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Abstract

We survey unsupervised machine learning algorithms in the context of outlier de-
tection. This task challenges state-of-the-art methods from a variety of research
fields to applications including fraud detection, intrusion detection, medical di-
agnoses and data cleaning. The selected methods are benchmarked on publicly
available datasets and novel industrial datasets. Each method is then submitted
to extensive scalability, memory consumption and robustness tests in order to
build a full overview of the algorithms’ characteristics.
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1. Introduction

Numerous applications nowadays require thorough data analyses to filter out
outliers and ensure system reliability. Such techniques are especially useful for
fraud detection where malicious attempts often differ from most nominal cases
and can thus be prevented by identifying outlying data. Those anomalies can
be defined as observations which deviate sufficiently from most observations to
consider that they were generated by a different generative process. These ob-
servations are called outliers when their number is significantly smaller than the
proportion of nominal cases, typically lower than 5%. Outlier detection tech-
niques have proven to be efficient for applications such as network intrusions,
credit card fraud detection and telecommunications fraud detection [I0].

Excluding outliers from a dataset is also a task from which most data min-
ing algorithms can benefit. An outlier-free dataset allows for accurate modelling
tasks, making outlier detection methods extremely valuable for data cleaning
[18]. These techniques have also been successfully applied to fault detection on
critical systems and result in improved damage control and component failure
prediction [3I]. Medical diagnoses may also profit from the identification of
outliers in application such as brain tumor detection [24] and cancerous masses
recognition in mammograms [28].
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Numerous machine learning methods are suitable for anomaly detection.
However, supervised algorithms are more constraining than unsupervised meth-
ods as they need to be provided with a labeled dataset. This requirement is
particularly expensive when the labeling must be performed by humans. Deal-
ing with a heavily imbalanced class distribution, which is inherent to anomaly
detection, can also affect the efficiency of supervised algorithms [12]. This pa-
per focuses on unsupervised machine learning algorithms to isolate outliers from
nominal samples. In previous reviews, such methods were shown to be proficient
for outlier and novelty detection [23] [33]. Unsupervised algorithms make use
of unlabeled data to assign a score to each sample, representing the observa-
tion normality. Binary segmentations can be further made by thresholding the
scores.

Outlier detection is a notoriously hard task: detecting anomalies can be
difficult when overlapping with nominal clusters, and these clusters should be
dense enough to build a reliable model. The problem of contamination, i.e.
using an input dataset contaminated by outliers, makes this task even trickier as
anomalies may degrade the final model if the training algorithm lacks robustness.
These issues, which are present in many real-world datasets, are not always
addressed in works describing new unsupervised methods, as these algorithms
may target a different use case. These reasons motivate the need for a thorough
benchmark bringing together distinctive techniques on complex datasets.

Our paper extends previous works [7], B3] by using 12 publicly available la-
beled datasets, most of which are recommended for outlier detection in [7], in
addition to 3 novel industrial datasets from the production environments of a
major company in the travel industry. The benchmark made in [7] used fewer
datasets and solely numerical features while we benchmark and address ways
to handle categorical data. While the previous works perform outlier detection
on training data, our study test for the generalization ability of all methods by
predicting outliers on unseen testing data. The selected parametric and non-
parametric algorithms come from a variety of approaches including probabilistic
algorithms, nearest-neighbor based methods, neural networks, information theo-
retic and isolation methods. The performance on labeled datasets are compared
with the area under the ROC and precision-recall curves.

In order to give a full overview of these methods, we also benchmark the
training time, prediction time, memory usage and robustness of each method
when increasing the number of samples, features and the background noise.
These scalability measurements allow us to compare algorithms not only based
on their outlier detection performance but also on their scalability, robustness
and suitability for large dimensional problems.

The paper is organized as follows: section [2| introduces the research fields
and methods targeted by the benchmark; section |3| details the experimental
setup, the public and proprietary datasets used and the method implemented
to generate synthetic datasets; section [f] presents the results of our benchmark
and section [of summarizes our conclusions.



2. Outlier detection methods

The algorithms described in this section belong to a wide range of ap-
proaches. These methods build a model representing the nominal classes, i.e.
dense clusters of similar data points, during a training phase. Online or batch
predictions can thereafter be applied to new data based on the trained model to
assign an anomaly score to the new observations. Applying a threshold on the
returned scores provides a decision boundary separating nominal samples from
outliers.

The evaluation presented in this study contains both parametric and non-
parametric machine learning algorithms. While parametric approaches model
the underlying data with a fixed number of parameters, the number of parame-
ters of nonparametric methods is potentially infinite and can increase with the
complexity of data. If the former are often computationally faster, they require
assumptions about the data distribution, e.g. the number of clusters, and may
result in a flawed model if based on erroneous assumptions. The latter make
fewer assumptions about the data distribution and may thus generalize better
while requiring less knowledge about the data.

