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Abstract

We propose a non-monetary incentive mechanism to encourage high levels of contribution
in public good provision. Based on a generic public good game, we implement a variation
that imposes a minimum individual contribution level and o�ers individuals the choice between
respecting it if they decide to contribute, or contributing zero. Restricting the individuals'
strategy space in that way can stimulate them toward higher e�orts while leaving them the
possibility of contributing zero ensures that such e�orts remain voluntary. We investigate how
to tune the minimum contribution level in order to maximize the total contribution and to reach
a stable outcome where no individual has incentive to free-ride. Exploiting the potential nature
of the game, we show that one can set the minimum contribution level such that there exists
a unique potential maximizer equilibrium in which all the individuals contribute to the public
good.

Our work is of particular relevance to the growing �eld of information economics. Speci�cally,
we provide an application of our model to data analytics projects using information with privacy
implications, a domain where individuals (and regulatory provisions) consider as fundamental to
be able to exercise control and where monetary compensation has so-far received little traction
in practical scenarios.
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1 Introduction

1.1 Public goods, voluntary contribution and free-rider problems

In the standard microeconomics literature, public goods are de�ned as being perfectly non-rival in
consumption and non-excludable. The former implies that one individual's consumption of the good
does not reduce the amount available to others. The latter captures the fact that individuals cannot
deny each other the opportunity to consume the good, or that the cost of keeping non-payers from
enjoying the bene�ts of the good is prohibitive. Public goods are omnipresent in the economics
literature and model a broad range of goods from fresh air to street lightning or national security.

In many public good settings, provision levels are determined in a free market and by the
voluntary contributions of the involved individuals. In many important instances, tacit coordination
as well as altruism or desire for fairness may enhance e�ciency; for example in the context of
private donations to charity [Roberts(1984),Young(1982)], campaign funding of political parties or
environmental groups. In these cases, experimental analysis has shown the necessity to abandon the
classical Nash equilibrium prediction in favor of an ethically-based rule of behavior [Sugden(1982)]
in which, even if the contributions to the public goods are perfect substitutes, preferences of people
depend also on �having done their bit� [Cornes and Sandler(1984)] or on the social approval that may
be consequent to their gestures [Akerlof(1980),Bénabou and Tirole(2006)]. We refer to [Bergstrom
et al.(1986)Bergstrom, Blume, and Varian] for an extensive review of works and applications on
the topic of the voluntary provision of public goods. However, as observed by [Ledyard(1995)],
in many other settings �one cannot rely on these approaches as a permanent organizing feature

without expecting an eventual decline to self-interested behavior �. As a consequence of the non-
excludability property, it is well known that the resulting equilibrium outcomes may su�er from
(partial) free riding problems, where some individuals contribute (almost) zero and nonetheless
enjoy the bene�ts of the public good. Instead, reaching the objective of an e�cient and stable
outcome typically necessitates some normative interventions or monetary incentives.

1.2 Overcoming the ine�ciency of public goods economies

Since the seminal work of [Samuelson(1954)] on public goods, a sizable literature has investigated
this problem space and associated improvement approaches, both from a theoretical and an exper-
imental perspective. It is not possible to present here an exhaustive review of these works and we
restrict to a very brief overview of some of the main lines of works.

Economic theorists have �rst proposed various sophisticated incentive compatible mechanisms,
based on the general framework for the mechanism design approach to welfare economics of [Hur-
wicz(1972)], to enhance e�ciency in public good problems [Clarke(1971),Groves and Ledyard(1977)].
These mechanisms have been partially criticized for their di�culty of implementation in a real world
setting, due to their complexity and their counter-intuitive formulation. Later on, simpler mecha-
nisms have been proposed. In [Varian(1994)], for example, the author proposes a two-stage game
in which individuals have the opportunity to subsidize the other individuals' contributions. In [An-
dreoni and Bergstrom(1996)], the idea is to let the government design a tax-�nanced subsidies
scheme to increase the equilibrium contribution to a public good. A totally di�erent approach is
presented in [Ledyard and Palfrey(1994), Ledyard and Palfrey(2002)], where the authors propose
to approximate interim e�cient mechanisms for the provision of a public good by a referendum in
which voters simply vote for or against the provision of the public good. Most of these mechanisms
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and approaches have been tested experimentally in an increasingly vast literature on behavioral eco-
nomics and sociology of public good provision, see e.g., [Bohm(1972),Marwell and Ames(1979),Holt
and Laury(1997),Zelmer(2003),Lugovskyy et al.(2017)Lugovskyy, Puzzello, Sorensen, Walker, and
Williams]. We refer to [Ledyard(1995),Chaudhuri(2011)] for surveys of the experimental literature
on the topic.

1.3 Our contribution

In the works mentioned above, the focus is on �nding mechanisms to improve the social welfare
above the level obtained through voluntary contributions. Complementing this body of research,
our work builds on the conceptual public good framework with voluntary contributions and strategic
interactions, but with a speci�c emphasis on the utilization of non-monetary incentives for improving

the total level of contribution rather than the social welfare. In certain scenarios, this might be more
relevant. Indeed, in many public good settings, the public good utility given by the contribution
of individuals may be non-excludable not only for free-riders but also for many other individuals
who are not participating in the market at the moment because they are not part of it yet, but
who would potentially bene�t in the future. This is the case, for example, of medical research:
contributing to a medical survey may allow doctors to �nd a cure, which could bene�t patients who
will get sick in the future for a virtually in�nite amount of time. In such a setting, social e�ciency
is not simply given by the sum of the utilities of the individuals, but it may be represented by an
increasing function of the total level of contribution, as this part dominates the private costs of
contribution.

Within this context, we investigate the impact of imposing a minimum individual contribution

level, while leaving individuals the choice to match or exceed the chosen level, or to free-ride by
contributing zero. The resulting restriction of the strategy set can stimulate higher contribution
levels by individuals. At the same time, leaving them the possibility of choosing a zero level, we
ensure that such e�orts remain voluntary. We investigate how to tune the minimum contribution
level in order to maximize the total contribution and to reach a stable outcome where none of the
individuals have incentives to free-ride. It is important to note that our proposal fundamentally
di�ers from works on threshold public good games [van de Kragt et al.(1983)van de Kragt, Orbell,
and Dawes, Cadsby and Maynes(1999)] which investigate the impact of a minimum level for the
total level of contributions or number of contributors in order for the public good to be provided,
rather than a restriction of the strategy set (i.e., the individual contribution level), as is the focus
of our work.

Exploiting the potential nature of the proposed game, we show that there exists a minimum
contribution level such that, regardless of the possible multitude of Nash equilibria in which some
of the individuals free-ride, there exists a unique potential maximizer equilibrium, which has the
properties that all individuals contribute to the public good and the total level of contributions is
strictly larger than in the original game without minimum contribution level. Potential maximizer
Nash equilibria, according to [Monderer and Shapley(1996)], are expected to accurately predict the
results obtained through an experimental implementation of the model and, moreover, they are
robust to incomplete information following the de�nition of [Kajii and Morris(1997)]. As such, they
represent an important re�nement of the equilibrium set. Throughout the paper, we also prove a
number of comparative static results that describe how the equilibrium individual and total levels
of contribution vary when the number of individuals in the market changes.

3



1.4 Applicability of the model

Our results provide a widely applicable and easily implementable approach for a policy maker to
increase the provision of a public good above voluntary contribution levels, simply by restricting the
agents' strategy spaces. The desirability of the approach from the policy maker's perspective lies
in the facts that its implementation comes at no additional cost, and that it does not require any
coordination or coercion. From the individual contributors' perspective, we argue that the resulting
scenario after our modi�cation is as simple to understand as the original one, and that it would likely
be perceived as less burdensome in practical scenarios than some more complicated mechanisms
(e.g., mechanisms involving payments). Finally, according to well-known �ndings regarding choice
behaviors (e.g., the paradox of choice [Schwartz(2004)]), restricting the individuals' choices might
increase their well-being.

The applicability of our proposed model is further validated by the fact that a number of use-
cases already indirectly implement it. For instance, taking part in a medical survey is voluntary
but, in case of participation, it usually requires devoting a minimum amount of time and releasing a
minimum amount of information. Another important case where our model is potentially applicable,
in which the total contribution level is socially more important than the aggregated social welfare
is environment issues. It is well known that reaching a minimum e�ort by everyone or by every
country in international treaties is fundamental for future generations, and this utility has a much
larger weight compared to the individual perceived cost of making the e�ort of contributing.

1.5 Roadmap

The remainder of this paper is structured as follows. In Section 2, we present a motivating example
in the area of data analytics. We develop and describe our generic model in Section 3. We conduct
our analysis in detail in Section 4 on a canonical case without minimum contribution level. We
investigate the results with a minimum contribution level in Section 5 and we illustrate the potential
of our approach. We discuss the results on the speci�c motivating example in Section 6, and conclude
in Section 7. All proofs are relegated to the Appendix.

