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Full-Duplex MIMO Small-Cell Networks
with Interference Cancellation
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Abstract—Full-duplex (FD) technology is envisaged as a key
component for future mobile broadband networks due to its
ability to boost the spectral efficiency. FD systems can transmit
and receive simultaneously on the same frequency at the expense
of residual self-interference (SI) and additional interference to the
network compared with half-duplex (HD) transmission. This
paper analyzes the performance of wireless networks with FD
multi-antenna base stations (BSs) and HD user equipments (UEs)
using stochastic geometry. Our analytical results quantify the
success probability and the achievable spectral efficiency and
indicate the amount of SI cancellation needed for beneficial FD
operation. The advantages of multi-antenna BSs/UEs are shown
and the performance gains achieved by balancing desired signal
power increase and interference cancellation are derived. The
proposed framework aims at shedding light on the system-level
gains of FD mode with respect to HD mode in terms of network
throughput, and provides design guidelines for the practical
implementation of FD technology in large small-cell networks.

Index Terms—Full duplex, interference cancellation, multiple
antennas, performance analysis, small cells, stochastic geometry,
ultra-dense networks.

I. INTRODUCTION

Full-duplex (FD) communication is an emerging technology
that has been recognized as one of the promising solutions
to cope with the growing demand for high data rates. Indeed,
allowing the network nodes to transmit and receive over
the same time/frequency resources can potentially double
spectral efficiency with respect to the half-duplex (HD)
counterparts (i.e., time- and frequency-division duplex) [3].
However, there are three major technical challenges hindering
the implementation of FD cellular networks. First, the signal
reception is affected by the self-interference (SI), i.e., the signal
leakage resulting from the imperfect isolation between transmit
and receive antennas [4]. Second, inter-node interference
arises due to the simultaneous uplink (UL)/downlink (DL)
communications of nodes in the same cell [5]. Third, the
concurrent, aggressive utilization of both forward and reverse
links doubles the interference between neighboring cells [6].

Recently, there has also been an increasing interest in
network densification as a means to fulfill the performance
requirements of 5th generation (5G) wireless systems [7].
In particular, ultra-dense networks (UDNs), i.e., the dense
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and massive deployment of small-cell base stations (BSs), is
regarded as a key enabler for providing higher data rates and
enhanced coverage by exploiting spatial reuse. Interestingly,
small-cell BSs prove particularly suitable for the deployment
of FD technology thanks to their reduced transmit power and
the low mobility of their user equipments (UEs). In this respect,
the hybrid FD/HD network configuration, with small-cell BSs
operating in FD mode and UL/DL nodes operating in HD
mode, is appropriate for UDN scenarios since it exploits the
throughput gains promised by FD at the BSs while reducing
the overall interference of the system [6], [8]. This hybrid
FD/HD architecture can be used either for serving an UL node
and a DL node separately (with two independent data flows)
or for relaying purposes to increase coverage between an UL
node and a DL node (with the same data flow being received,
amplified, and re-transmitted by the FD BS) [3].

A. Related Work

Due to the extra interference terms introduced in FD mode
(see Figure 1), it is not clear how the network throughput and
the aggregate interference will behave in dense multi-cell FD
systems. Several recent works have examined the performance
of large-scale FD networks using stochastic geometry, which
is a powerful mathematical framework that provides models
and tools for efficiently analyzing the performance of UDNs
and heterogeneous cellular/ad hoc networks [9].

References [10], [11] study the performance of bipolar
networks and multi-tier heterogeneous networks, respectively,
consisting of both HD and FD nodes, and quantify the impact
of imperfect SI cancellation. Interestingly, the two papers reach
the same conclusion that operating all nodes in either FD or
HD mode maximizes the area spectral efficiency compared
with a mixture of the two modes. On the other hand, [12] shows
that raising the proportion of FD nodes increases the outage
probability and thus highlights the inherent tradeoff between
coverage and throughput. Furthermore, [8] analyzes the DL
performance of FD self-backhauling small cells in a two-tier
heterogeneous network, showing that the rate could be close
to double that of a conventional HD self-backhauling network
at the expense of reduced coverage. All these works assume
single-antenna nodes, whereas multiple-input multiple-output
(MIMO) nodes are considered by [13] in a single-cell setting
with randomly located DL UEs. Furthermore, [14] analyzes
the impact of directional antennas on the performance of FD
networks with different architectures, showing that antenna
directionality and sectorization are beneficial to mitigate
both the inter-cell interference and the SI. The asymptotic
performance of massive MIMO-enabled backhaul nodes serving
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Figure 1. System model with FD BSs relaying between HD UL and DL
nodes, with corresponding desired and interfering signals.

FD small-cell BSs is studied in [15], where zero-forcing
beamforming allows to reduce the interference among multiple
backhaul data streams. The scenario of FD BSs with massive
antenna arrays and multi-user MIMO is considered in [16],
which shows that the anticipated two-fold spectral efficiency
gain can be only achieved with an infinite number of antennas.

B. Motivation and Contributions

The performance of FD technology with multiple antennas
has not been studied in large-scale systems, if not asymptoti-
cally for massive MIMO. Nevertheless, while massive antenna
arrays are appropriate for macro-cell backhaul nodes, they
are not suitable for small-cell BSs typical of UDN scenarios,
which are usually equipped with a low-to-moderate number of
transmit/receive antennas. Hence, it is meaningful to investigate
the performance of dense FD small-cell networks with multi-
antenna nodes, which is a promising and practically relevant
solution for future mobile broadband networks. In particular, it
is important to analyze the impact of array gain and interference
cancellation techniques in mitigating the additional interference
introduced by FD mode.

On the other hand, assuming that the SI channel is subject
to Rayleigh fading or adopting a constant value to model its
power gain have been common practices in the literature (with
the exception of our previous work [1] and the very recent
paper [17]). However, these are very coarse approximations:
the former neglects the strong line-of-sight signal component
between transmit and receive antennas [4], whereas the latter is
only meaningful when digital cancellation is applied [18]. As a
matter of fact, the residual SI channel is known to be subject to
Rician fading1 and, therefore, its modeling in a MIMO context
represents a challenging problem when receive combining and
transmit beamforming techniques are employed.

Prior work fails to unveil the real potential of MIMO
techniques in large-scale FD small-cell systems, for which a
precise characterization of the SI power is crucial. In this paper,
we fill these gaps by providing the following contributions:

1Before applying active cancellation, the magnitude of the SI channel is
modeled using a Rician distribution with large K-factor due to the strong
line-of-sight component; after applying active cancellation, the line-of-sight
component is reduced, resulting in smaller K-factor [4].

• Using tools from stochastic geometry, we study the perfor-
mance of wireless networks with randomly distributed FD
MIMO relays and derive tight bounds for the probability of
successful transmission when maximum ratio combining
(MRC) and maximum ratio transmission (MRT) are used.
The proposed framework can be used to shed light on the
system-level gains of FD mode with respect to HD mode
in terms of network throughput.
• We appropriately model the SI channel using Rician fading

and we derive the distribution of the SI power for arbitrary
receive combining and transmit beamforming strategies.
The resulting expression approximately follows a gamma
distribution and can be readily incorporated into existing
frameworks for the performance analysis of UDNs.
• We consider interference cancellation techniques at the

receive side of both the FD BSs and the (multi-antenna)
DL nodes. In particular, we analyze different receive
configurations based on partial zero forcing (PZF), which
allows to identify which interference terms are most
critical for the deployment of FD technology and their
interplay.

The rest of the paper is structured as follows. The system
model is introduced in Section II. Section III presents our main
results on the performance analysis of FD MIMO small-cell
networks. The proposed analytical framework is extended in
Section IV to accommodate interference cancellation techniques
at both the FD BSs and the HD DL nodes. In Section V,
numerical results are reported to corroborate our theoretical
findings and to establish under which conditions FD mode
outperforms HD mode. Finally, Section VI summarizes our
contributions and draws some concluding remarks.