2.1. Probabilistic methods

Probabilistic algorithms estimate the probability density function of a dataset
X, by inferring the model parameters #. Data points having the smallest likeli-
hood P(X|0) are identified as outliers. Most probabilistic methods described in
this section can be trained incrementally, i.e. presenting new input data to an
existing model will cause the model to adapt to the new data while remembering
past ones.

The first algorithm used in our benchmark is the Gaussian Mixture Model
(GMM), which fits a given number of Gaussian distributions to a dataset.
The model is trained using the Expectation-Maximization (EM) algorithm [6]
which maximizes a lower bound of the likelihood iteratively. This method has
been successfully applied to identify suspicious and possibly cancerous masses
in mammograms by novelty detection in [28]. However, assessing the number of
components of the mixture by data exploration can be complex and motivates
the use of nonparametric alternatives described hereafter.

In [3], Blei et al. describe the Dirichlet Process Mixture Model (DPMM),
a nonparametric Bayesian algorithm which optimizes the model parameters and
tests for convergence by monitoring a non-decreasing lower bound on the log-
marginal likelihood. The result is a mixture model where each component is a
product of exponential-family distributions. Most likelihoods, e.g. Gaussian or
Categorical, can be written in exponential-family form; in this formulation, it
is possible to obtain suitable conjugate priors to facilitate inference.

The number of components is inferred during the training and requires an
upper bound K. Weights 7; are represented by a Dirichlet Process modelled as



a truncated stick-breaking process (equation . The variable v; follows a Beta
distribution, where aj and S are variational parameters optimized during the
training for each component.
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The training optimizes the parameters of the base distributions, e.g. the
parameters of a Gaussian-Wishart for a multivariate Gaussian likelihood. The
scoring is then made by averaging the log likelihood computed from each mix-
ture of likelihoods sampled from the conjugate priors. The algorithm is applied
to intrusion detection on the kDD 99 dataset in [§] and outperforms svM and
KNN algorithms. The cluster centroids provided by the model can also be valu-
able to an end-user as they represent the average nominal data points.

Kernel density estimators (KDE), also called Parzen windows estima-
tors, approximate the density function of a dataset by assigning a kernel func-
tion to each data point then summing the local contributions of the kernels. A
bandwidth parameter acts as a smoothing parameter on the density shape and
can be estimated by methods such as Least-Squares Cross-Validation (LSCV).
As shown in [28], kDE methods are efficient when applied to novelty detection
problems. However, these approaches are sensitive to outliers and struggle in
finding a good estimate of the nominal data density in datasets contaminated
by outliers. This issue is shown by Kim et al. in [I3] where the authors describe
a Robust Kernel Density Estimator (RKDE), algorithm which uses M-
estimation methods, such as robust loss functions, to overcome the limitations
of plain KDE.

Probabilistic principal component analysis (PPCA) [29] is a latent
variable model which estimates the principal components of the data. It allows
for the projection of a d-dimensional observation vector Y to a k-dimensional
vector of latent variables X, with k£ the number of components of the model. The
relationship Y = W X + p+ € is trained by expectation-maximization. The au-
thors suggest to use the log-likelihood as a degree of novelty for new data points.

More recently, Least-squares anomaly detection (LSA) [25] developed
by Quinn et al. extends a multi-class probabilistic classifier to a one-class prob-
lem. The approach is compared against KNN and One-class SVM using the area
under the ROC curve.

2.2. Distance-based methods

This class of methods uses solely the distance space to flag outliers. As such,
the Mahalanobis distance is suitable for anomaly detection tasks targeting
multivariate datasets composed of a single Gaussian-shaped cluster [2]. The
model parameters are the mean and inverse covariance matrix of the data, thus



similar to a one-component GMM with a full covariance matrix.

2.3. Neighbor-based methods

Neighbor-based methods study the neighborhood of each data point to iden-
tify outliers. Local outlier factor (LOF) described in [4] is a well-known dis-
tance based approach corresponding to this description. For a given data point
x, LOF computes its degree di(z) of being an outlier based on the Euclidean dis-
tance d between z and its k" closest neighbor ny, which gives dy(z) = d(z, ny,).
The scoring of x also takes into account for each of its neighbors n;, the max-
imum between di(n;) and d(z,n;). As shown in [7], LOF outperforms Angle-
Based Outlier Detection [16] and One-class SVM [26] when applied on real-world
datasets for outlier detection, which makes it a good candidate for this bench-
mark.

Angle-Based Outlier Detection (ABOD) [16] uses the radius and vari-
ance of angles measured at each input vector instead of distances to identify
outliers. The motivation is here to remain efficient in high-dimensional space
and to be less sensible to the curse of dimensionality. Given an input point z,
ABOD samples several pairs of points and computes the corresponding angles at
x and their variance. Broad angles imply that x is located inside a major cluster
as it is surrounded by many data points, while small angles denote that x is
positioned far from most points in the dataset. Similarly, a higher variance will
be observed for points inside or at the border of a cluster than for outliers. The
authors show that their method outperforms LOF on synthetic datasets contain-
ing more than 50 features. According to the authors, the pairs of vectors can
be built from the entire dataset, a random subset or the k-nearest neighbors in
order to speed up the computation at the cost of lower outlier detection perfor-
mance.