2 Data analytics as a public good and privacy implications

This paper provides a theoretical analysis of a generic public good game and proposes a new non-
monetary incentive mechanism to stimulate individuals toward higher e�orts. As described in
Section 1.4, it is proposed as a tool for a policy maker wishing to increase the total contribution
level that could be applied in a variety of real situations. However, we also describe in more details
a speci�c motivating application in the area of data analytics under privacy concerns, where our
proposed mechanism makes particular sense.

In earlier works [Chessa et al.(2015b)Chessa, Grossklags, and Loiseau,Chessa et al.(2015a)Chessa,
Grossklags, and Loiseau], we analyzed a game where privacy-conscious users reveal scalar personal
data to an analyst who computes the population average. (This is a special case of the model
of [Ioannidis and Loiseau(2013)] that introduced a class of linear regression games with privacy
costs and the public good nature of the learning precision). Users choose the precision of the per-
sonal data revealed (incurring a privacy cost dependent on the chosen precision), which is seen as
their contribution to a public good related to the precision of the inferred average. We then showed
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how, in this speci�c model, imposing a minimum individual precision level can increase the preci-
sion of the inferred average. In this paper, we propose a generalization of such a model to a more
generic public good game and we considerably extend the results, hence showing how the idea of
setting a minimum contribution level is valid for generic public goods when the aim is to increase
the total level of contribution. In Section 6, we present the details of the data analytics problem,
show how it is a special case of our more generic model and detail our results on that special case
in particular emphasizing the bene�ts of the minimum contribution level mechanism to improve the
level of precision achieved by the data analytics project.

Data analytics projects have a long history. However, in the last decades, the amount of personal
information contributed by individuals to digital repositories such as social network sites has grown
substantially, and together with it the attention of online services and of researchers. The existence of
this data o�ers unprecedented opportunities for data analytics research in various domains of societal
importance, including public health, market-research or political decision-making [Varian(2014)].
The results of these analysis can be considered as a public good which bene�ts data contributors
as well as individuals who are not making their data available. At the same time, the release
of personal information carries some privacy costs to the contributors, who may perceive the use
of their data as an intrusion of their personal sphere [Altman(1975),Warren and Brandeis(1890)]
or as a violation of their dignity [Westin(1970)], or who may fear this data can be abused for
unsolicited advertisements, or social and economic discrimination [Acquisti and Fong(2013),Mikians
et al.(2013)Mikians, Gyarmati, Erramilli, and Laoutaris]. The game-theoretic model of this paper
applies to this trade-o� scenario, in line with some literature which has already proposed to treat
information as a public good [McCain(1988)]. Our results show how a data analyst can substantially
increase the accuracy of her analysis by simply imposing a lower bound on the precision of the
data users can reveal, while letting them the choice whether to contribute, and without providing
any monetary incentive. This is particularly important as, in this sensible domain of privacy, it
has been shown that individuals consider as fundamental to be able to exercise control over the
release of their personal data [Kass et al.(2003)Kass, Natowicz, Hull, Faden, Plantinga, Gostin, and
Slutsman,Damschroder et al.(2007)Damschroder, Pritts, Neblo, Kalarickal, Creswell, and Hayward,
Robling et al.(2004)Robling, Hood, Houston, Pill, Fay, and Evans] while monetary compensation
has so far received very little traction and it has been shown to meet little acceptance in consumer
surveys [Acquisti and Grossklags(2005)].

3 The Model

3.1 The economy

We suppose that our economy consists of a set N = {1, . . . , n} of individuals who may contribute
to the provision of a public good. Each individual i ∈ N has the same unit wealth and contributes
to the public good at a (normalized) level λi ∈ [0, 1]. We denote by λ = [λi]i∈N ∈ [0, 1]n the vector
of contributions and by G(N) =

∑
i∈N λi ∈ [0, n] the total level of contribution of the individuals

of set N .
In our model, we rely on voluntary contributions for the provision of the public good and we

con�ne our attention to the case in which individuals are assumed to care only about the private
cost of the contribution and the utility derived from the total level of contribution. This assumption
embeds many of the classical public good models that have received so far the most attention in the
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economic literature, such as the standard VCM (Voluntary Contribution Mechanism). Our choice
enables providing intuitions and comparisons with a large part of the existing results on public
goods even if, for applicability reasons, we use concave utility functions instead of the simple VCM
linear model1. Formally, given her contribution λi and the contributions of all the other individuals
(for which we use the standard notation λ−i), i experiences a utility

Ui(λi,λ−i) = h(G(N))− pi(λi). (1)

The �rst component, h(G(N)), is the public good utility, i.e., the homogeneous utility that each
individual equally experiences because of the total provision of the public good. We suppose that
h : [0, n] → R̄2 is twice continuously di�erentiable, that the individuals experience positive and
diminishing marginal utility from the provision of the public good, hence h is strictly increasing
and strictly concave. Moreover, we suppose that the utility can be arbitrarily low in absence of
contributions, i.e., that h(0) = −∞3 and that the marginal utility becomes negligible for high
contribution levels, i.e., h′(x) → 0 when x → +∞. The second component, −pi, with pi : [0, 1] →
R+, represents the cost of contribution of individual i. Such a cost is heterogeneous, i.e., it depends
on the type of each individual, but we suppose that all the pi's are twice continuously di�erentiable,
non-negative, increasing, strictly convex and s.t. pi(0) = p′i(0) = 0.

Throughout our analysis and when speci�ed, we often make the assumption that the individuals
can be ordered in such a way that, for any contribution level λ ∈ [0, 1], an individual choosing λ
has higher marginal cost of contribution (and hence higher cost since pi(0) = 0 for all individuals)
than the previous individuals if they choose the same contribution level. Formally:

Assumption 3.1 The costs of contribution are such that p′1(λ) ≤ · · · ≤ p′n(λ), for all λ ∈ [0, 1].

Assumption 3.1 may require some re-ordering from the initial ordering, which comes without loss
of generality.

3.2 The public good game

We represent the individuals' strategic interaction as the non-cooperative public good game Γ(N) =
〈N, [0, 1]n, (Ui)i∈N 〉, with set of players N , strategy space [0, 1] for each individual i ∈ N and utility
function Ui given by (1). We analyze the game Γ(N) as a complete information game between the
individuals, i.e., we assume that the set of individuals, the action sets and the utilities are common
knowledge. A Nash equilibrium in pure strategies (NE) of this game is a strategy pro�le λ∗ ∈ [0, 1]n

satisfying

λ∗i ∈ arg max
λi∈[0,1]

Ui(λi,λ
∗
−i), ∀i ∈ N. (2)

Throughout our analysis, we always refer to NE (and the re�nements) in pure strategies, even when
not explicitly speci�ed. A NE λ∗ is a strict Nash equilibrium (SNE), if, for each i ∈ N and for each
λi ∈ [0, 1], λi 6= λ∗i , it holds that

Ui(λ
∗
i ,λ
∗
−i)− Ui(λi,λ∗−i) > 0,

i.e., each individual strictly decreases her utility by deviating.
1Some of the additional assumptions of our speci�c model are well motivated by some applications, such as the

one presented in Section 6.
2We denoted by R̄ the extended real number line R ∪ {−∞,+∞}.
3Without loss of generality, we can relax this assumption by assuming h(0) = a, with a �nite but arbitrarily low.

Assuming the utility at zero contribution equal to −∞ makes some of the following deductions more straightforward.
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4 The Public Good Economy without Incentives

We observe that Γ(N) is a potential game [Monderer and Shapley(1996)], with potential function
Φ : [0, 1]n → R̄, s.t., for each λ ∈ [0, 1]n,

Φ(λ) = h(G(N))−
∑
j∈N

pj(λj). (3)

In particular, the potential function is concave and the strategy sets are closed intervals of the real
line. It follows that the set of Nash equilibria and the set of pro�les which are maximizers of the
potential function coincide. Exploiting its potential nature, we can perform a complete analysis of
the game Γ(N) and provide its stable outcomes. In particular, we observe that a Nash equilibrium
in pure strategies for such a game exists and it is unique, as stated in Theorem 4.1. As expected,
at equilibrium individuals with higher contribution costs select lower contribution levels.

Theorem 4.1 The game Γ(N) has a unique NE λ∗. This equilibrium is strict and s.t. λ∗i > 0
for each i ∈ N . If the costs of contribution satisfy Assumption 3.1, then the equilibrium is s.t.,

0 < λ∗n ≤ · · · ≤ λ∗1.

In most of the public good literature, we observe that only one small subset of the individuals will
actually contribute to the provision of the public good at NE. In our model, owing to the assumption
that p′i(0) = 0, the equilibrium is such that we do not observe free-riding behaviors. Nevertheless,
this comforting result does not prevent the equilibrium contribution from su�ering of some partial
free-riding behaviors, i.e., the non-zero but limited voluntary contribution of some individuals. As
a consequence, when aiming at maximizing the total level of contribution at equilibrium, that
we denote by G∗(N), we may observe an ine�ciency, compared to the maximal total level of
contribution n that the individuals could potentially reach. In the following, and whenever necessary,
we use the notation λ∗ = λ∗(N) and λ∗i = λ∗i (N) for each i ∈ N to denote that the equilibrium
depends on the speci�c identity of the agents in the set of individuals N (and, in particular, on
their contribution costs).