II. SYSTEM MODEL

A. Network Model

We consider a set of small-cell BSs operating in FD mode.
Each FD BS acts as relay between an UL node and a DL
node,2 both operating in HD mode, during a given time slot;
all communications occur in the same frequency band. This
general scenario is depicted in Figure 1 and can be used to
model, for instance, the two-hop communication between a
backhaul node and a mobile UEs, or self-backhauled small
cells. In our setting, the FD BSs are equipped with multiple
receive/transmit antennas, whereas the HD UL/DL nodes are
assumed to have a single receive/transmit antenna for simplicity
(as, e.g., in [8]). Alternatively, our model can be seen as an
instance of multi-antenna UL/DL where nodes perform space
division multiple access (SDMA) and send/receive one stream
to/from the FD BS, hence being equivalently seen as single-
antenna nodes by each FD BS [19]. In short, our model consists
of a single-input multiple-output (SIMO) transmission followed
by a multiple-input single-output (MISO) transmission.3

2We assume that the FD BSs adopt a perfect decode-and-forward relaying
scheme; the study of imperfect schemes goes beyond the scope of this paper.

3Observe that such network model where each FD BS is associated with a
single-antenna UL node can be regarded as a tractable approximation of the
more realistic case where several FD BSs are served by the same multi-antenna
UL node, since the number of UL interfering transmissions seen by any FD
BS or DL node is the same for both scenarios.
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Let us thus introduce the stationary, independently marked
Poisson point process (PPP) Φm ,

{
(xi, m̃(xi), m̂(xi))

}
on

R2 ×R2 ×R2. The ground process Φ , {xi}, which includes
the locations of the FD BSs, is a PPP with spatial density λ,
measured in [BSs/m2]. Likewise, Φ̃ , m̃(Φ) = {m̃(x)}x∈Φ

and Φ̂ , m̂(Φ) = {m̂(x)}x∈Φ are the isotropic marks of Φ,
which include the locations of the HD UL and DL nodes,
respectively, with fixed distances of the desired links given
by R̃ , ‖x − m̃(x)‖ and R̂ , ‖x − m̂(x)‖, ∀x ∈ Φ.
Therefore, we have m̃(x) = x + R̃(cos ϕ̃x, sin ϕ̃x) and
m̂(x) = x+R̂(cos ϕ̂x, sin ϕ̂x), with {ϕ̃x, ϕ̂x}x∈Φ independent
and uniformly distributed in [0, 2π]. Evidently, Φ̃ and Φ̂ are also
PPPs with density λ and are dependent on Φ. For convenience,
in the rest of the paper we use the notation m̃x , m̃(x) and
m̂x , m̂(x). Observe that one can consider random distances
of the links by first conditioning on R̃ and R̂ and then averaging
over R̃ and R̂, without affecting the main conclusions of this
paper; a similar network models with fixed distances between
transmitters and receivers have been adopted, among others,
in [10], [20], [21].

B. Channel Model

We assume that the FD BSs and the HD UL nodes transmit
with constant powers ρ̂ and ρ̃, respectively, and that the
FD BSs are equipped with NR receive antennas and NT

transmit antennas.
The propagation through the wireless channel is characterized

as the combination of a pathloss attenuation and a small-scale
fading. Given transmitting node x and receiving node z, we
use the following notation. The pathloss between nodes x and
z is given by the function `(x, z) , ‖x− z‖−α, with pathloss
exponent α > 2. The channels are denoted by Hxz ∈ CNR×NT

if x, z ∈ Φ, as hxz ∈ CNR×1 if x ∈ Φ̃ and z ∈ Φ, as hxz ∈
CNT×1 if x ∈ Φ and z ∈ Φ̂, and as hxz ∈ C if x ∈ Φ̃ and
z ∈ Φ̂; in particular, Hxx models the SI at x ∈ Φ resulting from
its own transmission. We assume that all the channels, except
the SI channel, are subject to Rayleigh fading with elements
distributed independently as CN (0, 1). On the other hand, the
SI channel is subject to Rician fading [4] and, therefore, the
elements of Hxx are distributed independently as CN (µij , ν

2),
where µij ∈ C is the mean of the (i, j)-th element (independent
across elements), with the same absolute mean µ , |µij |,
∀i = 1, . . . , NR, ∀j = 1, . . . , NT. In this regard, one can
measure the Rician K-factor and the SI attenuation Ω between
transmit and receive antennas and determine the absolute mean
and standard deviation of Hxx as (cf. [22])

µ ,

√
KΩ

K + 1
, ν ,

√
Ω

K + 1
. (1)

In addition, let sx be the data symbol transmitted by x with
E[|sx|2] = 1, whereas the additive noise at x is denoted by
nx ∈ CNR if x ∈ Φ and by nx ∈ C if x ∈ Φ̂, with elements
distributed independently as CN (0, σ2). Lastly, vx ∈ CNR and
wx ∈ CNT denote the receive combining and the transmit
beamforming vectors applied by x ∈ Φ, respectively, with
‖vx‖2 = ‖wx‖2 = 1.

C. SINR Characterization

In this section, we characterize the signal-to-interference-
plus-noise ratio (SINR) at the FD BSs and at the HD DL nodes,
which is then used to analyze the probability of successful
transmission, also termed as success probability, in the next
section. Here, we focus on the first hop (i.e., the SINR at the
FD BSs) and the second hop (i.e., the SINR at the HD DL
nodes) separately. Our analysis focuses on a typical FD BS,
indexed by 0, and on its corresponding HD UL/DL nodes,
referred to as typical HD UL/DL nodes and indexed by m̃0

and m̂0, respectively. The two-hop link between these nodes
is representative of the whole network, as detailed next.

First Hop: Consider the typical FD BS located at the origin
of the Euclidean plane and indexed by 0. Due to Slivnyak’s
theorem [9, Ch. 8.5] and to the stationarity of Φ, the statistics
of the typical BS’s signal reception are representative of the
statistics seen by any FD BS: we can thus write `(x, 0) = r−αx ,
with rx , ‖x‖ being the distance of x from the typical FD
BS. Hence, the received signal at the typical FD BS is given
by

y0 ,
√
ρ̃R̃−

α
2 hm̃00sm̃0︸ ︷︷ ︸
(a)

+
∑
x∈Φ

√
ρ̂r
−α2
x Hx0wxsx︸ ︷︷ ︸

(b)

+
∑
x∈Φ

√
ρ̃r
−α2
m̃x

hm̃x0sm̃x︸ ︷︷ ︸
(c)

+
√
ρ̂H00w0s0︸ ︷︷ ︸

(d)

+n0 (2)

where (a) represents the desired signal, (b) and (c) indicate
the interference coming from FD BS x and its associated HD
UL node m̃x, respectively, and (d) represents the SI. Given
the receive combining vector v0, the resulting SINR reads as

SINR0 ,
ρ̃R̃−αSm̃00

I0 + σ2
(3)

where we have defined

Sx0 ,

{
|vH

0 Hx0wx|2, x ∈ Φ

|vH
0 hx0|2, x ∈ (Φ̃ ∪ m̃0)

(4)

and where I0 is the overall interference power at the typical
FD BS, i.e.,

I0 ,
∑
x∈Φ

(
ρ̂r−αx Sx0 + ρ̃r−αm̃xSm̃x0

)
+ ρ̂S00. (5)

The success probability of the first hop is derived in Sec-
tion III-A.

Second Hop: Consider the typical HD DL node located at
distance R̂ from the origin of the Euclidean plane and indexed
by m̂0. Again, following Slivnyak’s theorem and due to the
stationarity of Φ̂, the statistics of the typical HD DL node’s
signal reception are representative of the statistics seen by
any HD DL node: we can thus write `(x, m̂0) = r−αx , with
rx , ‖x− m̂0‖ being the distance of x from the typical HD
DL node. Hence, the received signal at the typical HD DL
node is given by
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ym̂0
,
√
ρ̂R̂−

α
2 hH

0m̂0
w0s0︸ ︷︷ ︸

(a)

+
∑
x∈Φ

√
ρ̂r
−α2
x hH

xm̂0
wxsx︸ ︷︷ ︸

(b)

+
∑
x∈Φ

√
ρ̃r
−α2
m̃x

hm̃xm̂0
sm̃x︸ ︷︷ ︸

(c)

+
√
ρ̃r
−α2
m̃0

hm̃0m̂0
sm̃0︸ ︷︷ ︸

(d)

+nm̂0
(6)

where (a) represents the desired signal, (b) and (c) indicate
the interference coming from FD BS x and its associated HD
UL node m̃x, respectively, and (d) represents the inter-node
interference coming from the HD UL node m̃0 in the same
cell. The resulting SINR reads as

SINRm̂0
,
ρ̂R̂−αS0m̂0

Im̂0
+ σ2

(7)

where we have defined

Sxm̂0
,

{
|hH
xm̂0

wx|2, x ∈ (Φ ∪ 0)

|hxm̂0
|2, x ∈ (Φ̃ ∪ m̃0)

(8)

and where Im̂0
is the overall interference power at m̂0, i.e.,

Im̂0
,
∑
x∈Φ

(
ρ̂r−αx Sxm̂0

+ ρ̃r−αm̃xSm̃xm̂0

)
+ ρ̃r−αm̃0

Sm̃0m̂0
. (9)

The success probability of the second hop is derived in
Section III-B.