The Subspace outlier detection (SOD) [I5] algorithm finds for each
point p the set of m neighbors shared between p and its k-nearest neighbors.
The outlier score is then the standard deviation of p from the mean of a given
subspace, which is composed of a subset of dimensions. The attributes having
a small variance for the set of m points are selected to be part of the subspace.

2.4. Information theory

The Kullback-Leibler (KL) divergence was used as an information-
theoretic measure for novelty detection in [9]. The method first trains a Gaussian
mixture model on a training set, then estimates the information content of new
data points by measuring the KL divergence between the estimated density and
the density estimated on the training set and the new point. This reduces to
an F-test in the case of a single Gaussian.



2.5. Neural networks

In [19], Marsland et al. propose a reconstruction-based nonparametric neural
network called Grow When Required (GWR) network. This method is
based on Kohonen networks, also called Self-Organizing maps (soM) [I4], and
fits a graph of adaptive topology lying in the input space to a dataset. While
training the network, nodes and edges are added or removed in order to best fit
the data, the objective being to end up with nodes positioned in all dense data
regions while edges propagate the displacement of neighboring nodes.

Outliers from artificial datasets are detected using fixed-topology SOM in an
experimental work [2I]. The paper uses two thresholds ¢1 and ¢3 to identify data
points having their closest node further than ¢;, or projecting on an outlying
node, i.e. a neuron having a median interneuron distance (MID) higher than
to. The MID of each neuron is computed by taking the median of the distance
between a neuron and its 8 neighbors in a network following a 2-dimensional grid
topology. Severe outliers and dense clouds of outliers are correctly identified
with this technique, though some nominal samples can be mistaken as mild
outliers.

2.6. Domain-based methods

Additional methods for outlying data identification rely on the construction
of a boundary separating the nominal data from the rest of the input space,
thus estimating the domain of the nominal class. Any data point falling outside
of the delimited boundary is thus flagged as outlier.

One-class SVM [26], an application of support vector machine (SvM) algo-
rithms to one-class problems, belongs to this class of algorithms. The method
computes a separating hyperplane in a high dimensional space induced by ker-
nels performing dot products between points from the input space in high-
dimensional space. The boundary is fitted to the input data by maximizing the
margin between the data and the origin in the high-dimensional space. The
algorithm prevents overfitting by allowing a percentage v of data points to fall
outside the boundary. This percentage v acts as regularization parameter; it is
used as a lower bound on the fraction of support vectors delimiting the bound-
ary and as an upper bound on the fraction of margin errors, i.e. training points
remaining outside the boundary.

The experiment of the original paper targets mostly novelty detection, i.e.
anomaly detection using a model trained on a dataset free of anomalies. Our
benchmark uses contaminated datasets to assess the algorithm robustness with
a regularization parameter significantly higher than the expected proportion of
outliers.

2.7. Isolation methods

We include an isolation algorithm in this study, which focuses on separating
outliers from the rest of the data points. This method differs from the previous
methods as it isolates anomalies instead of profiling normal points.



The concept of Isolation forest was brought by Liu in [I7] and uses random
forests to compute an isolation score for each data point. The model is built by
performing recursive random splits on attribute values, hence generating trees
able to isolate any data point from the rest of the data. The score of a point is
then the average path length from the root of the tree to the node containing
the single point, a short path denoting a point easy to isolate due to attribute
values significantly different from nominal values.

The author states that his algorithm provides linear time complexity and
demonstrates outlier detection performance significantly better than LOF on
real-world datasets.

3. Experimental evaluation

3.1. Metrics

We evaluate the performance of the outlier detection algorithms by compar-
ing two metrics based on real-world labeled datasets detailed in section [3.2] For
this purpose, we use the receiver operating characteristic (ROC) curve (true
positive rate against false positive rate) and the precision-recall (PR) curve
(equations [2| and , where the positive class represents the anomalies and the
negative class represents the nominal samples. The comparison is then based on
the area under the curve (AUC) of both metrics, respectively the ROC AUC
and the average precision (AP).

