virtual buffer system are exactly
the same. Hence, whenever loss occurs in the virtual buffer sys-
tem, the near VoD system suffers exactly the same loss. In the
case when the segments begin at the same time, the client re-
ceives and displays segment(m; k) while segment(m; k+1) is
being received and stored. When segment(m; k) ends, the be-
ginning of segment(m; k + 1) is displayed. In other words, the
display of segment(m; k + 1) is delayed byNk(m) frame pe-
riods by the client. This implies that whenever frame starvation
occurs at the virtual buffer, loss is detected at the clientNk(m)

frame periods later. The long-run loss probability is therefore
the same for both systems.

In Figure 6 we plot the results of a simulation study of the
JSQ protocol withC = 145 Mbps. We compare the JSQ results
with the results obtained for bufferless statistical multiplexing
in Section 3-A. Note that the JSQ protocol runs over a buffer-
less link. We observe that the JSQ protocol brings significant
improvement over simply multiplexing the video streams onto
the bufferless link. ForK = 7 (i.e., a start-up latency of 50.4
seconds) the loss probability drops from roughly6 � 10�2 to ap-
proximately3 � 10�4 with JSQ prefetching.

We next develop a refinement of the JSQ protocol, which al-
lows the virtual buffers and clients in the near VoD system to
build up a reserve of frames over a certain period of time. We
refer to the length of the period of time during which frames are

prefetched but not consumed as the prefetch delay, denoted by
dpre frame periods. We refer to the refined JSQ protocol as JSQ
prefetching with prefetch delay. The total start-up latency in this
case isL = (N1 + dpre)=F .

JSQ prefetching with prefetch delay of segments generated
according to the geometric broadcast seriesek = 2k�1 satisfies
the continuity condition. Consider any two successive segments
(m; k) and(m; k + 1). Recall that the segments either begin
or end at the same time. In the case when the segments begin
at the same time, prefetching for the segments also starts at the
same time, i.e., (dpre frame periods before the display of seg-
ment(m; k) starts). The start of segment(m; k + 1) is hence
already stored in the client buffer when the display of segment
(m; k) ends. When the segments(m; k) and(m; k + 1) end at
the same time, the server starts to prefetch frames for the next
broadcast of segment(m; k + 1) dpre frame periods before the
current broadcast of that segment ends. This ensures that the
start of segment(m; k + 1) is available when segment(m; k)
ends.

Figure 7 shows the results of a simulation of JSQ prefetch-
ing with prefetch delay forC = 145 Mbps andK = 7. The
introduction of the prefetch delay improves the loss probability
significantly. For a prefetch delay of 10 sec, the loss probability
decreases from3 � 10�4 to 9 � 10�5. Increasing the prefetch de-
lay to 50 sec results in a total start-up latency of 100.4 sec and
a lower loss probability of6:6 � 10�6. Observe from Figure 6,
however, that JSQ prefetching without prefetch delay results in
a total start-up latency of 100.7 sec and a loss probability equal
to6�10�8 whenK = 6. This indicates that to achieve a low loss
probability, it is preferable to use a smallerK rather that a long
prefetch delay. This observation parallels the conclusion of Sec-
tion 4-B on buffered multiplexing which indicated that smaller
K gives better performance than the use of very large buffers.

We now compare the performance of buffered multiplexing,
GoP smoothing and JSQ prefetching in terms of their effective-
ness in limiting the loss probability. We generate the domi-
nance curves corresponding to Figures 4, 5 and 7. The dom-
inance curves specify the non-dominated points generated by
each technique for different levels of the key parameters (i.e.,
different buffer sizes, smoothing intervals and prefetching de-
lays). The results, illustrated in Figure 8, indicate that for simi-

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
10

−6

10
−5

10
−4

10
−3

P
lo

ss

Total start−up latency (min)

d
pre

=0 sec
d

pre
=0.5 sec

d
pre

=5 sec
d

pre
=10 sec

d
pre

=30 sec
d

pre
=50 sec

Fig. 7. JSQ prefteching with pretech delay.

0.8 1 1.2 1.4 1.6 1.8 2
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

P
lo

ss

Total start−up latency (min)

GoP smoothing
buffered multiplexing
JSQ prefetching

Fig. 8. Dominance curves for GoP smoothing, buffered multiplexing and JSQ
prefetching.

lar latencies, JSQ prefetching gives the lowest loss probabilities.
We observe that the loss probabilities associated with buffered
multiplexing can be an order of magnitude higher than the ones
generated by JSQ prefetching. We note, however, that buffered
multiplexing attains the performance of JSQ prefetching for ex-
tremely low levels of loss in this example. Finally, as it is clearly
seen in Figure 8, JSQ prefetching and buffered multiplexing is
more effective in terms of limiting the loss probability than GoP
smoothing.

V. VBR AND CBR COMPARED

Having shown how to design high-performance periodic
broadcasting schemes for VBR-encoded video, we now com-
pare the latency performance of CBR and VBR encoded video.
In order to make a true comparison, we need to know how much
CBR bandwidth is needed to achieve the image quality of open-
loop VBR encoding. Unfortunately, we do not have this infor-
mation for the traces in this paper. However, recent studies have
shown that for movies and sporting events, the ratio of the aver-
age rate for CBR encoding to the average rate for VBR encoding
is in the 2.0 range if not greater [9] [10]. Therefore, to compare
VBR with CBR we will make the conservative assumption that
the ratio is 1.8, i.e., CBR has an average rate 80% higher than
VBR encoding for each of the traces. Since each of our VBR
traces has an average bit rate of 2 Mbps, each of the CBR videos
has a bit rate of 3.6 Mbps. With a known CBR rate and channel
rate, it is easy to determine the start-up latency for CBR for the
caseq = K and a geometric broadcast series [7].