Proposition 4.2 shows how, at equilibrium, the individual contribution and the total level of
contribution vary when a new individual enters the game. In particular, we show that the individual
contribution becomes lower, as expected and according to the standard public good literature.
However, the total level of contribution increases. The result holds without any ordering assumption,
in particular, it holds irrespective whether the new individual has higher or lower contribution cost
compared to the rest of the population.

Proposition 4.2 Given the game Γ(N), suppose that an additional (n+ 1)-th individual enters the

game. Then,

(i) the i-th individual's contribution at equilibrium for each i ∈ N is s.t. λ∗i (N ∪{n+ 1}) ≤ λ∗i (N);

(ii) the total level of contribution is s.t. G∗(N ∪ {n+ 1}) > G∗(N).

As a direct consequence of Proposition 4.2, we observe that, at equilibrium, the individual utility
is strictly bigger when a new individual enters the game.

Corollary 4.3 Given the game Γ(N), suppose that an additional (n + 1)-th individual enters the

game. Then, at equilibrium, U∗i (λ∗(N ∪ {n+ 1})) > U∗i (λ∗(N)).

7



We can summarize the results presented in this section by a�rming that our economy, modeled
by the public good game Γ(N) and when we rely on the individuals' voluntary contribution, is
ine�cient in term of total level of contribution. However, arti�cially enlarging the set of potential
contributors to the public good is bene�cial at this scope. Moreover, also from the individual point
of view, it is convenient to welcome as many individuals as possible into the economy. However,
improving the equilibrium provision level by enlarging the set of individuals is often not feasible, as
some objective constraints could prevent this solution. In Section 5 we will propose and illustrate
an alternative way to increase the total contribution level, while maintaining the population of
contributors �xed. Before doing that, in the last part of this section, we further detail the analysis
of the game Γ(N) in the totally homogeneous case, i.e., when the individuals not only have the
same public good utility, but also have identical costs of contribution. This allows us to strengthen
our results for the proposed case.

4.1 The homogeneous case

Formally, now we assume that the individuals utility is still de�ned by (1), but it is s.t. pi(·) = p(·)
for each i ∈ N . When the game Γ(N) is homogeneous, we denote it by Γ(n), i.e., as dependent on
the number of individuals and not on their identity.

In the following, we detail Theorem 4.1 and Proposition 4.2 for the totally homogeneous case.
The �rst result, that we present below, simply follows as a corollary of Theorem 4.1.

Corollary 4.4 Let the game Γ(n) be homogeneous, the unique NE λ∗ is s.t. λ∗i = λ∗ > 0 for each

i ∈ N .

When the game Γ(n) is homogeneous, we adopt the notation λ∗(n) and G∗(n) to denote the
individual and the total equilibrium level of contribution respectively. This helps us emphasize that,
under the hypothesis of homogeneity, the equilibrium level does not depend on the speci�c identity
of the set of the individuals N , but only on its cardinality.

The second result, that we present in Proposition 4.5, could be partially shown as a corollary of
Proposition 4.2. However, we present it in a more complete version, as the result of a comparative
statics analysis of the individual contribution and the total level of contribution at equilibrium,
studying how these quantities vary when changing the parameter n. In particular, we show that
the individual contribution goes to zero when the number of individuals goes to in�nity, and that
the total level of contribution goes to in�nity.

Proposition 4.5 Let the game Γ(n) be homogeneous, the individual contribution at equilibrium

λ∗(n) and the total level of contribution at equilibrium G∗(n) satisfy:

(i) λ∗(n) is a non-increasing function of the number n of individuals, and it is s.t. limn→+∞ λ
∗(n) =

0;

(ii) G∗(n) = nλ∗(n) is an increasing function of the number n of individuals, and it is s.t.

limn→+∞G
∗(n) = +∞.

To conclude the analysis of this homogeneous case, we observe that, even if the total level of
contribution goes to in�nity when the number of individuals goes to in�nity, it still goes slower than
the optimal total level of contribution, as it holds that

n

G∗(n)
=

n

nλ∗(n)
=

1

λ∗(n)
−→ +∞.
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5 The Public Good Economy with Incentives

5.1 The modi�ed public good game

As we have seen in the previous section, the public good game Γ(N), representing our economy and
relying on the voluntary contribution of the individuals, has a unique Nash equilibrium. In such
a model, when |N | < +∞, i.e., when the number of individuals is �nite, the resulting total level
of contribution, G∗(N), can be ine�ciently low. In the following, we suppose that the equilibrium
contribution of Γ(N) is such that λ∗i (N) < 1 for some i ∈ N , i.e., it is such that the total level of
contribution is not maximal.

In this section, we propose a mechanism to incentivize a higher level of contribution by the
individuals. The resulting game is a variation of the original model based on a restriction of the
individuals' strategy space to {0}∪[η, 1] for a given η ∈ [0, 1], that we call the minimum contribution

level. Restricting the strategy set can stimulate the individuals toward higher e�orts; letting them
the possibility of choosing a zero level of contribution, we ensure that such e�orts remain voluntary.
We investigate how to tune the minimum precision level in order to improve the total level of
contribution.

To analyze the strategic interaction between the agents in this variation, we de�ne the game
Γ(N, η) =

〈
N,
[
{0} ∪ [η, 1]

]n
, (Ui)i∈N

〉
, where the utility function Ui is still de�ned by (1), but it

is now restricted on the domain
[
{0} ∪ [η, 1]

]n. Observe that the original game Γ(N) is a special
case of this modi�ed game Γ(N, η), when η = 0. Then, from now on, we suppose that η ∈ (0, 1].
As we did for Γ(N), we analyze the game Γ(N, η) as a complete information game between the
individuals, i.e., we assume that the set of individuals, the action sets (in particular, the minimum
contribution level η) and the utilities are common knowledge. A Nash equilibrium (in pure strategy)
of the modi�ed game Γ(N, η) is a strategy pro�le λ∗(η) ∈

[
{0} ∪ [η, 1]

]n satisfying

λ∗i (η) ∈ arg max
λi∈{0}∪[η,1]

Ui(λi,λ
∗
−i(η)), ∀i ∈ N. (4)

5.2 The economy with a minimum contribution level

We observe that the modi�ed game Γ(N, η) is still a potential game, with potential function Φ as in
(3), but de�ned on the restricted domain

[
{0}∪ [η, 1]

]n. Di�erently from Γ(N), the strategy sets of
the modi�ed game are not closed intervals of the real line and the equilibria may not coincide with
the global maxima of the potential function. As a consequence, we can no longer exploit directly
its potential nature to perform a complete analysis of the Nash equilibrium structure, as we did in
the previous section. However, we observe that, given its strict concavity, the potential function Φ
has still a unique global maximum when restricted to the smaller and convex domain [η, 1]n. We
denote by λM (N, η) ∈ [η, 1]n such a maximum

λM (N, η) = arg max
λ∈[η,1]n

Φ(λ), (5)

and by GM (N, η) the corresponding total level of contribution. In the following, we show how these
quantities still play a fundamental role in the analysis of the Nash equilibrium structure of the game
Γ(N, η).

At �rst, we observe that introducing a minimum level of contribution, we may incur some free-
riding behaviors. Some individuals (in particular, the ones with the highest contribution costs) may
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�nd more advantageous to stay out of the game rather than being pushed to contribute more. In
De�nition 5.1, we introduce a parameter η∗ such that, as we see in Proposition 5.2, if we set a
minimum precision level in (0, η∗], there still exists a NE such that even the individual with the
highest cost of contribution does not have an incentive to drop out and to free-ride and such an
equilibrium coincides with λM (N, η).

De�nition 5.1 Suppose that Assumption 3.1 is satis�ed. We de�ne the parameter η∗ as the smallest

parameter in (λ∗n, 1]4, if there exists one, s.t.,

h(GM (N, η∗))− h(GM (N, η∗)− η∗) = pn(η∗). (6)

If such a parameter does not exist, we set η∗ = 1.

To better understand this de�nition, we �rst observe that, when choosing a minimum contribution
level η ∈ (λ∗n, 1], vector λM (N, η) is necessarily on the border (as no critical point of Φ was in
(λ∗n, 1]n), i.e., it is s.t. the individual with the highest cost contributes exactly λMn (N, η) = η. Given
that, according to Theorem 4.1, the equilibrium of the original game is strict, intuitively, we de�ne
η∗ as the smallest contribution level at which, if there still exists an equilibrium in which all the
individuals are contributing, such an equilibrium is not strict anymore, i.e., individual n has exactly
the same utility by contributing and by free-riding. If such a parameter does not exist, it follows
that individual n is always better o� by contributing than by free-riding, regardless of the minimum
contribution level, and then we set it at maximum, i.e., equal to 1. In that case, it simply holds
that

h(G∗(N, 1))− h(G∗(N, 1)− 1) = h(n)− h(n− 1) > pn(1). (7)

We now investigate whether, by introducing a minimum precision level, we still have an equilibrium
in which also the individual with the highest contribution costs is not free-riding. In Proposition 5.2
we show that, by setting a precision level no bigger than η∗, this is still possible, and moreover such
an equilibrium is the unique one with non-zero components.