true positives

(2)

precision = — —
true positives + false positives

true positives
recall =

(3)

true positives + false negatives

3.2. Datasets

Our evaluation uses 15 datasets ranging from 723 to 20,000 samples and con-
taining from 6 to 107 features. Of those datasets, 12 are publicly available on
the UCI [1] or OpenML [30] repositories while the 3 remaining datasets are novel
proprietary datasets containing production data from the company Amadeus.
Table [1] gives an overview of the datasets characteristics. Our study assesses if
the models are able to generalize to future datasets, which is a novel approach
in outlier detection works. This requires that algorithms support unseen test-
ing data, and is achieved by performing a Monte Carlo cross validation of 5
iterations, using 80% of the data for the training phase and 20% for the pre-
diction. Training and testing datasets contain the same proportion of outliers,
and ROC AUC and AP are measured based on the predictions made. For 7
of the publicly available datasets, the outlier classes are selected according to
the recommendations made in [7], which are based on extensive datasets com-
parisons. However, the cited experiment discards all categorical data, while we
keep those features and performed one-hot encoding to binarize them, keeping



Table 1: UCI, OpenML and proprietary datasets benchmarked - (# categ. dims) is the
average number of binarized features obtained after transformation of the categoricals

Dataset Nominal class Anomaly class Numeric dims Categ. dims Samples Anomalies
ABALONE 8,9, 10 3,21 7 1(3) 1,920 29 (1.51%)
ANN-THYROID! 3 1 21 (0) 3,251 73 (2.25%)
car unacc, acc, good  vgood 0 6 (21) 1,728 65 (3.76%)
COVTYPE 2 4 54 (0) 10,000" 95 (0.95%)
GERMAN-SUB 1 2 7 13 (54) 723 23 (3.18%)?
KDD-SUB normal u2r, probe 34 7 (42) 10,000" 385 (3.85%)
MAGIC-GAMMA-SUB| g h 10 0 (0) 12,332 408 (3.20%)?
MAMMOGRAPHY -1 1 6 0 (0) 11,183 260 (2.32%)
MUSHROOM-SUB e p 0 2 (107) 4,368 139 (3.20%)2
SHUTTLE 1 2,3,5,6,7 9 0 (0) 12,345 867 (7.02%)
WINE-QUALITY 4,5,6,7,8 3,9 11 0 (0) 4,898 25 (0.51%)
YEAST|® CYT, NUC, MIT ERL, POX, VAC 8 0 (0) 1,191 55 (4.62%)
PNR 0 1,2,3,4,5 82 0 (0) 20,000 121 (0.61%)
SHARED-ACCESS 0 1 49 0 (0) 18,722 37 (0.20%)
TRANSACTIONS 0 1 41 1(9) 10,000* 21 (0.21%)

! Subsets of the original datasets are used, with the same proportion of outliers.
2 Anomalies are sampled from the corresponding class, using the average percentage of outliers depicted in [7].
3 The first feature corresponding to the protein name was discarded.

all information from the dataset at the cost of a higher dimensionality. Nor-
malization is further achieved by centering numerical features to the mean and
scaling them to unit variance.

The three following datasets contain production data collected by Amadeus,
a Global Distribution System (GDS) providing online platforms to connect the
travel industry. This company manages almost half of the flight bookings world-
wide and is targeted by fraud attempts leading to revenue losses and indemni-
fications. The datasets do not contain information traceable to any specific
individuals.

The PASSENGER NAME RECORDS (PNR) dataset contains booking records,
mostly flight and train bookings, containing 5 types of frauds labeled by fraud
experts. The features in this dataset describe the most important changes ap-
plied to a booking from its creation to its deletion. Features include time-based
information, e.g. age of a PNR, percentage of cancelled flight segments or passen-
gers, and means and standard deviations of counters, e.g. number of passenger
modifications, frequent traveller cards, special service requests (additional lug-
gage, special seat or meal), or forms of payment.

The TRANSACTIONS dataset is extracted from a Web application used to
perform bookings. It focuses on user sessions which are compared to identify
bots and malicious users. Examples of features are the number of distinct IPs
and organizational offices used by a user, the session duration and means and
standard deviations applied to the number of bookings and number of actions.
The most critical actions are also monitored.

The SHARED-ACCESS dataset was generated by a backend application used
to manage shared rights between different entities. It enables an entity to grant
specific reading (e.g. booking retrieval, seat map display) or writing (e.g. cruise
distribution) rights to another entity. Monitoring the actions made with this
application should prevent data leaks and sensible right transfers. For each user
account, features include the average number of actions performed per session
and time unit, the average and standard deviation for some critical actions per


https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data
https://archive.ics.uci.edu/ml/machine-learning-databases/thyroid-disease/ann-test.data
https://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz
https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/german.data
https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/corrected.gz
https://archive.ics.uci.edu/ml/machine-learning-databases/magic/magic04.data
http://www.openml.org/d/310
https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.data
https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/shuttle/shuttle.tst
https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv
https://archive.ics.uci.edu/ml/machine-learning-databases/yeast/yeast.data

session, and the targeted rights modified.

3.8. Datasets for scalability tests

As the choice of an outlier detection algorithm may not only be limited
to its accuracy but is often subject to computational constraints, our experi-
ment includes training time, prediction time, memory usage and noise resistance
(through precision-recall measurements) of each algorithm on synthetic datasets.