For the sake of simplicity, we focus on the interference-
limited case, where I0 � σ2 and Im̂0

� σ2, and consider the
signal-to-interference ratio (SIR). Our analysis can be extended
with straightforward yet more involved calculations to the
general case.

III. SUCCESS PROBABILITY

The successful transmission of a packet over the complete
communication path, i.e., from the HD UL node to the HD
DL node through the FD BS, is given by the joint comple-
mentary cumulative distribution function (CCDF) of SINR0

and SINRm̂0
, which is denoted by Psuc(θ) , P[SINR0 >

θ,SINRm̂0
> θ] for a given SINR threshold θ; without loss

of generality, we consider the same SINR threshold for the
two hops. Let P

(1)
suc(θ) , P[SINR0 > θ] and P

(2)
suc(θ) ,

P[SINRm̂0
> θ] denote the success probabilities of the first and

second hop, respectively. Using the Fortuin-Kasteleyn-Ginibre
(FKG) inequality [20], the success probability over the two
hops can be bounded as Psuc(θ) ≥ Psuc(θ), with

Psuc(θ) = P(1)
suc(θ)P(2)

suc(θ). (10)

This more tractable expression is obtained by neglecting the
spatial correlation between the UL and DL transmissions, i.e.,
the transmissions in the first and second hop are assumed to
occur over two uncorrelated instances of Φm [1]. Furthermore,
if the FD BSs serve two UL/DL nodes with no relaying
purposes, the first and second hops become two independent
transmissions with success probabilities P

(1)
suc(θ) and P

(2)
suc(θ),

respectively. We also refer to [23] for the analysis of correlated
transmissions in random networks.

In the rest of the section, we assume that the FD BSs
employ MRC and MRT, i.e., the receive combining and transmit

beamforming vectors are given by

vx =
hm̃xx
‖hm̃xx‖

, wx =
hxm̂x
‖hxm̂x‖

(11)

respectively. Different combining configurations are considered
in Section IV to study the impact of interference cancellation
at the receiver.

A. Success Probability of the First Hop

In this section, we analyze the success probability of the first
hop P

(1)
suc = P[SINR0 > θ], i.e., the probability of successful

transmission from the typical HD UL node to the typical FD
BS. Considering SINR0 in (3), since MRC is employed, we
have Sm̃00 ∼ χ2

2NR
(desired signal) and Sx0 ∼ χ2

2, ∀x ∈ Φ∪Φ̃
(interferers).4 Regarding the SI power S00, the following lemma
provides a tight approximation of the distribution of the SI
power under Rician fading.

Lemma 1. Let vx, wx, and Hxx be independent; in addition,
assume that the (non-normalized) elements of vx and wx

are distributed independently as CN (0, 1). Then, the SI
power Sxx = |vH

xHxxwx|2 approximately follows a gamma
distribution, i.e., Sxx ∼ Γ(a, b), with shape parameter a and
scale parameter b given by5

a ,
(µ2 + ν2)2

ηµ4 + 2µ2ν2 + ν4
, b ,

ηµ4 + 2µ2ν2 + ν4

µ2 + ν2
(12)

respectively, where µ and ν are the absolute mean and standard
deviation, respectively, of the SI channel Hxx (see (1)) and
where we have defined

η ,
4NRNT − (NR + 1)(NT + 1)

(NR + 1)(NT + 1)
. (13)

Proof: See Appendix I-A.

The result of Lemma 1 was first derived in our previous work
[1]. Subsequently, it was extended to the case of multi-user
MIMO in [17].

Remark 1. The assumptions of Lemma 1 are very mild. First of
all, vx and wx are generally chosen as the result of some linear
processing of, respectively, hm̃xx and hxm̂x (such channels
are subject to Rayleigh fading by assumption) followed by
power normalization. Note that the assumption of vx and wx

being MRC and MRT vectors is not required. Besides, hm̃xx
and hxm̂x are independent on one another and on Hxx, and
the same holds for vx and wx. Note that the only practically
relevant case where the above assumptions are not satisfied
is when vx (resp. wx) zero-forces the equivalent SI channel
Hxxwx (resp. vH

xHxx): however, this case trivially implies
Sxx = 0 (this scenario is examined in Section IV-B).

Lemma 1 represents a key result of this paper since it provides
a formal characterization of the SI power experienced by a

4We define a random variable X ∼ χ2
2N to have probability density function

(PDF) fX(x) = xN−1e−x

Γ(N)
; its CCDF is given by F̄X(x) = 1− γ(N,x)

Γ(N)
=

e−x
∑N−1
n=0

xn

n!
.

5We define a random variable X ∼ Γ(a, b) with shape parameter a and
scale parameter b to have PDF fX(x) = xa−1e−x/b

baΓ(a)
.
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Figure 2. PDF of the SI power for NR = NT = 4, K = 1, and Ω = −60 dB:
empirical histogram versus analytical approximation from Lemma 1.

FD MIMO node with arbitrary receive combining and transmit
beamforming vectors. Such distribution of the SI power is based
uniquely on the knowledge of the parameters K and Ω, whose
values are available either by design or by measurements, and
can be readily incorporated into existing frameworks for the
performance analysis of UDNs. Figure 2 shows the accuracy
of the approximated distribution derived in Lemma 1.

The next theorem provides the success probability of the
first hop.

Theorem 1. Consider the interference term I0 in (5). The
success probability of the first hop is given by

P(1)
suc(θ) =

NR−1∑
n=0

[
(−s)n

n!

dn

dsn
LI0(s)

]
s=θρ̃−1R̃α

(14)

where

LI0(s) ,
1

(1 + sbρ̂)a
exp

(
− λΥ(s)

)
(15)

is the Laplace transform of I0, where we have defined

Υ(s) , 2π

∫ ∞
0

(
1− 1

1 + sρ̂r−α
Ψ(s, r)

)
rdr (16)

with

Ψ(s, r) ,
1

2π

∫ 2π

0

dϕ

1 + sρ̃(r2 + R̃2 + 2rR̃ cosϕ)−
α
2

. (17)

Proof: See Appendix I-B.
The array gain resulting from the employment of multiple
receive antennas appears evident from Theorem 1: the larger is
NR, the more terms are included in the summation of P

(1)
suc(θ)

in (14) (the same applies for Theorem 2); note that all terms in
the summation are positive since the n-th derivative of LI0(s)
are negative for odd n.

The following corollary analyzes the success probability of
the first hop when the FD BSs employ MRC with imperfect
estimation of the desired UL channel; an equivalent result
can be derived for the second hop with MRT and imperfect

estimation of the desired DL channel.

Corollary 1. Assume imperfect estimation of the desired UL
channel given by ĥm̃xx = hm̃xx + em̃xx, ∀x ∈ Φ, where
em̃xx ∈ CNR is the estimation error uncorrelated with hm̃xx
and with elements distributed independently as CN (0, ε2)
(this follows the model adopted in [24]). Then, the success
probability of the first hop can be approximated as

P(1)
suc(θ) '

NR−1∑
n=0

[
(−s)n

n!

dn

dsn
LI0(s)

]
s=(1+ε2)θρ̃−1R̃α

(18)

with LI0(s) defined in (15).

Proof: See Appendix I-C.

The expression in (18) is very accurate for small values of ε2,
as shown in Section V.

Expressions of the form of (14) and (18) arise frequently,
among other cases, when multiple antennas are involved, and
are widely used throughout the paper. A useful upper bound for
this type of expression is provided in the following proposition.6

Proposition 1. For any LX(s′) , EX
[
e−s

′X
]

and N > 1,
the following inequality holds:
N−1∑
n=0

[
(−s)n

n!

dn

dsn
LX(s)

]
s=s′

<

N∑
n=1

(−1)n−1

(
N

n

)
LX
(
n
(
Γ(N + 1)

)− 1
N s′
)
. (19)

Proof: See Appendix I-D.