Proposition 5.2 Suppose that Assumption 3.1 is satis�ed. It holds that:

(i) if |N | = 1, then for any η ∈ (0, 1], Γ(N, η) has a unique NE λ∗(N, η) = max {λ∗, η}, where λ∗
is the single entrance NE of Γ(N) when only one individual is present;

(ii) if |N | > 1, then for any η ∈ (0, η∗], every NE λ∗ of Γ(N, η) is s.t. λ∗i = λMi (S, η) for each

i ∈ S, where S = {i ∈ N |λ∗i 6= 0}. In particular, λ∗(N, η) := λM (N, η) is the unique NE of

Γ(N, η) s.t. λ∗i (N, η) > 0 for all i ∈ N .

Proposition 5.2 translates the fact that, if the analyst selects a minimum precision level that is
not �too high�, i.e., that is not bigger than η∗, there exists an equilibrium where all the individuals
are still willing to contribute. This does not exclude the existence of other equilibria where some
individuals may contribute zero. Whether the result is still valid or not for value of η bigger than
this threshold is still an open question. However, as better stated in the �nal part of this section, we
conjecture that this result will not hold anymore for a minimum contribution level which is larger

4We recall that we denote by λ∗n the equilibrium contribution level in Γ(N) of the individual with the highest
contribution cost.
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than η∗, translating the fact that, in that case, the individuals would feel to be forced to a too
important e�ort and prefer not to take part (e.g., in the survey).

The results of Proposition 5.2 allow us to establish the �rst main result of this section. In
Theorem 5.3 we state that it is possible to strictly increase the total level of contribution at the
non-zero equilibrium by imposing a minimum precision level. In particular, such an increase is
monotonic in η in the domain [0, η∗].

Theorem 5.3 Suppose that Assumption 3.1 is satis�ed. The total level of contribution G∗(N, η) at
equilibrium λ∗(N, η) of the modi�ed game Γ(N, η) is a non-decreasing function of η ∈ [0, η∗] and,
in particular, it is increasing in [λ∗n, η

∗].

In this subsection, we have shown, up to a certain value of the minimum contribution level, the
existence of a NE without free-riders in which the increase of the total contribution level is strictly
positive and it is monotonic in the choice of the parameter η. However, the uniqueness of such a
NE is not assured and the equilibrium prediction could suggest the rise of a suboptimal NE with
potentially many free-riders. In the following, we address this problem by re�ning the NE de�nition
and by showing that, up to a more restrictive value of the minimum contribution level η, λ∗(N, η)
is in fact the only equilibrium which is likely to arise by implementing the corresponding modi�ed
game.

5.3 The Nash equilibria re�nement

By introducing a minimum precision level, we face the problem of possibly having a multiplicity of
Nash equilibria. We have already observed that the modi�ed game Γ(N, η) is still a potential game,
but in which the equilibria may not coincide with the global maxima of its potential function. Even
if we cannot exploit anymore directly its potential nature to perform a complete analysis of the Nash
equilibrium structure, we observe that, in potential games, the set of global maxima is a subset of the
Nash equilibrium set which re�nes it both in terms of equilibrium prediction and robustness. Indeed,
�rst, in [Monderer and Shapley(1996)] the authors argue that such a re�nement concept is expected
to accurately predicts the results obtained through an experimental implementation of the model;
in particular, they show that this re�nement concept accurately predicts the experimental results
obtained by [Van Huyck et al.(1990)Van Huyck, Battalio, , and Beil]5. Second, this re�nement
concept has been justi�ed theoretically in [Oyama and Tercieux(2009)] because of its robustness
to incomplete information following the de�nition of [Kajii and Morris(1997)]. For these reasons,
by implementing a potential game, we can assume that the individuals will converge to a potential

maximizer Nash equilibrium (PMNE) λP (η) ∈
[
{0} ∪ [η, 1]

]n satisfying

λP (η) ∈ arg max
λ∈[{0}∪[η,1]]n

Φ(λ). (8)

In the following we investigate whether, for some choices of the minimum contribution level η, we
can ensure the existence of a unique PMNE and whether this solution coincides or not with the
non-zero component NE of the previous subsection. In De�nition 5.4, we introduce a new parameter
η̄ smaller than or equal to η∗ such that, as we see in Proposition 5.5, if the analyst sets a minimum
precision level strictly smaller than η̄, the unique NE s.t. there are no free-riders is also the unique

5As we will discuss in the conclusions, an experimental validation of this a�rmation on our model will be the
main direction for future work on the topic.
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PMNE and then it represents the only one that is likely to emerge through an implementation of
the model.

De�nition 5.4 Suppose that Assumption 3.1 is satis�ed. We de�ne the parameter η̄ as the smallest

parameter in (λ∗n, η
∗], if there exists one, s.t.,

Φ|λn=0(λ
M0(N \ {n}, η̄)) = Φ(λM (N, η̄)), (9)

where λM0(N \ {n}, η̄) is the unique global maximum of the potential function Φ de�ned on the

restricted domain [η̄, 1]n−1 ∪ {0} and λM (N, η̄) is the unique global maximum of Φ on [η̄, 1]n. If

such a parameter does not exist, we impose η̄ = η∗.

To better understand this de�nition, we observe that the parameter η̄ is de�ned as the smallest
minimum contribution level at which the maximum value of the potential function is the same by
letting individual n free to choose whether to contribute or not or by forcing him to contribute
zero. Of course, for value of the minimum level of contribution in [0, λ∗n], the maximum value of the
potential function is unique and this condition will never be satis�ed.

Proposition 5.5 Suppose that Assumption 3.1 is satis�ed. For any η ∈ (0, η̄), λ∗(N, η) = λM (N, η)
is the unique PMNE of the modi�ed game Γ(N, η).

Complementary to the results of Proposition 5.2 and Theorem 5.3, Proposition 5.5 states the
second main result of this section. We have shown in Proposition 5.2 how, introducing a minimum
precision level which is smaller than η∗, we ensure that an equilibrium such that no individual is free
riding still exists, and such an equilibrium is unique, i.e., any other equilibrium is such that some
individuals contribute zero. By further bounding the choice of the minimum level of contribution
to a parameter smaller than η̄, we ensure in Proposition 5.5 that such an equilibrium is the unique
potential maximizer and, as such, the unique one which is likely to arise implementing the model.
Finally, Theorem 5.3 ensures that, by imposing such a minimum precision level, the total level of
contribution at the nonzero components NE, i.e., at PMNE, is strictly higher, compared to the
one of the original game. We conclude by summing up that choosing a parameter η as close as
possible to η̄ represents, up to our knowledge, the best choice to maximize the total contribution
level. Moreover we conjecture, as it is still an open question, that any choice of the parameter bigger
than η∗ will not produce any equilibrium of the game in which no one is free-riding or with a bigger
total level of contribution.

In Corollary 5.6, we illustrate how there could exist other PMNE for choices of the parameter η
which are too large, i.e., when trying to force the individuals to some contribution levels which are
too high.

Corollary 5.6 When η = η∗, for each j ∈ N s.t. p′j(·) = p′n(·) there exists a NE ν of Γ(N, η∗)
s.t., νi = λ∗i (N, η

∗) = λ∗i (N \ {n}, η∗) for each i 6= j and νj = 0. Such an equilibrium is such that

Φ(ν) = Φ(λ∗(N, η∗)).

From Corollary 5.6 we may observe that when implementing the game Γ(N, η∗), any strategy
vector which corresponds to λ∗(N, η∗), but s.t. one of the individuals who have the largest contribu-
tion cost deviates to zero, is still a NE (in particular, it is still a PMNE if the original contribution
vector is a PMNE). This because, by De�nition 5.1, η∗ is the contribution level s.t. not only her
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individual utility, but also the potential function does not vary when individual n deviates. How-
ever, such a PMNE is ine�cient in terms of total level of contribution, as it is s.t. n− 1 individuals
are contributing the same and 1 individual who was contributing strictly more than zero is now
free-riding.

5.4 The homogeneous case

Similarly to the previous section for the case without incentives, we now detail the results of Propo-
sitions 5.2 and 5.5 and Theorem 5.3 for the homogeneous modi�ed game, that we denote by Γ(n, η).
First, in De�nitions 5.7 and 5.8, we introduce a parameter η∗(n) and a parameter η̄(n), which are
the analogous of parameters η∗ and η̄ de�ned in De�nitions 5.1 and 5.4 for the heterogeneous case.

De�nition 5.7 We de�ne the parameter η∗(n) as the smallest parameter in (λ∗(n), 1], if there exists
one, s.t.

h(nη∗(n))− h((n− 1)η∗(n)) = p(η∗(n)). (10)

If such a parameter does not exist, we impose η∗(n) = 1.

De�nition 5.8 We de�ne the parameter η̄(n) as the smallest parameter in (λ∗(n), η∗(n)], if there
exists one, s.t.

h((n− 1)λ∗(n− 1))− (n− 1)p(λ∗(n− 1)) = h(nη̄(n))− np(η̄(n)). (11)

If such a parameter does not exist, we impose η̄(n) = η∗(n).