For these scalability tests, we generate datasets of different sizes containing
a fixed proportion of background noise. The datasets range from 10 samples
to 10 million samples and from 2 to 10,000 numerical features. We also keep
the number of features and samples fixed while increasing the proportion of
background noise from 0% to 90% to perform robustness measurements. The
experiment is repeated 5 times, using the same dataset for training and testing.
We allow up to 24 hours for training or prediction steps to be completed and stop
the computation after this period of time. Experiments reaching a timeout or
requiring more than 256 GB RAM do not report memory usage nor robustness
in section [l

In order to avoid advantaging some algorithms over others, the datasets are
generated using two Student’s T distributions. The distributions are respec-
tively centered in (0,0...,0) and (5,5...,5), while the covariance matrices are
computed using ¢;; = pli=Il where cij is entry (4, ) of the matrix. The param-
eter p follows a uniform distribution p ~ U(0,1) and the degrees of freedom
parameter follows a Gamma distribution v ~ I'(1,5). We then add outliers uni-
formly sampled from a hypercube 7 times bigger than the standard deviation
of the nominal data.

8.4. Algorithms implementations and parameters

Most implementations used in this experiment are publicly available. Table
(2] details the programming languages and initialization parameters selected. A
majority of methods have flexible parameters and perform very well without an
extensive tuning. The Matlab Engine API for Python|and the rpy2 library
allow us to call Matlab and R code from Python.

DPGMM is our own implementation of a Dirichlet Process Mixture Model and
follows the guidelines given in [3] where we place a Gamma prior on the scaling
parameter S. Making our own implementation of this algorithm is motivated
by its capability of handling a wide range of probability distributions, including
categorical distributions. We thus benchmark DPGMM, which uses only Gaus-
sian distributions to model data and thus uses continuous and binarized features
as all other algorithms, and DPMM which uses a mixture of multivariate Gaus-
sian / Categorical distributions, hence requiring fewer data transformations and
working on a smaller number of features. This algorithm is the only one capable
of using the raw string features from the datasets.

Note that bPGMM and DPMM converge to the same results when applied to
non-categorical data, and that our DPGMM performs similarly to the correspond-
ing scikit-learn implementation called Bayesian Gaussian Mixture (BGM).


https://fr.mathworks.com/help/matlab/matlab-engine-for-python.html
http://rpy2.bitbucket.org/
http://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html

Table 2: Implementations and parameters selected for the evaluation
Algorithm Language Parameters

GMM | ! Python components = 1

DPGMM To=(a=1,=0)), knaz = 10
DPMM Python po = Enean(data), Qe = var(data)
RKDE|% Matlab bandwidth = LKCV,loss = Huber
PPCA Python components = mle, svd = full
LSA Python o=17p=100

MAHA Python n/a

LOF Python k = max(n % 0.1, 50)

ABOD 2 R k = max(n * 0.01, 50)

soD|? R k = max(n * 0.05,50), ksparca = %
KL 2 R components = 1

GWR 2 Matlab it = 15, thay = 0.1, tingers = 0.7
OCSVM Python v=20.5

IFOREST Python contamination = 0.5

! Parameter tuning is required to maximize the mean average precision (MAP).

2 We extend these algorithms to add support for predictions on unseen data
points.

3 e _ o —1/(d+4) . .
We use Scott’s rule-of-thumb h = n [27] to estimate the bandwidth
when it cannot be computed due to a high number of features.

However, we did not optimize our implementation which uses a more general
exponential-family representation for probability distributions. This greatly in-
creases the computational cost and results in a much higher training and pre-
diction time.

GWR has a nonparametric topology. Identifying outlying neurons as de-
scribed in [21] to detect outliers from a 2D grid topology may thus not be
applicable to the present algorithm. The node connectivity can indeed differ
significantly from one node to another, and we need a ranking of the outliers
for our performance measurements more than a two-parameter binary classifi-
cation. Therefore, the score assigned to each observation is here the squared
distance between an observation and the closest node in the network. Note that
regions of outliers sufficiently dense to attract neurons may not be detected with
this technique.

4. Results

For each dataset, the methods described in section [2] are applied to the 5
training and testing subsets sampled by Monte Carlo cross validation. We report
here the average and standard deviation over the runs. The programming lan-
guage and optimizations applied to the implementations may affect the training
time, prediction time and memory usage measured in sections and [£:4] For
this reason, our analysis focuses more on the curves slope and the algorithms
complexity than on the measured values. The experiments are performed on a
VMware virtual platform running Ubuntu 14.04 LTS and powered by an Intel
Xeon E5-4627 v4 CPU (10 cores at 2.6GHz) and 256GB RAM. We use the Intel
distribution of Python 3.5.2, R 3.3.2 and Matlab R2016b.
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http://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
http://web.eecs.umich.edu/~cscott/code/rkde_code.zip
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://github.com/lsanomaly/lsanomaly
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.distance.mahalanobis.html
https://cran.r-project.org/web/packages/dbscan/index.html
https://cran.r-project.org/web/packages/abodOutlier/index.html
https://cran.r-project.org/web/packages/HighDimOut/index.html
https://seat.massey.ac.nz/personal/s.r.marsland/gwr.m
http://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