Given the integral form of Υ(s) in (16), the success
probability P

(1)
suc(θ) is not in closed form and needs to be

evaluated numerically; nonetheless, we derive the following
closed-form lower and upper bounds.

Corollary 2. The Laplace transform of I0 in (15) is bounded
as LI0(s) ∈

[
L(min)
I0

(s),L(max)
I0

(s)
]
, with

L(min)
I0

(s) ,
1

(1 + sbρ̂)a
exp

(
− λΥ(max)(s)

)
, (20)

L(max)
I0

(s) ,
1

(1 + sbρ̂)a
exp

(
− λΥ(min)(s)

)
(21)

where we have defined

Υ(min)(s) , (1 + 2
α )(ρ̃

2
α + ρ̂

2
α )

π2s
2
α

α sin
(

2π
α

) , (22)

Υ(max)(s) , 2(ρ̃
2
α + ρ̂

2
α )

π2s
2
α

α sin
(

2π
α

) . (23)

Then, the lower and upper bounds on the success probability of
the first hop P

(1)
suc(θ), denoted by P

(1,min)
suc (θ) and P

(1,max)
suc (θ),

are obtained by replacing LI0(s) in (14) with L(min)
I0

(s) and
L(max)
I0

(s), respectively.

Proof: See Appendix I-E.

6A lower bound with a similar expression can be also obtained; however,
such bound is usually not sufficiently tight and it is thus not considered.
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Remark 2. In order to efficiently compute the derivatives
of the bounds (20)–(21), one can resort to the well-known
general Leibniz rule for the differentiation of the product of two
functions f(s)g(s) [25, Eq. 3.3.8]: for instance, for L(min)

I0
(s),

we can write f(s) = 1
(1+sbρ̂)a and g(s) = exp

(
−λΥ(max)(s)

)
.

In turn, the derivatives of g(s) can be computed using Faà di
Bruno’s formula [26] for the differentiation of the composition
of two functions g(s) = (g1 ◦g2)(s), with g1(s) = exp(s) and
g2(s) = −λΥ(max)(s). These considerations apply equivalently
to the bounds provided in Corollary 4.

The following corollary provides a sufficient condition under
which FD mode outperforms HD mode in terms of spectral
efficiency for the case of single receive antenna.

Corollary 3. Consider the first hop assuming that NR = 1.
The achievable spectral efficiency when the BSs operate in FD
mode is lower bounded by

SE
(min)
FD (θ) , 2L(min)

I0
(θρ̃−1R̃α) log2(1 + θ). (24)

When the BSs operate in HD mode (i.e., when ρ̂ = 0), the
achievable spectral efficiency is given by

SEHD(θ) , exp

(
− λ2π2(θR̃α)

2
α

α sin
(

2π
α

) ) log2(1 + θ). (25)

Then, SE
(min)
FD (θ) ≥ SEHD(θ) whenever the density λ satisfies

λ ≤
α sin

(
2π
α

)
2π2(θρ̃−1ρ̂R̃α)

2
α

log

(
2

(1 + bθρ̃−1ρ̂R̃α)a

)
. (26)

Proof: The proof is straightforward from Theorem 1 and
Corollary 2.
Evidently, if the density λ exceeds a certain threshold, using
twice the bandwidth in FD mode does not compensate for
the additional interference due to the concurrent UL/DL
transmissions and, therefore, HD mode becomes optimal.

B. Success Probability of the Second Hop
In this section, we analyze the success probability of the

second hop P
(2)
suc(θ) = P[SINRm̂0

> θ], i.e., the probability
of successful transmission from the typical FD BS to the
typical HD DL node. Considering SINRm̂0

in (7), since MRT
is employed, we have S0m̂0

∼ χ2
2NT

(desired signal) and
Sxm̂0

∼ χ2
2, ∀x ∈ Φ ∪ Φ̃ (interferers). The success probability

of the second hop is given next in Theorem 2, whereas its
lower and upper bounds are provided in Corollary 4.

Theorem 2. Consider the interference term Im̂0
in (9). The

success probability of the second hop is given by

P(2)
suc(θ) =

NT−1∑
n=0

[
(−s)n

n!

dn

dsn
LIm̂0

(s)

]
s=θρ̂−1R̂α

(27)

where

LIm̂0
(s) , Ψ(s, R̂) exp

(
− λΥ(s)

)
(28)

is the Laplace transform of Im̂0
, with Υ(s) and Ψ(s, r) defined

in (16) and in (17), respectively.

Proof: See Appendix II-A.

Corollary 4. The Laplace transform of Im̂0
in (28) is bounded

as LIm̂0
(s) ∈

[
L(min)
Im̂0

(s),L(max)
Im̂0

(s)
]
, with

L(min)
Im̂0

(s) ,
1

1 + sρ̃|R̃− R̂|−α
exp

(
− λΥ(max)(s)

)
, (29)

L(max)
Im̂0

(s) ,
1

1 + sρ̃(R̃+ R̂)−α
exp

(
− λΥ(min)(s)

)
(30)

with Υ(min)(s) and Υ(max)(s) defined in (22) and in (23),
respectively. Then, the lower and upper bounds on the success
probability of the second hop P

(2)
suc(θ), denoted by P

(2,min)
suc (θ)

and P
(2,max)
suc (θ), are obtained by replacing LIm̂0

(s) in (27)
with L(min)

Im̂0
(s) and L(max)

Im̂0
(s), respectively.

Proof: See Appendix II-B.
Observe that the bounds in (29)–(30) are tighter when R̃�

R̂ or R̃ � R̂ due to the presence of the first multiplicative
term. This condition is easily verified, for instance, when the
HD UL node (resp. HD DL node) is a backhaul node and the
HD DL node (resp. HD UL node) is a mobile UE, with the
former being likely much farther away from the FD small-cell
BS than the latter.

IV. INTERFERENCE CANCELLATION

In the previous section, we have considered a MRC/MRT
configuration at the FD BSs. This section analyzes interference
cancellation at the receive side of both the FD BSs and the
HD DL nodes; for the latter, we further extend our analysis to
the case of HD DL nodes with multiple receive antennas. We
consider PZF, which represents an efficient and low-complexity
spatial interference cancellation technique for multi-antenna
receivers [2], [21]. If a node is equipped with N receive
antennas, the PZF receiver allows to cancel M ≤ N − 1
interference contributions while using the remaining degrees
of freedom to boost the desired received signal.7 Observe that,
when M = 0, the PZF receiver reduces to the MRC case
analyzed in Section III-A. The study of imperfect channel
estimation goes beyond the scope of this paper; we refer to
[27] for the performance analysis of the PZF receiver with
imperfect channel estimation in random networks.

The PZF receiver requires only the knowledge of the
channels to be zero-forced at each time slot: these are generally
very few in our setting due to the low-to-moderate number
of receive antennas at the small-cell BSs. On the other hand,
it is known that the optimal tradeoff between array gain and
interference cancellation is achieved by the minimum mean-
square error (MMSE) receiver. However, in a fully decentralized
network such as that considered in this paper, MMSE receiver
may not be practical since it requires the knowledge of the
spatial covariance of the interference at each time slot (which
depends on the channels and distances of all interfering nodes
in the network). In addition, adopting PZF is more relevant
for the purpose of our study since it allows us to identify

7Under PZF, the receive combining vector is given by v(M) , (IN −
Q(M)Q](M))h0/‖(IN − Q(M)Q](M))h0‖, where (·)] denotes the
Moore-Penrose pseudoinverse operator, IN is the N -dimensional identity
matrix, and the columns of Q(M) ∈ CN×M are the effective channels to be
cancelled at the receiver.
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which interference terms are most critical for the deployment
of FD technology and their interplay. We refer to [21], [28]
for the performance analysis of the MMSE receiver in random
networks and its comparison with the PZF receiver.

Focusing on the first hop, we consider two possible receive
configurations:

1) Each FD BS cancels the interference coming from the M
nearest FD BSs (cf. Section IV-A);

2) Each FD BS cancels the SI (cf. Section IV-B).
Observe that the above configurations can be also combined,
e.g., by simultaneously cancelling the M − 1 nearest nodes
and the SI. Focusing on the second hop, we assume multiple
receive antennas at the HD DL nodes and consider the following
receive configuration:

3) Each HD DL node cancels the inter-node interference (cf.
Section IV-C).