In Theorem 5.9, we provide a more detailed analysis of the NE structure for the homogeneous
case. In particular, in this subcase we are able to prove the conjecture we presented at the end of
the previous section for the heterogeneous case. Indeed, we show that, when the minimum precision
level is too high (bigger than η∗(n)), at equilibrium some individuals necessarily free-ride.

Theorem 5.9 Let the game Γ(n) be homogeneous, and let λ∗(n) be the unique Nash equilibrium of

the original game Γ(n). It holds:

(i) if n = 1, then for any η ∈ (0, 1], Γ(n, η) has a unique Nash equilibrium λ∗(n, η) = max {λ∗(1), η};

(ii) if n > 1, then

(iia) for any η ∈ (0, η∗(n)), Γ(N, η) has a unique NE λ∗(n, η) s.t. λ∗i (n, η) > 0 for each

i ∈ N . This equilibrium is s.t., λ∗i (n, η) = λ∗(n, η) for each i ∈ N , with

λ∗(n, η) =

{
λ∗(n) if 0 ≤ η ≤ λ∗(n)

η if λ∗(n) < η < η∗(n);
(12)

In particular, if η ∈ (0, η̄(n)), such an equilibrium is the unique PMNE.

(iib) for η = η∗(n), Γ(n, η∗(n)) has at least n + 1 NE: an equilibrium λ∗(n, η∗(n)) s.t.

λ∗i (n, η
∗(n)) = η∗(n) for each i ∈ N , and n equilibria ν1, . . . ,νn s.t. for each j = 1 . . . n

νji = η∗(n) for each i 6= j and νjj = 0. In particular, if λ∗(n, η∗(n)) is a PMNE, then all

the νj are PMNE for each j = 1 . . . n.
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(iic) for any η ∈ (η∗(n), 1], there does not exist a Nash equilibrium λ̄ of Γ(n, η) s.t. λ̄i > 0
for each i ∈ N .

The homogeneous case allows us to understand in more details the equilibrium structure of the
modi�ed model in the particular situation in which all the individuals have the same contribution
cost. It is also of particular interest when implementing a public good game in which the contribution
costs of the individuals are not known precisely, and only an estimation or an average is available.
Moreover the homogeneous case, as in the previous section, allows us to perform a comparative
statics analysis, investigating what happens when the number of individuals increases. The last
result of this section shows the monotonicity of the parameter η∗(n), which is a non-increasing
function of the parameter n, going to zero for an in�nitely large number of individuals.

Corollary 5.10 The function η∗(n) is non-increasing in the number n of individuals, and it is s.t.

limn→+∞ η
∗(n) = 0.

It follows that also the parameter η̄(n) goes to zero when the number of individuals goes to in�nity.
As a consequence, similarly to what we observed at the end of Section 4 without minimum contri-
bution level, also the modi�ed game performs worst than the maximal level of contribution n for
an in�nite number of individuals, as it holds that

n

nλ∗(n, η̄(n))
=

n

nη̄(n)
=

1

η̄(n)
−→ +∞.

However, as we will show for a particular case in the next section, the improvement can still be very
signi�cant.

6 A Data Analytics Project as a Public Good Economy

Our results provide a widely applicable method to increase the provision of a public good above
voluntary contributions, simply by restricting the individuals' strategy spaces. This method is
attractive by its simplicity and, consequently, its applicability. In this section, we illustrate the
model and our results on a modern application around privacy, where the economy is given by a
data analytics research project6.

6.1 The data analytics project

In our personal data economy, a set of individualsN = {1, . . . , n}may decide to voluntary contribute
(or not) to a data analytics research project, providing some personal data at a given level of
precision. We suppose that their personal data are collected and contained in a data repository.
In particular, each individual i ∈ N is associated with a private variable yi ∈ R, which contains
sensitive information. Throughout our analysis, we suppose that there exists yM ∈ R, s.t., the
private variables are of the form

yi = yM + εi, ∀i ∈ N, (13)

6In this application, we adopt a notation which is consistent with the one of the general model presented in the
previous sections.
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where εi are i.i.d., zero-mean random variables with �nite variance σ2 < ∞, which capture the
inherent noise. We make no further assumptions on the noise; in particular, we do not assume that
it is Gaussian. As a result, such a model applies to a wide range of statistical inference problems,
even cases where the distribution of variables is not known.

Parameter yM represents the mean of the private variables yi, and its knowledge is valuable to
the analyst. The analyst wishes to observe the available private variables yi and to compute their
average as an estimation of yM . In our model, we suppose that the analyst does not know the mean
yM that she wishes to estimate, but she knows the variance σ2. Such an assumption is justi�ed by
the fact that in many statistical analyses observing the variability of an attribute in a population
is easier than estimating the mean, both for the analyst and for the population (in [Huberman
et al.(2005)Huberman, Adar, and Fine], for example, the authors show how individuals value their
age and weight information according to the relative variability).

We suppose that the analyst cannot directly access the private variables; instead she needs to ask
the individuals for their consent to be able to retrieve the information. As such, the individuals have
full control over their own private variables, and they have the choice to authorize or to deny the
analyst's request. In particular, if wishing to contribute, but concerned about privacy, an individual
can authorize the access to a perturbed value of the private variable. The perturbed variable has
the form ỹi = yi + zi, where zi is a zero-mean random variable with variance σ2i chosen by the
individual. We assume that the {zi}i∈N are independent and are also independent of the inherent
noise variables {εi}i∈N . In practice, the individual chooses a given precision λi which is the inverse
of the total variance (inherent noise plus arti�cially added noise) of the perturbed variable ỹi, i.e.,

λi = 1/(σ2 + σ2i ) ∈ [0, 1/σ2], ∀i ∈ N,

and which corresponds to the contribution of individual i to the personal data economy. In the
choice of the precision level, we have the following two extreme cases:

(i) when λi = 0, individual i has very high privacy concerns. This corresponds to adding noise
of in�nite variance or, equivalently, this represents the fact that individual i denies access to
her data. In our public good model, a zero contribution corresponds to free-riding;

(ii) when λi = 1/σ2, individual i has very low privacy concerns. This corresponds to authorizing
access to the private variable yi without adding any additional noise to the data. In our public
good model, a maximal precision corresponds to a maximal level of contribution.

The strategy set [0, 1/σ2] contains all the possible choices for individual i: denying, authorizing, or
any intermediate level of precision (which captures a wide range of privacy concerns as documented
in behavioral studies [Spiekermann et al.(2001)Spiekermann, Grossklags, and Berendt]). We denote
by λ = [λi]i∈N the vector of the precisions.

Once each individual i ∈ N has made her choice about the level of precision λi and, consequently,
the perturbed variable ỹi has been computed, the analyst has access to both the set of precisions
and the set of perturbed variables. Then, the analyst estimates the mean as

ŷM (λ) =

∑
i∈N λiỹi∑
i∈N λi

, (14)

where perturbed variables with higher precision (i.e., smaller variance) receive a larger weight. This
estimator is the standard generalized least squares estimator. It minimizes a weighted square error
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in which the i-th term is weighted by the precision of the perturbed variable ỹi. This estimator is
unbiased, i.e., E[ŷM ] = yM , and has variance

σ2M (λ) = E[(ŷM (λ)− yM )2] =
1∑

i∈N λi
∈ [σ2/n,+∞]. (15)

It is reasonable to assume that the analyst would use this estimator, as it is �good� for several
reasons. In particular, it coincides with the maximum-likelihood estimator for Gaussian noise and,
most importantly, it has minimal variance amongst the linear unbiased estimators for arbitrary
noise distributions (this optimality result is known as Aitken theorem [Aitken(1935)]).

In the estimation, we have the following two extreme cases:

(i) when λi = 0 for each i ∈ N , the variance (15) is in�nite. This corresponds to the situation in
which each individual denies access to her data, and then the analyst cannot estimate yM . In
our public good model, this situation leads to a zero total level of contribution;

(ii) when λi = 1/σ2 for each i ∈ N , the analyst estimates yM with variance σ2/n, resulting
only from the inherent noise. This corresponds to the situation in which each individual is
authorizing access to her data with maximum precision, i.e., no agent is perturbing her private
variable. In our public good game, this corresponds to a maximal total level of contribution
equal to n/σ2.

For any level of precision in [0, 1/σ2]n, the estimated variance will be in [σ2/n,+∞]. The set of
precision vectors for which the estimator has a �nite variance is [0, 1/σ2]n \ {(0, . . . , 0)}.