Table 3: Rank aggregation through Cross-Entropy Monte Carlo
Algorithm GMM DPGMM DPMM RKDE PPCA LSA MAHA LOF ABOD SOD KL GWR OCSVM IFOREST
PR AUC 6 12 9 2 5 7 T 10 1 8 13 3 1
ROC AUC 11 4 5 1 7 9 6 10 13 8 12 14 3 2

4.1. ROC and precision-recall

The area under the ROC curve is estimated using trapezoidal rule while the
area under the precision-recall curve is computed by average precision (AP).
Figure [2| shows the mean and standard deviation AP per algorithm and dataset
while figure [3] reports the ROC AUC. For the clarity of presentation, figure
shows the global average and standard deviation average of both metrics, sorting
algorithms by decreasing mean average precision (MAP).

Average outlier detection performances on 15 datasets (5 runs)
1.0

—&— ROC
- PR

0.6

0.4

Mean area under the curve (AUC)

0.2
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2 ha N N e N S & Q & ¥
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Figure 1: Mean area under the ROC and PR curve per algorithm (descending PR)

Since averaging these metrics may induce a bias in the final ranking caused
by extreme values on some specific datasets (e.g. AP of IFOREST on KDD-SUB),
we also rank the algorithms per dataset and aggregate the ranking lists without
considering the measured values. The Cross-Entropy Monte Carlo algorithm
and the Spearman distance are used for the aggregation [22]. The resulted
rankings presented in Table [3| are similar to the rankings given in figure [I| and
confirm the previous trend observed. The rest of this paper will thus refer to
the rankings introduced in figure

Note that we are dealing with heavily imbalanced class distributions where
the anomaly class is the positive class. For this kind of problems where the
positive class is more interesting than the negative class though underweighted
due to the high number of negative samples, precision-recall curves show to be
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Figure 2: Mean and std area under the precision-recall curve per dataset and algorithm (5
runs)

particularly useful. Indeed, the use of precision strongly penalizes methods rais-
ing false positives even if those represent only a small proportion of the negative
samples [5].

Looking at the mean average precision, IFOREST, RKDE, PPCA and OCSVM
show excellent performance and achieve the best outlier detection results of our
benchmark. Outperforming all other algorithms on several datasets (e.g. KDD-
SUB, ABALONE or THYROID), IFOREST shows good average performance which
makes it a reliable choice for outlier detection. RKDE comes in second position
and also shows excellent performance on most datasets, especially when applied
to high-dimensionality problems.

One-class SVM achieves good performance without requiring significant tun-
ing. We note that the algorithm perform best on datasets containing a small
proportion of outliers, which seems to confirm that the method is well-suited to
novelty detection.

The parametric mixture model GMM uses only a single Gaussian, while DPMM
and DPGMM often use between 5 and 10 components to model these complex
datasets of variable density and shape. The number of components for para-
metric models, e.g. GMM was selected to maximize the MAP. Regarding most
public datasets, note that anomalies are not sparse background noise, but actual
samples from one or more classes that are part of classification datasets. The
model resulting from nonparametric methods may thus be much more accurate
as it could cluster dense clouds of outliers, remnants of former classes. This
is confirmed by the results observed for most one-class datasets contaminated
by outliers, which are the ones where DPMM and DPGMM outperform GMM, e.g.
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Figure 3: Mean and std area under the ROC curve per dataset and algorithm (5 runs)

MAGIC-GAMMA-SUB, MUSHROOM-SUB and GERMAN-SUB. In addition, the scores
and ranking of IFOREST and GMM are much higher for the datasets selected in
[7] than for the other datasets where nonparametric methods prevail. Since
the selection process described in their study makes use of the performance of
several outlier detection methods to perform their selection, this process may
benefit algorithms having a behavior similar to the chosen methods.

The good ranking of PPCA, KL and the Mahalanobis distance is also ex-
plained by precision-recall measurements very similar to the ones of GMM. Prob-
abilistic PCA is indeed regarded as a GMM with one component, KL is a GMM
with a different scoring function, while the model of the Mahalanobis distance is
closely related to the multivariate Gaussian distribution. If these simple models
perform well on average, they are not suitable for more complex datasets, e.g.
the proprietary datasets from Amadeus, where nonparametric methods able to
handle clusters of arbitrary shape such as RKDE, SOD or even GWR prevail.

We indeed observe that SOD outperforms the other methods on the Amadeus
datasets, and more generally performs very well on large datasets composed of
more than 10,000 samples. This method is the best neighbor-based algorithm
of our benchmark, but requires a sufficient number of features to infer suitable
subspaces through feature selection.