The CBR start-up latencies are given in Table 2 for three link
capacities. In Table 2 we also present the start-up latencies for
buffered multiplexing of VBR-encoded video. (We use buffered
multiplexing instead of JSQ prefetching because it requires less
time for simulation; JSQ prefetching can give even better per-
formance.) For the buffered multiplexing, we chose theK value
and buffer size combination which gives the lowest delay while
having a loss probability less than10�7 (essentially a negligible
loss probability). We see that for each of the link capacities, our
VBR multiplexing scheme has reduced the start-up latency by
more than a factor of 4.

The dramatic reduction in start-up latency is primarily due to

C(Mbps) Latency of CBR Latency of VBR

85 35:6 7:3

145 7:1 1:7

205 3:4 0:2

TABLE II

LATENCY IN MINUTES OF CBR AND VBR VIDEO

the fact that the latency decreases exponentially fast withK, the
number of segments in the broadcast series. The lower average
rate of VBR allows us to increaseK, and thereby obtain signif-
icant reductions in start-up latency.

ACKNOWLEDGMENTS

This work has been supported partially by NSF grant NCR97-06495. Eure-
com’s research is partially supported by its industrial partners: Ascom, Cegetel,
France Telecom, Hitachi, IBM France, Motorola, Swisscom, Texas Instruments,
and Thomson CSF.

REFERENCES

[1] C. C. Aggarwal J. L. Wolf P. S. Yu, “A permutation-based pyramid broad-
casting scheme for video-on-demand systems,” inProc. of the IEEE Int’l
Conf. on Multimedia Systems, Hiroshima, Japan, June 1996.

[2] S. Viswanathan T. Imielinski, “Metropolitan area video-on-demand ser-
vice using pyramid broadcasting,”Multimedia Systems, vol. 4, no. 4, pp.
197–208, August 1996.

[3] K. Almeroth M. H. Ammar, “The use of multicast delivery to provide
a scalable and intercative video-on-demand service,”IEEE Journal on
Selected Areas in Communications, vol. 16, no. 6, pp. 1110–1122, 1996.

[4] W. D. Sincoski, “System architecture for a large scale video on demand
service,”Computer Networks and ISDN systems, vol. 22, 1991.

[5] D. Sitaram P. ShahabuddinA. Dan, “Schedulingpolicies for an on-demand
video server with batching,” inProc. of ACM Multimedia, San Francisco,
California, October 1994, pp. 15–23.

[6] K. A. Hua S. Sheu, “Skyscraper broadcasting: A new broadcastingscheme
for metropolitan video-on demand systems,” inProc. of the ACM SIG-
COMM, Cannes, France, September 1997.

[7] K. A. Hua Y. Cai S. Sheu, “A Client-Centric Approach to designing peri-
odic broadcast schemes,” Tech. Rep. CS-TR-98-02, School of Computer
Science, University of Central Florida, Orlando, Florida, January 1998.

[8] T. V. Lakshman A. Ortega A. R. Reibman, “VBR Video: Trade-offs and
potentials,” inProceedings of the IEEE, May 1998, vol. 86, pp. 952–973.

[9] I. Dalgic F. A. Tobagi, “Characterization of quality and traffic for vari-
ous video encoding schemes and various encoder control schemes,” Tech.
Rep. CSL-TR-96-701, Departments of Electrical Engineering and Com-
puter Science, Stanford University, August 1996.

[10] W. S. Tan N. Duong J. Princen, “A comparison study of variable bit rate
versus fixed bit rate video transmission,” inAustralian BroadbandSwitch-
ing and Services Symposium, 1991, pp. 134–141.

[11] W. Luo M. El Zarki, “Analysis of error concealment schemes for MPEG-
2 video transmission over ATM based networks,” inProceedings of SPIE
Visual Communications and Image Processing, Taiwan, May 1995.

[12] M. Reisslein K. W. Ross, “Call Admission for prerecorded sources with
packet loss,”IEEE Journal on Selected Areas in Communications, vol. 15,
no. 6, pp. 1167–1180, August 1997.

[13] M. Reisslein K. W. Ross, “A join-the-shortest-queue prefetching protocol
for VBR video on demand,” inIEEE International Conference on Network
Protocols, Atlanta, GA, October 1997.

[14] M. Reisslein K. W. Ross V. Verillotte, “A decentralized prefetching proto-
col for VBR video on demand,” inMultimedia Applications, Services and
Techniques-ECMAST (Lecture Notes in Computer Science), D. Hutchi-
son R. Schafer, Ed., vol. 1425, pp. 388–401. Springer Verlag, Berlin, Ger-
many, May 1998.

[15] M. Reisslein K. W. Ross, “High-Performance Prefetching Protocols for
VBR Prerecorded Videoxb,”IEEE Network, vol. 12, no. 6, Nov/Dec 1998.

[16] M. W. Garret A. Fernandez, “Variable bit rate video bandwidth trace using
MPEG code,” Nov 1994.

[17] M. Krunz R. Sass H. Hughes, “Statistical characteristics and multiplexing
of MPEG streams,” inProceedings of the IEEE INFOCOM, April 1995,
pp. 455–462.

[18] O.Rose, “Statistical properties of MPEG video traffic and their im-
pact on traffic modelling in ATM systems,” Tech. Rep. 101, Univer-
sity of Wuerzburg, Institute of Computer Science, Am Hubland, 97074
Wuerzburg, Germany, February 1995, ftp://ftp-info3.informatik.uni-
wuerzburg.de/pub/MPEG/.