A. First Hop: Cancelling the Nearest M FD BSs

In interference-limited scenarios, it is often beneficial to
cancel the interference coming from a certain number of
surrounding nodes. Let us assume that the points of Φ are
indexed such that their distances from the typical FD BS is
in increasing order, i.e., {rxi ≤ rxi+1

}∞i=1, and let us suppose
that each FD BS employs PZF at the receiver to cancel its M
nearest FD BSs. The resulting overall interference power at
the typical FD BS is given by (cf. (5))

IPZF-M
0 ,

∑
xi∈Φ
i>M

ρ̂r−αxi Sxi0 +
∑
xi∈Φ

ρ̃r−αm̃xi
Sm̃xi0 + ρ̂S00. (31)

The success probability of the first hop with PZF is given in
the next theorem.

Theorem 3. Consider the interference term IPZF-M
0 in (31). The

success probability of the first hop is given by

P(1)
suc(θ) =

NR−M−1∑
n=0

[
(−s)n

n!

dn

dsn
LIPZF-M

0
(s)

]
s=θρ̃−1R̃α

(32)

where

LIPZF-M
0

(s) ,
1

(1 + sbρ̂)a
EΦ

[ ∏
xi∈Φ
i≤M

1

1 + sρ̃r−αm̃xi

]

× EΦ

[ ∏
xi∈Φ
i>M

1

1 + sρ̂r−αxi

1

1 + sρ̃r−αm̃xi

]
(33)

is the Laplace transform of IPZF-M
0 .

Proof: See Appendix III-A.

The tradeoff between array gain and interference cancellation
appears evident from Theorem 3: the larger is M , the larger is
LIPZF-M

0
(s) in (33), but also the less terms are included in the

summation of P
(1)
suc(θ) in (32). Note that a similar expression

of the success probability can be obtained if the M nearest
HD UL nodes are cancelled.

Unfortunately, a closed-form expression of LIPZF-M
0

(s) in
(33) is not available and, to obtain a more tractable expression,

one can resort to the approximation provided in the following
corollary.

Corollary 5. The Laplace transform of IPZF-M
0 in (33) can be

tightly approximated by

LIPZF-M
0

(s) ' 1

(1 + sbρ̂)a
exp

(
− λ(Υ1(s,M) + Υ2(s,M))

)
(34)

where we have defined

Υ1(s,M) , 2π

∫ dM

0

(
1−Ψ(s, r)

)
rdr, (35)

Υ2(s,M) , 2π

∫ ∞
dM

(
1− 1

1 + sρ̂r−α
Ψ(s, r)

)
rdr (36)

with Ψ(s, r) defined in (17) and

dM , (λπ)−
1
2

Γ(M + 1
2 )

Γ(M)
. (37)

Proof: The approximation in (34) is obtained using the
framework [2] where dM in (37) is the average distance
between the typical FD BS and its M -th nearest FD BS, i.e.,
dM = E[rxM ] [9, Ch. 2.9.1].

B. First Hop: Cancelling the SI

As discussed in Section I, a strong SI greatly reduces the
SINR of the received signals and implicitly sets an upper bound
on the transmit power of the FD BSs. Hence, in presence of
low SI attenuation, spatial SI cancellation at the receiver may
be necessary to preserve the SINR of the received signal [18].
Suppose that each FD BS employs PZF at the receiver to
suppress its SI.8 The resulting overall interference power at
the typical FD BS is given by (cf. (5))

IPZF-SI
0 ,

∑
x∈Φ

(
ρ̂r−αx Sx0 + ρ̃r−αm̃xSm̃x0

)
. (38)

The success probability of the first hop with SI cancellation is
given in the next theorem.

Theorem 4. Consider the interference term IPZF-SI
0 in (38). The

success probability of the first hop is given by

P(1)
suc(θ) =

NR−2∑
n=0

[
(−s)n

n!

dn

dsn
exp

(
− λΥ(s)

)]
s=θρ̃−1R̃α

.

(39)

Proof: The expression in (39) can be readily obtained
from the proof of Theorem 1 (see Appendix III-A).
Note that removing the SI greatly simplifies the computation
of the success probability.

Now, we wish to answer to the following question: is it
better to use one degree of freedom to suppress the SI or to
cancel the nearest interfering FD BS? This issue is meaningful
in cases where the FD BSs can devote no more than one
antenna for interference cancellation (e.g., when the density
λ is very high). A comparative sufficient condition for this
choice is provided in the following corollary.

8Instead of nulling the SI completely, one can adopt the partial SI cancellation
proposed in [29] at the receiver to enhance the UL throughput.
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Corollary 6. Cancelling the SI is, on average, more beneficial
than cancelling the nearest FD BS if

4a

π
log

(
1 + bθ

ρ̂

ρ̃
R̃α
)
≥ 2F1

(
1,

2

α
, 1 +

2

α
,− ρ̃

θρ̂(2R̃
√
λ)α

)
(40)

where 2F1(a, b, c, x) denotes the Gauss hypergeometric func-
tion [30, Sec. 9.1].

Proof: See Appendix III-B.
Since the right-hand side of (40) is increasing with λ, Corol-
lary 6 formalizes that, on average, the SI overcomes the
interference produced by the nearest FD BS when the density
λ is below a certain threshold. In fact, the nearest interferer
approaches the typical FD BS as the density λ increases, and
the corresponding average interference power becomes stronger.

Observe that imperfect SI cancellation due to, e.g., imperfect
estimation of the SI channel, would still result in a gamma-
distributed SI power with coefficients a and b different from
those given in Lemma 1. In this respect, building on Lemma 1,
the following corollary measures the impact of imperfect
estimation of the SI channel on the PZF receiver.

Corollary 7. Assume imperfect estimation of the SI channel
given by Ĥxx , Hxx + E, where E ∈ CNR×NT is the
estimation error uncorrelated with Hxx and with elements
distributed independently as CN (0, ε2). Then, the average
residual SI power after imperfect cancellation of the SI with
PZF can be bounded as

E[Sxx] = E
[
|vH
xHxxwx|2

]
≤ ε2. (41)

Proof: See Appendix III-C.
Hence, the average residual SI power can be significant in
presence of inaccurate estimation of the SI channel. As com-
parison, for α = 4 and λ = 10−1 BSs/m2, ε2 = 0.1 is twice the
average power from the nearest interfering FD BS with finite
average interference power, with E[r−αxi Sxi0] = (πλ)

α
2

Γ(i−α2 )

Γ(i) ,
for i > α

2 [21].

C. Second Hop: Cancelling the Inter-Node Interference

So far we have assumed single-antenna HD DL nodes. In
this section, we extend our analysis to the case of HD DL nodes
with multiple receive antennas. First, we aim at answering the
following question: is it better to use one degree of freedom
to cancel the inter-node interference or to cancel the nearest
interfering FD BS? A comparative sufficient condition for this
choice is provided in the following corollary.

Corollary 8. Cancelling the inter-node interference is, on
average, more beneficial than cancelling the nearest FD BS if

4

π
log

(
1 +

ρ̃

ρ̂

(
R̃

R̂
+ 1

)−α)
≥ 2F1

(
1,

2

α
, 1 +

2

α
,− ρ̂

θρ̃(2R̂
√
λ)α

)
. (42)

Proof: See Appendix III-D.
The interpretation of Corollary 8 is similar to that of Corollary 6
in the sense that, on average, the inter-node interference is

stronger than the interference produced by the nearest FD BS
when the density λ is below a certain threshold.

Of particular interest is the case where the HD UL/DL nodes
are mobile UEs served simultaneously within the same small
cell. In a small-cell scenario, the distance between UL and
DL UEs is generally very short, which causes a severe inter-
node interference at the latter [5]. Since the vast majority of
commercial mobile UEs is currently equipped with two receive
antennas, it is meaningful to examine the impact of inter-
node interference cancellation at the HD DL nodes. Therefore,
assume that each FD BS serves a pair of HD UL/DL mobile
UEs, with the latter equipped with two receive antennas; for
simplicity, we suppose that the FD BSs transmit with a single
antenna (which encompasses the case of multi-antenna FD
BSs performing SDMA). The following corollary provides a
sufficient condition for cancelling the inter-node interference,
where an evident tradeoff arises between the density λ and the
radius of the small cell.