DPMM performs better than DPGMM. As the two methods should converge
identically when applied to numerical data, it is the way they handle categorical
features that explains this difference. Looking at the detailed average precisions
highlighted in Figure [2] for datasets containing categorical features, we notice
that DPMM outperforms DPGMM on four datasets (KDD-SUB, MUSHROOM-SUB,
CAR and TRANSACTIONS), while it is outperformed on two others (ABALONE and
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GERMAN-SUB). This gain of performance for DPGMM is likely to be caused by
categorical features strongly correlated to the true class distribution and having
a high number of distinct values, resulting in several binarized features and thus
a higher weight for the corresponding categorical in the final class prediction.
However, when the class distribution is heavily unbalanced, the Chi-Square test
based on contingency tables we performed did not allow us to confirm this
hypothesis.

The results of DPMM are reached in a smaller training and prediction time
due to a smaller dimensionality of the non-binarized input data. Yet, we spec-
ulate that DPGMM would reach a smaller computation time if making all its
computations for Normal-Wishart distributions instead of exponential-family
representations. This was confirmed by measuring the computation time of the
BGM implementation in scikit-learn on the same datasets.

LOF and ABOD do not stand out, with unexpected drop of performance ob-
served for LOF on TRANSACTIONS and MAMMOGRAPHY that cannot be explained
solely based on the dataset characteristics. Using a number of neighbors suffi-
ciently high is important when dealing with large datasets containing a higher
number of outliers. Increasing the sample size for ABOD may lead to slightly
better performance at the cost of a much higher computation time, for a method
which is already slow. We also benchmarked the k-nearest-neighbors approach
described in the original paper which showed reduced computation time for
k = 15 though this did not improve performance. Despite the use of angles in-
stead of distances, this algorithm performs worse than LOF on 4 datasets among
the 7 datasets containing more than 40 features. It is however one of the best
outlier detection methods on the PNR and TRANSACTIONS datasets.

Although GWR achieves lower performance than other methods in our bench-
mark, in the case of a low proportion of anomalies, e.g. with PNR, SHARED-
ACCESS and TRANSACTIONS, the algorithm reaches excellent precision-recall
scores as the density of outliers is not sufficient to attract any neuron. SOM
can thus be useful for novelty detection targeting datasets free of outliers, or
when combined with a manual analysis of the quantization errors and MID ma-
trix as described in [21]. Similarly to GWR, LSA reaches low average performance,
especially for large or high-dimensional datasets, but it achieves good results for
small datasets.

4.2. Robustness

As our synthetic datasets contain only numerical data and since bPMM and
DPGMM are the same method when the dataset does not contain categorical
features, we exclude DPMM from our results and add BGM, the scikit-learn opti-
mized equivalent of our DPGMM implementation. Figures[d] [f]and [6] measure the
area under the precision-recall curve, the positive class being the background
noise for the two first figures, and the nominal samples generated by the mixture
of Student’s T distributions in the last figure.
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Impact of dimensionality on noise-resistance (1000 float samples, 10.0% outliers)
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Figure 4: Robustness for increasing number of features

The resistance of each algorithm to the curse of dimensionality is highlighted
in figure [ where we keep a fixed level of background noise while increasing the
dataset dimensionality. The results show good performance in average and un-
expectedly good results for GWR for more than 10 features. Surprisingly, ABOD
which is supposed to efficiently handle high dimensionality performs poorly here.
Similarly, LSA and Mahalanobis do not perform well. The difference of results
between BGM and DPGMM is likely due to a different cluster responsibility ini-
tialization, as BGM uses a K-means to assign data points to clusters centroids
scattered among dense regions of the dataset.

Figure [5| shows decreasing outlier detection performance for LSA and GWR
while increasing the number of samples in the dataset. soD and KL do not
perform well either, though their results are correlated with the variations of
better methods. We thus assume that the current experiment is not well-suited
for these method, as SOD applies feature selection and has demonstrated better
performance in higher dimensionalities. Increasing the number of samples re-
sulted in an overall increasing precision. The results given for less than 100 data
points show a high entropy as the corresponding datasets contain very sparse
data in which dense regions cannot be easily identified.

Increasing the proportion of background noise in figure [f] shows a lack of ro-
bustness for LSA, SOD, OCSVM, GWR and ABOD. While the two first methods are
very sensible to background noise, the three others maintain good performance
up to 50% of outliers. Neighbor-based method can only cope with a restricted
amount of noise, though increasing the number of samples used to compute
the scores could lead to better results. Similarly, most neurons of GWR were
attracted by surrounding outliers. In order to avoid penalizing OCsvM, this
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Figure 6: Robustness for increasing noise density

specific evaluation uses an adaptive v which increases with the proportion of
outliers with a minimum value of 0.5. In spite of this measure, 0OCSVM also
shows very poor results above 50% noise. Mahalanobis, KL, LOF and GMM do
not perform well either in noisy environments, despite the use of 2 components
by ¢MM and KL. For this experimental setting, the best candidates in a dataset
highly contaminated by sparse outliers are IFOREST, DPGMM, BGM, RKDE and
PPCA.