6.2 The Estimation Game ΓE

We describe the interaction between the individuals as follow. We assume that each individual
i ∈ N wishes to minimize a cost function7 Ji : [0, 1/σ2]n → R̄+, s.t., for each λ ∈ [0, 1/σ2]n,

Ji(λ,λ−i) = ci(λi) + f(λ). (16)

The cost function Ji of individual i ∈ N comprises two non-negative components. The �rst com-
ponent ci : [0, 1/σ2] → R+ represents the privacy attitude of individual i, and we refer to it as
the privacy cost : it is the (perceived or actual) cost that the individual incurs on account of the
privacy violation sustained by revealing the private variable perturbed with a given precision. The
second component f : [0, 1/σ2]n → R̄+ is the estimation cost, and we assume that it takes the form
f(λ) = F (σ2M (λ)) where F : [σ2/n,+∞) → R+ if the variance is �nite, and +∞ otherwise. It
represents how well the analyst can estimate the mean yM and it captures the idea that it is not
only in the interest of the analyst, but also of the agents, that the analyst can determine an accu-
rate estimate of the population average yM . We assume that the privacy costs ci : [0, 1/σ2]→ R+,
i ∈ N , are twice continuously di�erentiable, non-negative, non-decreasing, strictly convex and s.t.
ci(0) = c′i(0) = 0, and that function F : [σ2/n,+∞)→ R+ is twice continuously di�erentiable, non-
negative, non-decreasing and convex. To describe the strategic interaction between the individuals,
we de�ne the estimation game ΓE =

〈
N, [0, 1/σ2]n, (Ji)i∈N

〉
with set of agents N , strategy space

[0, 1/σ2] for each agent i ∈ N and cost function Ji given by (16).

7We chose to present the estimation game model in its cost formulation for coherence with some previous work
[Chessa et al.(2015b)Chessa, Grossklags, and Loiseau,Chessa et al.(2015a)Chessa, Grossklags, and Loiseau]
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We observe that the estimation game ΓE is a particular case of the public good game Γ(N)
de�ned in Section 3. In fact, up to a normalization, or assuming σ2 = 1, the strategy set of each
individual corresponds to the normalized strategy set [0, 1]. Moreover, the minimization of the cost
function Ji is equivalent to the maximization of a utility function UEi : [0, n]n → R̄ de�ned as

UEi (λi,λ−i) = hE(λ)− pEi (λi), (17)

where the public good utility is given by hE(λ) = −F
(

1∑
i∈N λi

)
and the cost of contribution by

pEi (λi) = ci(λi). We may observe that this transformation leads to a negative utility. This is not in
contradiction with the general formulation of the public good model proposed in Section 3, but it
is, of course, unusual in the standard public good literature. However, we observe that it would be
su�cient to do a trivial rescaling and translation of the utility function to write the same problem
in a more ordinary form.

6.3 The Estimation Game with Monomial Privacy Costs and Linear Estimation

Cost

In this section, we explicit the results of the previous sections and we run some simulations in the
special case where the privacy cost is homogeneous and monomial and the estimation cost is linear;
i.e., we assume that the cost function in (16) has the form

Ji(λi,λ−i) = cλki + σ2M (λ), (18)

where c ∈ (0,∞) and k ≥ 2 are constants. In terms of the utility functions de�ned in Section 3, this
corresponds to a cost of contribution pEi (λi) = cλki , and a public good utility hE(λ) = − 1∑

i∈N λi
.

Note that, without loss of generality, in the linear estimation cost, we omit the constant factor
(adding a constant to the cost does not modify the game solutions) as well as the slope factor
(adding it would give an equivalent game with constant c rescaled). For this special case, we can
determine both the equilibrium precision (with and without a minimum precision level) and the
optimal minimum precision level in closed form. We can then graphically depict how the quantities
vary while moving the model parameters, and explicitly compute the estimation improvement when
introducing a minimum precision level.

In the special case of costs given by (18), the equilibrium precision chosen by the agents in the
game ΓE simpli�es to:

λ∗(n) =


(

1

ckn2

) 1
k+1

if
(

1

ckn2

) 1
k+1

≤ 1/σ2

1/σ2 if
(

1

ckn2

) 1
k+1

> 1/σ2.

(19)

The upper bound of the minimum precision level to guarantee the existence of a non-zero NE
is given by

η∗(n) =


(

1

cn(n− 1)

) 1
k+1

if
(

1

cn(n− 1)

) 1
k+1

≤ 1/σ2

1/σ2 if
(

1

cn(n− 1)

) 1
k+1

> 1/σ2,
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while the upper bound to guarantee that such an equilibrium is the unique PMNE is given by
η̄(n) = η∗(n). We may conclude that the optimal choice for the data analyst in order to maximize
the total level of contribution (which is equivalent to minimizing the variance of the estimation)
and to have every individual participating, is to set up a minimum contribution level as close as
possible to η∗(n).

Writing explicitly the previous two key quantities, we can more easily analyze the properties of
our public good game and its modi�cation that we have already discussed in the previous sections
for the general case. In particular, we observe that when c increases, i.e., when the individuals are
more concerned about privacy, they choose at equilibrium a smaller precision level λ∗(n). Further,
the minimum precision level η∗(n) becomes smaller if the individuals are more sensitive about the
protection of their data. Finally, we have λ∗(n) < η∗(n) for each n ∈ N∗, and both of these quantities
decrease and go to zero when n increases and goes to +∞.

Most interestingly, the closed-form expressions that we have for this special case allow us to
analyze the rate of decrease of the variance (equivalent to the rate of increase of the contribution),
and to quantify the improvement that can be achieved by imposing a minimum precision level. For
n large enough (such that both λ∗(n) and η∗(n) are strictly smaller than 1/σ2), the variance at
equilibrium level λ∗(n) of game ΓE is given by

σ2M (λ∗(n)) =
1

n
(

1
ckn2

) 1
k+1

,

while by setting up a minimum precision level η as close as possible to η∗(n), we can reach a variance
given by

σ2M (λ∗(n, η)) =
1

n
(

1
cn(n−1)

) 1
k+1

+ ε,

with ε arbitrarily small.

Both appear to have the same rate of decrease in n
−k+1
k+1 which is smaller than n−1 but becomes

closer to n−1 as k tends to in�nity. Intuitively, as the privacy cost becomes closer to a step function,
the equilibrium precision level becomes less dependent on the number of agents so that we get closer
to the case of averaging iid random variables of �xed variance. Consequently, for n large enough,
the improvement is given by a factor:

σ2M (λ∗(n))

σ2M (λ∗(n, η))
=

(
kn

n− 1

) 1
k+1

> 1, (20)

which asymptotically becomes constant:

σ2M (λ∗(n))

σ2M (λ∗(n, η∗(n)))
∼n→∞ k

1
k+1 . (21)

Interestingly, we notice that this ratio of variances (characterizing the improvement when setting
the optimal minimum precision level) depends on k, but not on c. (This holds even before the
asymptotic regime, as long as n is large enough such that both λ∗(n) and η∗(n) are strictly smaller
than 1/σ2.)

Figure 1 illustrates the asymptotic improvement ratio (21) for di�erent values of k. We observe
that it is bounded, it goes to 1 for large k's and it is in the range of 25 − 30% improvement for
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Figure 1: Asymptotic improvement of the estimation choosing the optimum precision level η∗(n)
for values of k = 2, . . . , 10 and for values of k = 2, . . . , 500.

values of k around 2 − 10. Given that the ratio (20) converges towards its asymptote from above,
this asymptotic improvement represents a lower bound of the improvement the analyst can achieve
by implementing our mechanism with any �nite number n of agents.

7 Concluding Remarks

In this paper, we propose a mechanism to improve the total contribution level in public good
provision. Our objective of improving the total contribution level contrasts with previous works in
the public good area that focus on improving social e�ciency. Our mechanism simply works by
imposing a minimum individual contribution level while allowing to free-ride if they prefer not to
respect it. Then our theoretical results predict an important rationale: using this mechanism to
push individuals to contribute more than their voluntary contribution level can indeed work and
increase the total contribution but it is necessary to carefully set up the minimum contribution level
to avoid creating free-riding.

Our theoretical analysis explains the e�cacy of some existing protocols that are already adopted
and require a minimum e�ort when asking some individuals to contribute to a public good. Such
an idea could be implemented in many other public good settings in which some other approaches,
such as providing monetary incentives, have failed in enhancing participation. In future work, we
plan to validate and complement our theoretical results through a behavioral study.
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A Proof of Theorem 4.1

Game Γ(N) is a potential game with a concave potential function Φ (de�ned as in (3)) and where
the strategy sets are closed intervals of the real line. It follows that a strategy pro�le is a Nash
equilibrium if and only if it maximizes the potential function. As the potential function Φ is strictly
concave on the convex set on which it is de�ned, it has a unique global maximum λ∗ ∈ [0, 1]n which
coincides with the unique Nash equilibrium of Γ(N) and such an equilibrium is strict. Moreover,
owing to the assumption that h(0) = −∞, this equilibrium is s.t., λ∗ 6= (0, . . . , 0). In particular,
the equilibrium λ∗ is such that for each i ∈ N , λ∗i satis�es the following KKT conditions{

h′(G∗(N))− p′i(λ∗i ) + ψ∗i − φ∗i = 0

ψ∗i λ
∗
i = 0 φ∗i (λ

∗
i − 1) = 0, ψ∗i , φ

∗
i ≥ 0,

(22)

where by G∗(N) we denote the total contribution level at equilibrium. Observe that, as a conse-
quence of the assumption that for each i ∈ N , p′i(0) = 0, it follows that λ∗i > 0 for each i ∈ N .
Indeed, if we suppose that there exists i ∈ N s.t. λ∗i = 0, the ith-equation of the KKT conditions
cannot be satis�ed, as

h′(G∗(N)) + ψ∗i > 0,

because ψ∗i ≥ 0 and h′ > 0 as h is strictly increasing.
If λ∗ is a Nash equilibrium with aggregate level of contribution G∗(N), then for all i ∈ N , λ∗i is

the unique solution in x of

p′i(x) = h′(G∗(N)), (23)

if the solution is smaller than or equal to 1, and 1 otherwise.
As at equilibrium the right term h′(G∗(N)) is the same for each i ∈ N , it immediately follows

that, if the pi's are s.t. p′1(λ) ≤ ... ≤ p′n(λ), for each λ ∈ [0, 1], then λ∗n ≤ . . . ≤ λ∗1.