Corollary 9. Suppose that the HD DL node is equipped with
two receive antennas and let R̃ = R̂ = R. Cancelling the
inter-node interference improves the success probability of the
second hop if

R ≤ ∆(θ)√
λ

(43)

where we have defined

∆(θ) , θ1− 1
α ρ̃ρ̂

1
α−1

√
2−(2α+1)α

Υ(min)(1)(2−αθρ̃ρ̂−1 + 1)
(44)

with Υ(min)(s) defined in (22).

Proof: See Appendix III-E.

Remark 3. Fixing R̃ = R̂ = R in Corollary 9 models a
scenario where the pair of HD UL/DL mobile UEs are located
at opposite edges of a small cell with radius R. Since the
inter-node pathloss is maximized (the distance between HD
UL and DL nodes is 2R), this represents a best-case scenario
and inter-node interference cancellation becomes even more
desirable for random UE locations within the small cell. Hence,
the condition in (43) can be interpreted as follows: i) if the
radius R is lower than a certain threshold, then one receive
antenna should be invested to cancel the inter-node interference;
ii) if the density λ exceeds a certain threshold, the interference
from the other nodes becomes too strong and the two antennas
should be used to enhance the signal reception.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results to assess our
theoretical findings. In particular, we aim at answering the
following questions: i) under which conditions does FD mode
yield performance gains with respect to HD mode? And ii) what
is the impact of interference cancellation at both the FD BSs
and the (multi-antenna) DL nodes on the network performance?
These points are addressed next in Sections V-A and V-B,
respectively.

Unless otherwise stated, we focus on the scenario where each
FD BS acts as relay between a HD macro-cell backhaul node
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Figure 3. Success probability: simulation and analytical bounds against
the density λ, with Ω = −60 dB, θ = 0 dB, and for different antenna
configurations.

and a HD mobile UE. Hence, the macro-cell BSs and the small-
cell BSs transmit with powers ρ̃ = 43 dBm and ρ̂ = 24 dBm,
respectively; the distances of each macro-cell BS and mobile
UE from their serving small-cell BS are set to R̃ = 40 m and
R̂ = 5 m, respectively. We consider the interference-limited
case (cf. Section II-C) and set σ2 = 0. The parameters a and
b of the SI distribution are computed according to (12), where
µ and ν are obtained from (1) with Rician K-factor K = 1
(see [4] for an experimental characterization of K) and SI
attenuation Ω = −60 dB. Lastly, the pathloss exponent is
α = 4 and the SINR threshold is θ = 0 dB.

We begin by assessing the accuracy of the analytical ex-
pressions derived in Section III. Figure 3 plots the success
probability Psuc(θ) and its lower bound Psuc(θ) in (10), both
obtained by means of Monte Carlo simulations, against the
density λ: these are compared with the lower and upper bounds
on Psuc(θ) provided in Corollaries 2 and 4, respectively. On
the one hand, Psuc(θ) is remarkably tight, which justifies our
approach of neglecting the spatial correlation between the UL
and DL transmissions (cf. Section III). On the other hand,
P

(1,min)
suc (θ)P

(2,min)
suc (θ) and P

(1,max)
suc (θ)P

(2,max)
suc (θ) well rep-

resent the system performance, also accurately bounding
Psuc(θ); we also note that the lower bound is increasingly
accurate as the number of antennas (at both the receive and the
transmit side) increases. Furthermore, it is evident from Figure 3
that employing multiple antennas produces substantial SINR
gains and compensates for the additional interference generated
in FD mode. Considering imperfect estimation of the desired
UL channel (see Corollary 1), Figure 4 illustrates the success
probability of the first hop against the variance of the channel
estimation error ε2 with density λ = 10−4 BSs/m2: we see that
Psuc(θ), obtained by means of Monte Carlo simulations, is very
well approximated by the analytical lower bound based on (18).

A. Throughput Gain

We now focus our attention on the first hop in order to
analyze the feasibility of FD mode. With this objective in mind,

0 0.1 0.2 0.3 0.4
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0.8
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1

NR = 32
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3

Figure 4. Success probability of the first hop: simulation and analytical bounds
against the variance of the channel estimation error ε2, with λ = 10−4 BSs/m2,
Ω = −60 dB, θ = 0 dB, and for different antenna configurations.

we introduce the minimum throughput gain as performance
metric, which is defined as

TG(min)(θ) ,
SE

(min)
FD (θ)

SEHD(θ)
(45)

with SE
(min)
FD (θ) and SEHD(θ) defined in (24) and in (25),

respectively, for the single-antenna case. This metric represents
the worst-case gain of FD mode over HD mode in terms of
throughput, with TG(min)(θ) > 1 indicating that FD mode
outperforms the equivalent HD setup.

Notably, the analytical tools presented in Section III-A allow
to evaluate the effect of multiple receive antennas in mitigating
the SI, which represents a crucial issue in FD communications.
Figure 5 plots the minimum throughput gain against the SI
attenuation Ω with λ = 10−4 and θ = 0 dB. Hence, we have
TG(min)(θ) > 1 even for moderate values of the SI attenuation,
namely: Ω ≤ −47 dB for NR = NT = 1, Ω ≤ −43 dB for
NR = NT = 2, Ω ≤ −35 dB for NR = NT = 8, and
Ω ≤ −29 dB for NR = NT = 32 dB. On the other hand, the
minimum throughput gain is analyzed in Figure 6 as a function
of the SINR threshold θ with λ = 10−4 and Ω = −60 dB: in
this respect, it is shown that FD mode improves the performance
with respect to HD mode for any reasonable value of θ.

B. Interference Cancellation

Lastly, we consider interference cancellation at both the FD
BSs and at the (multi-antenna) HD DL nodes and analyze its
impact on the network performance. In doing so, we make use
of the tools developed for PZF receivers proposed in Section IV.

Focusing on the first hop, assume that the FD BSs are
equipped with NR = 2 receive antennas and that they employ
PZF to cancel either the SI or the nearest FD BS. Figure 7 plots
the success probability of the first hop against the density λ and
compares the above scenarios with the case of no interference
cancellation. On the one hand, when the SI attenuation is
low (i.e., Ω = −50 dB), suppressing the SI improves the
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Figure 5. Minimum throughput gain of FD mode over HD mode in the first
hop against the SI attenuation Ω, with λ = 10−4 BSs/m2, θ = 0 dB, and for
different numbers of receive antennas.

performance for densities lower than λ = 2× 10−3 BSs/m2,
whereas MRC is the best option for higher densities; on the
other hand, for a higher SI attenuation (i.e., Ω = −80 dB), it is
always better to use both antennas for array gain. Hence, since
the array gain obtained with just two antennas is significant
with respect to the single-antenna case (see Figure 3), one
should always exploit both antennas for boosting the desired
received signal unless Ω is very low.

Consider now the scenario described in Section IV-C, where
each single-antenna FD BS serves a pair of HD UL/DL mobile
UEs located at opposite edges of a small cell with radius R,
with the DL UE equipped with two receive antennas. Figure 8
plots the success probability of the second hop against the
density λ with inter-node interference cancellation using PZF
and compares it with the MRC case. Note that the crossing point
between the corresponding curves can be recovered exactly
from Corollary 9. As expected, suppressing the inter-node
interference becomes detrimental at high densities, where both
antennas at the mobile UE should be used for boosting the
desired received signal. Recall that this represents a best-case
scenario and inter-node interference cancellation becomes even
more desirable for random UE locations within the small cell
(see Remark 1).

VI. CONCLUSIONS

In this paper, we investigate the success probability and
spectral efficiency performance of full-duplex (FD) multiple-
input multiple-output (MIMO) small-cell networks using tools
from stochastic geometry. The proposed framework provides
insights into the system-level gains of FD mode with respect
to half-duplex mode in terms of network throughput. In
particular, the use of the extra degrees of freedom—brought
by multiple antennas—for either desired signal power increase
or interference cancellation is studied. Simulation results show
the beneficial effect of multiple antennas in mitigating the
additional interference introduced by FD mode and demonstrate
the feasibility of FD technology in practical scenarios even for
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Figure 6. Minimum throughput gain of FD mode over HD mode in the first
hop against the SINR threshold θ, with λ = 10−4 BSs/m2, Ω = −60 dB,
and for different numbers of receive antennas.

moderate values of the SI attenuation. In this respect, partial
zero forcing is shown to be a promising antenna processing
technique for beneficial FD operation.