B Proof of Proposition 4.2

(i) We suppose by contradiction that there exists i ∈ N s.t. λ∗i (N) < λ∗i (N ∪{n+1}) ≤ 1. Because
of the strict convexity of pi,

p′i(λ
∗
i (N)) < p′i(λ

∗
i (N ∪ {n+ 1})),

and, from equation (23), and as λ∗i (N) < 1,

h′(G∗(N)) = p′i(λ
∗
i (N)) < p′i(λ

∗
i (N ∪ {n+ 1})) ≤ h′(G∗(N ∪ {n+ 1})).

From the �rst and from the last term, and because of the concavity of h, it follows that

G∗(N) > G∗(N ∪ {n+ 1}). (24)

If the total contribution without individual n+1 is strictly bigger than after her entrance, this
implies that there exists at least one individual j ∈ N which veri�es the opposite inequality
compared to i, i.e., such that 1 ≥ λ∗j (N) > λ∗j (N ∪ {n + 1}). Following the same reasoning
than before, we conclude that G∗(N) < G∗(N ∪ {n+ 1}) and this contradicts (24).
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(ii) From (i), we know that λ∗i (N ∪ {n+ 1}) ≤ λ∗i (N) for each i ∈ N . In particular, if the equality
holds for each i ∈ N , the thesis follows trivially, asG∗(N∪{n+1}) = G∗(N)+λ∗n+1(N∪{n+1})
and from Theorem 4.1 we know that at equilibrium individual n + 1 provides a non-zero
contribution. On the contrary, if there exists i ∈ N s.t. λ∗i (N ∪ {n + 1}) < λ∗i (N), then we
can still conclude, following the same reasoning than in (i).

C Proof of Corollary 4.3

It is su�cient to observe that, at equilibrium,

U∗i (N ∪ {n+ 1}) = h(G∗(N ∪ {n+ 1}))− pi(λ∗i (N ∪ {n+ 1}))
> h(G∗(N))− pi(λ∗i (N))

= U∗i (N)

where the inequality follows because of Proposition 4.2 and because of the strict concavity and
convexity of function h and pi respectively.

D Proof of Corollary 4.4

When the game Γ is homogeneous, the potential function Φ in (3) is a symmetric function on a
symmetric domain. As a consequence, the unique maximum is also symmetric, i.e., λ∗i = λ∗ for
each i ∈ N .

E Proof of Proposition 4.5

(i) Firstly, from Equation (23), remembering we are now in a homogeneous case, we observe that
λ∗ > 0 is the unique solution of the following �xed point problem

λ = g(n, λ), (25)

where function g : N+ × (0, 1]→ [0,+∞] is de�ned for each λ ∈ (0, 1] and for each n ∈ N+ as

g(n, λ) = min
{

(p′)−1(h′ (nλ)), 1
}
. (26)

We consider the problem with the parameter n de�ned on the real interval [1,+∞]. For each
n ∈ [1,+∞], g is continuous in λ. Moreover, function g is monotonic non-increasing in n.
Indeed,

∂g

∂n
=

λ

p′′((p′)−1(h′ (nλ)))
h′′ (nλ) < 0

for each λ satisfying Equation (23), and g is identically 1 otherwise. Applying Corollary 1
of [Milgrom and Roberts(1994)], the unique �xed point λ∗(n) > 0 is non-increasing in n and,
consequently, limn→+∞ λ

∗(n) ≥ 0 is well de�ned.

Secondly, we observe that, for each λ > 0,

lim
n→+∞

g(n, λ) = 0
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pointwise. Indeed, limx→+∞ h
′(x) = 0, p′(0) = 0 and p′ is strictly monotonic.

If we suppose by contradiction that limn→+∞ λ
∗(n) = a > 0, then, from Equation (25), it

follows that
0 < lim

n→+∞
λ∗(n) = lim

n→+∞
g(n, λ∗(n)) = lim

n→+∞
g(n, a) = 0.

(ii) By Proposition 4.2-(ii), we know that G∗(n + 1) > G∗(n) for each n ∈ N . We suppose by
contradiction that limn→+∞G

∗(n) < +∞. It follows that limn→+∞ h
′(nλ∗(n)) > 0 and then,

by (26), that the solution to the �xed point problem is s.t. limn→+∞ λ
∗(n) > 0, and this

contradicts the second statement of Proposition 4.5-(i).

F Proof of Proposition 5.2

We observe that the modi�ed game Γ(N, η) is still a potential game, with potential function Φ as
in (3), but de�ned on the restricted domain

[
{0}∪ [η, 1]

]n. Di�erently from Γ(N), the strategy sets
of the modi�ed game are not closed intervals of the real line and the equilibria may not coincide
with the global maxima of the potential function.

(i) When |N | = 1, the potential function and the utility function of the only individual coincide.
Then, it still holds that a strategy pro�le is a Nash equilibrium if and only if it is a global
maximum of Φ. If η ≤ λ∗, the unique global maximum of Φ is still λ∗. If η > λ∗, owing to
the assumption that h(0) = −∞, the unique global maximum is η.

(ii) Now, let |N | > 1. For a better reading of the following of the proof, we present it organized in
6 steps.
Step 1 First,we observe that, as the unique NE of the original game Γ(N) λ∗ is strict, in
particular it holds that for each i ∈ N ,

h(G∗(N))− pi(λ∗i ) > h(G∗(N)− λ∗i ),

i.e., by deviating to zero any individual strictly decreases her utility.

Step 2 Given a subset of the individuals S ⊆ N , with s = |S|, and for each η ∈ [0, 1], we
de�ne a new modi�ed game Γ′(S, η) = 〈S, [η, 1]s, (Ui)i∈S〉, where the utility function Ui is
de�ned by (1) for each individual i ∈ S, but it is now restricted on the domain [η, 1]. Γ′(S, η)
is still a potential game, with potential function Φ as in (3), de�ned on the restricted domain
{0}n−s ∪ [η, 1]s8. As for the original game Γ(N) and the modi�ed game Γ(N, η), we observe
that also the game Γ′(S, η) is a potential game with a concave potential function and where,
similarly to Γ(N) but di�erently from Γ(N, η), the strategy sets are closed intervals of the real
line. It follows that a strategy pro�le is a Nash equilibrium if and only if it maximizes the
potential function. Moreover, the potential function is strictly concave on the convex set on
which it is de�ned, then it has a unique global maximum λM (S, η) ∈ [η, 1]s, which coincides
with the unique Nash equilibrium of Γ′(S, η). In particular, for each η ∈ (0, 1], λM (N, η) is
the unique Nash equilibrium of Γ′(N, η).

8For simplicity, we make an abuse of notation by assuming that the zero components correspond to the �rst n− s
individuals.
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Step 3 We de�ne η∗ as in (6). We show that λM (N, η∗) is a Nash equilibrium of Γ(N, η∗).
At �rst, observe that no individual has incentives to deviate to a quantity in [η∗, 1], because
λM (N, η∗) is a Nash equilibrium of the game Γ′(N, η). It remains to be shown that no
individual has incentives to deviate to zero. Individual n does not have incentives by (6) or by
(7). For any other individual i 6= n, s.t. λMi (N, η∗) = η∗, if agent n, who is the most privacy
concerned, does not have incentives to deviate from η∗, that is still valid for i. For any other
agent i 6= n, s.t. λMi (N, η∗) > η∗, as i does not have incentives to deviate to η∗, then, because
of the concavity of the utility function, she cannot have incentives to deviate to 0.

Step 4 We observe that for each η ∈ [0, η∗), λM (N, η) is a Nash equilibrium of Γ(N, η).
This follows trivially from Theorem 4.1 when η ∈ (0, λ∗n]. Moreover, when η ∈ (λ∗n, η

∗), we
can repeat the same reasoning of Step 3, with the only di�erence that now individual n (and
any other individual contributing η) is always strictly better o� by contributing rather than
free-riding, and then the inequality is always strict.

Step 5 We observe that for any η ∈ (0, η∗], λM (N, η) is the unique Nash equilibrium of
Γ(N, η) s.t. each individual has a non-zero contribution, i.e., s.t. λMi (N, η) > 0 for each
i ∈ N . To show that, it is su�cient to observe that an equilibrium of Γ(N, η) s.t. each
individual has a non-zero contribution, is also an equilibrium of the game Γ′(N, η) (as if an
individual does not have incentives to deviate in {0} ∪ [η, 1], she does not have incentives to
deviate in the restricted strategy set [η, 1] either), and the equilibrium of Γ′(N, η) is unique.

Step 6 We show that any other NE λ̄ of Γ(N, η) is s.t. λ̄i = λMi (S, η) for each i ∈ S,
where S = {i ∈ N |λ̄i 6= 0}. Let η ∈ (λ∗n, η

∗] and let λ̄ = λ̄(N) be a Nash equilibrium of
Γ(N, η) s.t. λ̄i(N) = 0 for at least one i ∈ N . We de�ne S as the set of individuals who
contribute non-zero at this equilibrium. As, by de�nition of NE, none of the individuals has
incentives to deviate, and, in particular, none of the individuals in S has incentives to deviate
in [η, 1], it follows that λ̄(S), i.e., the vector of the non-zero elements of the vector λ̄(N), is
a Nash equilibrium of the game Γ′(S, η) de�ned in step 2 of this proof. As we have seen, this
equilibrium is unique and it coincides with the unique Nash equilibrium λM (S, η) of the game
Γ(S, η) s.t. no individual is free-riding. Trivially, we can conclude that λ∗(N, η) is the unique
NE of Γ(N, η) s.t. λ∗i (N, η) > 0 for all i ∈ N .

G Proof of Theorem 5.3

Remember that we assumed that the equilibrium contribution λ∗(N) of Γ(N) is such that λ∗n(N) <
1, i.e., it is such that the total level of contribution is not optimal.

When η ∈ [0, λ∗n(N)], λ∗(N, η) = λ∗(N) and, consequently, G∗ is constant, i.e., G∗(N, η) =
G∗(N).

When η ∈ (λ∗n(N), η∗], individual n is contributing at equilibrium λ∗n(N, η) = η > λ∗n(N). We
show now that for η∗ ≥ η2 > η1 ≥ λ∗n, G

∗(N, η2) > G∗(N, η1). Assume, by contradiction, that
G∗(N, η2) ≤ G∗(N, η1). It follows that

h′(G∗(N, η2)) ≥ h′(G∗(N, η1)), (27)

because of the concavity of the public good utility function h. Moreover, as the total level of
contribution with η2 is smaller than or equal to the level of contribution with η1, but we know
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that individual n has a strictly larger level of contribution, it follows that there exists i ∈ N who
contributes strictly less, i.e., s.t.,

η2 ≤ λ∗i (N, η2) < λ∗i (N, η1) ≤ 1. (28)

By equation (28), because of the convexity of the cost of contribution function pi and from the KKT
conditions for the potential function of the modi�ed game Γ∗(N, η), it follows that

h′(G∗(N, η2)) ≤ p′i(λ∗i (N, η2)) < p′i(λ
∗
i (N, η1)) ≤ h′(G∗(N, η1))

and this contradicts equation (27).

H Proof of Proposition 5.5

Let η̄ be de�ned as in De�nition 5.4, η ∈ (λ∗n, η̄), and λ∗(N, η) = λM (N, η) be the unique non-zero
components Nash equilibrium of the modi�ed game Γ(N, η), which is the unique maximizer of Φ on
[η, 1]n. As η < η̄, it follows that

Φ(λM (N, η)) > Φ|λn=0(λ
M0(N \ {n}), η). (29)

As λM0(N \ {n}) is the potential maximizer of function Φ restricted on the domain [η̄, 1]n−1 ∪ {0},
it also holds that

Φ|λn=0(λ
M0(N \ {n}), η) ≥ Φ|λi=0,∀i∈N\S(λM0(S, η)). (30)

From (29) and (30), it follows that λ∗(N, η) = λM (N, η) is the unique PMNE of the modi�ed game
Γ(N, η).

I Proof of Corollary 5.6

First, we observe that it holds

h(G∗(N, η∗))− pj(λ∗j (N, η∗)) ≥ h(G∗(N, η∗)− λ∗j (N, η∗)) ∀j ∈ N (31)

because, as we proved in Proposition 5.2, λ∗(N, η∗) is a NE of Γ(N, η∗), and then no individual
has incentives to deviate to zero. Now, we suppose by contradiction that the vector ν s.t., νi =
λ∗i (N, η

∗) = λ∗i (N \ {n}, η∗) for each i 6= n and νn = 0 is not a NE of Γ(N, η∗). This means that
there exists an individual j ∈ N \ {n} for whom it is convenient to deviate, i.e., s.t., it holds that

h(G∗(N, η∗)− η∗)− pj(λ∗j (N, η∗)) < h(G∗(N, η∗)− η∗ − λ∗j (N, η∗)). (32)

From Equations (31) and (32), it follows that

h(G∗(N, η∗))− h(G∗(N, η∗)− λ∗j (N, η∗)) ≥ pj(λ∗j (N, η∗))
> h(G∗(N, η∗)− η∗)− h(G∗(N, η∗)− η∗ − λ∗j (N, η∗))

and this cannot hold because of the concavity of h. It follows that ν is a NE of Γ(N, η∗).
Second, we observe that ν provides the same value of the potential function than λ∗(N, η∗).

Then, if the second is a potential maximizer, the �rst one is as well.
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J Proof of Theorem 5.9

(i) The trivial case when n = 1 is unchanged from the analogous case of Theorem 5.2-(i).

(ii) Now, let n > 1. For each η ∈ (0, 1], let λM (n, η) be the unique global maximum of Φ on [η, 1]n.
When the individuals are homogeneous, the potential function Φ is a symmetric function
that we are maximizing on a symmetric domain. As a consequence, the maximum is s.t.,
λMi (n, η) = λM (n, η) for each i ∈ N , with

λM (n, η) =

{
λ∗(n) if 0 < η ≤ λ∗(n)

η if λ∗(n) < η ≤ 1.
(33)

(iia) As a particular case of Proposition 5.2-(ii), for each η ∈ (0, η∗(n)], where η∗(n) is
de�ned as in De�nition 5.7, λ∗(n, η) = λM (n, η) is the unique NE of the modi�ed game
Γ(n, η) s.t. no individual is free riding. As a particular case of Proposition 5.5, for each
η ∈ (0, η̄(n)], where η̄(n) is de�ned as in De�nition 5.8, λ∗(n, η) is the unique PMNE of
the modi�ed game Γ(n, η).

(iib) This result follows as the homogeneous case of the statement of Corollary 5.6.

(iic) For each η ∈ (η∗(n), 1], we show that there does not exist a NE λ̄ of Γ(n, η) s.t. λ̄i > 0 for
each i ∈ N . We assume η∗(n) < 1. First we observe that, with a reasoning similar to the
one in the proof of Proposition 5.2, F-Step 5, whenever we have a non-zero components
NE of Γ(n, η), this has to be a NE of the corresponding game Γ′, an then a maximum
of the potential function Φ restricted on the domain [η, 1]n. It follows that, because
of the symmetry, the only possible candidate non-zero components NE is the vector
λ̄ = η = (η, . . . , η). Second, we observe that by de�nition, η∗(n) is the smallest solution
of the following �xed point problem

p(η) = h(nη)− h((n− 1)η) (34)

or, equivalently, of

p(η)

η
=
h(nη)− h((n− 1)η)

η
(35)

where n is a �xed parameter. Then, we show that η∗(n) is, in fact, the only solution of
(35). Indeed, because of the concavity of h, we have that

h(y)− h(x)

y − x

is a decreasing function both in y and in x and then, in particular, the right term of (35)
is decreasing in η. Moreover, because of the convexity of p, we have that

p(y)− p(x)

y − x

is an increasing function both in y and in x and then, in particular, the left term of (35)
is increasing in η (when y = η, x = 0 and, consequently, p(0) = 0). It follows that the
�xed point problem in (35) has at most one solution.
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Third, we know by Theorem 4.1 that λ∗(n) is a SNE of Γ(n), i.e., that p(λ∗(n)) <
h(nλ∗(n)) − h((n − 1)λ∗(n)). Moreover, we have just observed that η∗(n) veri�es the
equality by de�nition whenever we have that η∗(n) < 1. As the solution of the previous
�xed point problem, if it exists, is unique, it follows that

p(η) > h(nη)− h((n− 1)η) (36)

for each η ∈ (η∗(n), 1]. Equation (36) translates the fact that, when the individuals adopt
the strategy η = (η, . . . , η), with η ∈ (η∗(n), 1], each individual in N is strictly better of
by deviating to zero, and then the only candidate non-zero components NE cannot be a
NE.

K Proof of Corollary 5.10

We have already observe that η∗(n) is the smallest solution of the �xed point problem in (35). In
particular, we have observed that the left term is constant in n and increasing in η, while the right
term is decreasing both in n and in η. Applying Corollary 1 of [Milgrom and Roberts(1994)], the
smallest �xed point η∗(n) > 0 is non-increasing in n and, consequently, limn→+∞ η

∗(n) ≥ 0 is well
de�ned. Indeed, limx→+∞ h(nx)− h((n− 1)x) = 0, p(0) = 0 and p is strictly monotonic.

If we suppose by contradiction that limn→+∞ η
∗(n) = a > 0, then, from Equation (34), it follows

that

0 < p(a)

= lim
n→+∞

p(η∗(n))

= lim
n→+∞

h(nη∗(n))− h((n− 1)η∗(n))

= lim
n→+∞

h(na)− h((n− 1)a)

= 0.
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