Further extensions to this work may include studying
the feasibility of FD multi-user MIMO and massive-MIMO
systems. It would also be of interest to explore how non-linear
interference cancellation techniques and user selection affect
the network performance.

APPENDIX I
SUCCESS PROBABILITY OF THE FIRST HOP

A. Proof of Lemma 1

In this appendix, we derive the approximate distribution of
the SI power Sxx; for notational simplicity, in the following
we omit the sub-indices in the beamforming vectors and in the
channel matrix and write Sxx , |vHHw|2. Let v , (vi)

NR
i=1,

w , (wj)
NT
j=1, and H ,

(
(hij)

NR
i=1

)NT

j=1
. Hence, assuming that

v, w, and H are independent (see Remark 1), we can write

|vHHw|2 =

NR∑
i,k=1

NT∑
j,`=1

v∗i vkhijh
∗
k`wjw

∗
` . (46)

Then, building on the central limit theorem for causal functions
[31], we can approximate a sum of positive random variables
X =

∑
iXi using the gamma distribution with shape and scale

parameters given by

a =
(E[X])2

Var[X]
, b =

Var[X]

E[X]
(47)

respectively, with Var[X] denoting the variance of the random
variable X .

First of all, we outline the statistics of H, v, and w. Recalling
that hij ∼ CN (µij , ν

2), with |µij | = µ, ∀i = 1, . . . , NR,
∀j = 1, . . . , NT, we have E

[
|hij |2

]
= µ2+ν2 and E

[
|hij |4

]
=

µ4 +4µ2ν2 +2ν4. On the other hand, since ‖v‖2 = ‖w‖2 = 1,
we have E

[
|vi|2

]
= 1

NR
and E

[
|wj |2

]
= 1

NT
. Furthermore, we

can write vi = v̄i
‖v̄‖ and wj =

w̄j
‖w̄‖ , where v̄i, w̄j ∼ CN (0, 1)
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Figure 7. Success probability of the first hop with interference cancellation
against the density λ, with NR = 2, θ = 0 dB, and for two different values
of the SI cancellation Ω.

are the non-normalized coefficients of v and w (see Remark 1),
respectively, with v̄ , (v̄i)

NR
i=1 and w̄ , (w̄j)

NT
j=1. It follows

that |vi|4 = |v̄i|4
‖v̄‖4 , where

‖v̄‖4 = (v̄Hv̄)2

=

NR∑
i=1

|v̄i|4 +

NR∑
i,j=1
i6=j

|v̄i|2|v̄j |2, (48)

E
[
‖v̄‖4

]
= NRE

[
|v̄i|4

]
+NR(NR − 1)

(
E
[
|v̄i|2

])2
= NR(NR + 1), (49)

E
[
|vi|4

]
=

E
[
|v̄i|4

]
NR(NR + 1)

=
2

NR(NR + 1)
, (50)

E
[
|vi|2|vj |2

]
=

(
E
[
|v̄i|2

])2
NR(NR + 1)

=
1

NR(NR + 1)
(51)

and, likewise, from |wj |4 =
|w̄j |4
‖w̄‖4 , we have E

[
|wj |4

]
=

2
NT(NT+1) and E

[
|wi|2|wj |2

]
= 1

NT(NT+1) .
In order to obtain the parameters of the gamma function intro-

duced in (47), we need to derive the second and fourth moments
of |vHHw|. Let us define Σ , diag(σi)

Nmin
i=1 , where σi denotes

the i-th singular value of H and Nmin , min(NR, NT):
recalling (46) and the above properties of the beamforming
vectors, we obtain

E
[
|vHHw|2

]
= E

[ NR∑
i=1

NT∑
j=1

|vi|2|hij |2|wj |2
]

=
1

NRNT

NR∑
i=1

NT∑
j=1

E
[
|hij |2

]
= µ2 + ν2 (52)
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Figure 8. Success probability of the second hop considering DL nodes with
two receive antennas against the density λ, with θ = 0 dB and for two
different values of the radius of the small cell R.

and E
[
|vHHw|4

]
as in (53) at the top of the next page,

where the second last line follows from the fact that
E
[∑

i,j |σi|2|σj |2
]

= E
[∑

i |σi|2
]
E
[∑

j |σj |2
]

and

Nmin∑
i=1

|σi|2 = tr(ΣHΣ) = tr(HHH), (54)

Nmin∑
i=1

|σi|4 = tr
(
(ΣHΣ)2

)
= tr

(
(HHH)2

)
(55)

whereas the last line results from (56)–(57) at the top of
the next page. Since Var

[
|vHHw|2

]
= E

[
|vHHw|4

]
−(

E
[
|vHHw|2

])2
, we readily obtain a and b in (12) by applying

(47). This concludes the proof.

B. Proof of Theorem 1

The success probability of the first hop is given by

P(1)
suc(θ) = P

[
ρ̃R̃−αSm̃00

I0
> θ

]
= P

[
Sm̃00 > θρ̃−1R̃αI0

]
= EI0

[
F̄Sm̃00

(
θρ̃−1R̃αI0

)]
(58)

where I0 is defined in (5) and denotes the overall interference
at the typical FD BS. Since the latter is equipped with NR

receive antennas, the power of its desired signal is distributed as
Sm̃00 ∼ χ2

2NR
: hence, our case falls into the general framework

[32] and P
(1)
suc(θ) in (14) results from applying (see footnote 4)

EI0
[
F̄Sm̃00

(
sI0
)]

= EI0
[
e−sI0

NR−1∑
n=0

(
sI0
)n

n!

]

=

NR−1∑
n=0

[
(−s)n

n!

dn

dsn
LI0(s)

]
. (59)

On the other hand, building on [10, Th. 1], the Laplace
transform of I0 is obtained as in (60) at the top of the next page,
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E
[
|vHHw|4

]
= E

[Nmin∑
i=1

|vi|4|σi|4|wj |4
]

+ 2E
[ Nmin∑
i,j=1
i 6=j

|vi|2|vj |2|σi|2|σj |2|wi|2|wj |2
]

=
2

NRNT(NR + 1)(NT + 1)

(
2E
[Nmin∑
i=1

|σi|4
]

+ E
[ Nmin∑
i,j=1
i 6=j

|σi|2|σj |2
])

=
2

NRNT(NR + 1)(NT + 1)

(
E
[Nmin∑
i=1

|σi|4
]

+ E
[ Nmin∑
i,j=1

|σi|2|σj |2
])

=
2

NRNT(NR + 1)(NT + 1)

(
E
[
tr
(
(HHH)2

)]
+ E

[(
tr(HHH)

)2])
=

4NRNT

(NR + 1)(NT + 1)
µ4 + 4µ2ν2 + 2ν4 (53)

E
[(

tr(HHH)
)2]

= NRNT

(
E
[
|hij |4

]
+ (NRNT − 1)E

[
|hij |2

])
, (56)

E
[
tr
(
(HHH)2

)]
= NRNT

(
E
[
|hij |4

]
+ (NR +NT + 2)

(
E
[
|hij |2

])2
+ (NR − 1)(NT − 1)

(
E[hij ]

)4)
(57)

LI0(s) = E
[
e−sI0

]
= E

[
exp(−sρ̂S00)

]
E
[ ∏
x∈Φ

exp
(
− s(ρ̂r−αx Sx0 + ρ̃r−αm̃xSm̃x0)

)]
=

1

(1 + sbρ̂)a
EΦ

[ ∏
x∈Φ

1

1 + sρ̂r−αx

1

1 + sρ̃r−αm̃x

]
=

1

(1 + sbρ̂)a
exp

(
− λ

∫
R2

(
1− 1

1 + sρ̂r−αx

1

1 + sρ̃r−αm̃x

)
dx

)
(60)

where in the second last line we have applied the moment-
generating function (MGF) of the gamma and of the exponential
distributions and in the last line we have applied the probability
generating functional of a PPP. Finally, the expression in (15)
follows from

rm̃x = ‖x+ R̃(cosϕ, sinϕ)‖

=

√
r2
x + R̃2 + 2rxR̃ cosϕ (61)

with ϕ uniformly distributed in [0, 2π]. This completes the
proof.

C. Proof of Corollary 1

With imperfect estimation of the desired UL channel hm̃xx,
the receive combining vector is given by v̂x , ĥm̃xx

‖ĥm̃xx‖
. Since

the exact distribution of the desired signal power Ŝm̃xx ,
|v̂H
x hm̃xx|2 is very difficult to obtain due to the normalization

of v̂x and the dependency between v̂x and hm̃xx, we proceed
by deriving a tractable approximation. Following similar steps
as in Appendix I-A, Ŝm̃xx can be approximated using the
gamma distribution with shape and scale parameters a and b
given in (12). Then, applying the approximations

E[Ŝm̃xx] ' NR

1 + ε2
, E[Ŝ2

m̃xx
] ' NR(NR + 1)

(1 + ε2)2
(62)

yields a ' NR and b ' 1
1+ε2 , and (18) follows by applying

the MGF of the gamma distribution.

D. Proof of Proposition 1

For any random variable X and N > 1, we have that (see
footnote 4)
N−1∑
n=0

[
(−s)n

n!

dn

dsn
LX(s)

]
s=s′

= 1−
EX
[
γ(N, s′X)

]
Γ(N)

(63)

Now, we use Alzer’s inequality [33], by which

γ(N, x)

Γ(N)
> (1− e−cx)N (64)

with c ,
(
Γ(N + 1)

)− 1
N for N > 1. Now, expanding the

expectation term in (63), we have

EX
[
γ(N, s′X)

]
Γ(N)

> EX
[
(1− e−cs

′X)N
]

= EX
[ N∑
n=0

(−1)n
(
N

n

)
e−ncs

′X

]

=

N∑
n=0

(−1)n
(
N

n

)
LX(ncs′). (65)
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Finally, the upper bound in (19) results from plugging the
last line in (65) into (63), where −(−1)n = (−1)n−1 and(
N
0

)
LX(0) = 1.

E. Proof of Corollary 2

Building on [10, Th. 3], we have that Υ(s) in (16) is
bounded as Υ(s) ∈

[
Υ(min)(s),Υ(max)(s)

]
, with Υ(min)(s)

and Υ(max)(s) defined in (22) and in (23), respectively. Then,
the lower and upper bounds on LI0(s) in (20)–(21) readily
follow.

APPENDIX II
SUCCESS PROBABILITY OF THE SECOND HOP

A. Proof of Theorem 2

The success probability of the second hop is given by

P(2)
suc(θ) = P

[
ρ̂R̂−αS0m̂0

Im̂0

> θ

]
= P

[
S0m̂0

> θρ̂−1R̂αIm̂0

]
= EIm̂0

[
F̄S0m̂0

(
θρ̂−1R̂αIm̂0

)]
(66)

where Im̂0
is defined in (9) and denotes the overall interference

at the typical HD DL node. Since the typical FD BS is equipped
with NT transmit antennas, the power of the desired signal
is distributed as S0m̂o ∼ χ2

2NT
and the expression in (27) is

obtained following similar steps as in Appendix I-B.
On the other hand, building again on [10, Th. 1], the Laplace

transform of Im̂0
is obtained as

LIm̂0
(s) = E

[
e−sIm̂0

]
= E

[
exp(−sρ̃r−αm̃0

Sm̃0m̂0
)
]

× E
[ ∏
x∈Φ

exp
(
− s(ρ̂r−αx Sxm̂0

+ ρ̃r−αm̃xSm̃xm̂0
)
)]

(67)

where E
[

exp(−sρ̃r−αm̃0
Sm̃0m̂0

)
]

= Ψ(s, R̂) from the MGF of
the exponential distribution and (61), and where the second
expectation term is equivalent to that in the second line in (60).
This concludes the proof.

B. Proof of Corollary 4

Given the definition of Ψ(s, r) in (17), it is not difficult to
find the following bounds:

Ψ(s, r) ∈
[

1

1 + sρ̃|r − R̃|−α
,

1

1 + sρ̃(r + R̃)−α

]
. (68)

Then, the lower and upper bounds on LIm̂0
(s) in (29)–(30) are

a straightforward result of combining (68) and Corollary 2.

APPENDIX III
INTERFERENCE CANCELLATION

A. Proof of Theorem 3

The proof follows similar steps as in Appendix I-B. By
applying PZF, the typical FD BS uses NR−M receive antennas
to match its desired received signal and, therefore, the power

of the latter is distributed as Sm̃00 ∼ χ2
2(NR−M), yielding the

expression in (32) (see [2] for details). On the other hand, the
Laplace transform of IPZF-M

0 in (33) is obtained by removing
the interference contribution of the first M FD BSs and the
expectation term in the second last line in (60) becomes

EΦ

[ ∏
xi∈Φ
xi>M

1

1 + sρ̂r−αxi

∏
xi∈Φ

1

1 + sρ̃r−αm̃xi

]

= EΦ

[ ∏
xi∈Φ
xi≤M

1

1 + sρ̂r−αm̃xi

∏
xi∈Φ
xi>M

1

1 + sρ̂r−αxi

1

1 + sρ̃r−αm̃xi

]
.

(69)

Finally, the two products in the expectation on the right-hand
side of (69) are independent and can be thus separated.

B. Proof of Corollary 6

The average SI power is larger than the average interference
power from the nearest FD BS if

1

(1 + sbρ̂)a
≤ E

[
1

1 + sρ̂r−αx1

]
(70)

where

E
[

1

1 + sρ̂r−αx1

]
= 2πλ

∫ ∞
0

1

1 + sρ̂r−α
e−πλr

2

rdr

' exp

(
− 2πλ

∫ d1

0

(
1− 1

1 + sρ̂r−α

)
rdr

)
.

(71)

Note that, unfortunately, a closed-form solution for the first line
in (71) is not available and thus we resort to [2] to obtain the
approximation in the second line in (71), with d1 representing
the average distance to the nearest FD BS (cf. (37)). Since
d1 = 1

2
√
λ

[9, Ch. 2.9.1], the condition in (40) follows from
solving the integral in the second line in (71) and plugging its
solution into (70) with s = θρ̃−1R̃α.

C. Proof of Corollary 7

Assume PZF is employed to cancel the SI with imperfect SI
channel estimation Ĥxx. The receive combining vector reads
as

vx =

(
INR
− Ĥxxwx(Ĥxxwx)]

)
hm̃xx

‖(INR
− Ĥxxwx(Ĥxxwx)])hm̃xx‖

(72)

and since vH
x Ĥxxwx = 0, the SI power is given by

|vH
xHxxwx|2 = |vH

xEwx|2. Let E ,
(
(eik)NR

i=1

)NT

j=1
; building

on Lemma 1, we can write (cf. (52))

E
[
|vHEw|2

]
≤ E

[ NR∑
i=1

NT∑
j=1

|vi|2|eij |2|wj |2
]

=
1

NRNT

NR∑
i=1

NT∑
j=1

E
[
|eij |2

]
= ε2 (73)

where the upper bound comes from applying the Cauchy-
Schwartz inequality.
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D. Proof of Corollary 8

The average inter-node interference power is larger than the
average interference power from the nearest FD BS if

Ψ(s, R̂) ≤ E
[

1

1 + sρ̂r−αx1

]
. (74)

Then, we use the upper bound of Ψ(s, r) in (68) and s =
θρ̂−1R̂α, and the rest of the proof follows similar steps as in
Appendix III-B.

E. Proof of Corollary 9

Recall the definition of LIm̂0
(s) in (28). Considering the

scenario where the FD BSs transmit with one antenna to HD DL
nodes with two receive antennas, we can build on Theorem 2
to write the success probabilities of the second hop with and
without inter-node interference cancellation as

P
(2)
suc,1(θ) , exp

(
− λΥ(s)

)
, (75)

P
(2)
suc,2(θ) ,

[
LIm̂0

(s)− s d

ds
LIm̂0

(s)

]
s=θρ̂−1R̂α

(76)

respectively. Now, let us fix R̃ = R̂ = R and let us consider
the upper bound on Ψ(s, r) in (68) and Υ(min)(s) in (22).
After some algebraic manipulations, we have that P

(2)
suc,1(θ) ≥

P
(2)
suc,2(θ) when the condition in (43) is satisfied.
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