To conclude, the robustness measures on synthetic datasets confirm the poor
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performance of ABOD and GWR showed in our previous ranking. Good average
results were observed for IFOREST, OCSVM, LOF, RKDE, DPGMM and GMM. The
nearest-neighbor-based methods showed difficulties in handling datasets with a
high background noise.

4.8. Complexity

We now focus on the computation and prediction time required by the differ-
ent methods when increasing the dataset size and dimensionality. The running
environment and the amount of optimizations applied to the implementations
strongly impacts those measures. For this reason, we focus on the curves’ evo-
lutions more than on the actual value recorded. Comparing the measurements
of BGM and DPGMM that implement the same algorithm is a good illustration
of this statement.

Increasing the number of features in figures [7] and [§] shows an excellent
scalability for LSA, GWR and IFOREST with a stable training time and a good
prediction time evolution. DPGMM has here the worst training and prediction
scaling, reaching the 24 hours timeout for more than 3,000 features. This scaling
is confirmed by the increases observed for BGM and GMM. RKDE performs also
poorly with a timeout caused by a high bandwidth when the number of features
becomes higher than the number of samples. High dimensionality datasets do
not strongly affect distance-based and neighbor-based methods, though proba-
bilistic algorithms suffer from the increasing number of dimensions. The use of
computationally expensive matrix operations whose complexity depend on the
data dimensionality, e.g. matrix factorizations and multiplications, is a major
cause of the poor scalability observed. Maximum likelihood estimation fails
to estimate the suitable number of components for PPCA for more than 1,000
features. We keep enough components to explain at least 90% of the variance,
which explains the decrease of training time.

The number of samples has a strong impact on the training and prediction
time of RKDE, SOD, OCSVM, LOF and ABOD which scale very poorly in figures
O] and Those five algorithms would reach the timeout of 24 hours for less
than one million samples, though RKDE and LOF exceed the available memory
first (section . All the other algorithms show good and similar scalability,
despite a higher base computation time for GWR and DPGMM due to the lack
of KDE optimizations. The additional exponential-family computations do not
seem to impact the complexity of this algorithm. Training ABOD consists only
in making a copy of the training dataset, which explains the low training time
reported. Its prediction time is however the least scalable, the true slope being
observed for more than 5,000 samples.

In summary and looking at the overall measures, IFOREST and LSA show a
very good training and prediction time scaling for both increasing number of
features and samples, along with a very small base computation time. DPGMM,
GMM and BGM scale well on datasets with a large number of samples and thus
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Training time benchmark (1000 float samples, 10.0% outliers)
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Figure 8: Prediction for increasing number of features

could be suitable for systems where fast predictions matter. The base com-
putation time of DPGMM is however an important issue when the number of
features becomes higher than a hundred. RKDE, 0CcsSvM and SOD which have
good outlier detection performance on real datasets are thus computationally
expensive, which adds interest to IFOREST, DPGMM and simpler models such as
GMM, KL, PPCA or Mahalanobis.
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Training time benchmark (2 float features, 10.0% outliers)
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Figure 10: Prediction for increasing number of samples

4.4. Memory usage

We report in figures and [12] the highest amount of memory required by
each algorithm when applied to our synthetic datasets during the training or
prediction phase. We clear the Matlab objects and make explicit collect calls to
the Python and R garbage collectors before running the algorithms. We then
measure the memory used by the corresponding running process before starting
the algorithm and subtract it to the memory peak observed while running it.
This way, our measurements ignore the memory consumption caused by the
environment and the dataset which reduces the measurement differences due
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the running environment, e.g. Matlab versus Python. Measures are taken at
intervals of 10™* second using the memory _profiler|library for Python and REl
and the UNIX ps command for Matlab. Small variations can be observed for
measures smaller than 1 MB and are not meaningful.

As depicted in figure[II] most algorithms consume little memory, an amount
which does not significantly increase with the number of features and should
not impact the running system. IFOREST, OCSVM, LOF and LSA have a constant
memory usage below 1 MB while RKDE remains near-constant. GWR, ABOD
and sOD also have a good scalability. The other algorithms may require too
much memory for high-dimensional problems, with Mahalanobis requiring about
4.5GB to store the mean and covariance matrices of 10,000 features. Allowing
many more clusters and storing temporary data structures, DPGMM requires up
to 80 GBs when applied to 2,600 features while BGM stores only 14 GBs of data
for 10,000 features.

105 Memory usage benchmark (1000 float samples, 10.0% outliers)
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Figure 11: Memory usage for increasing number of features

The increasing number of samples has a higher impact on the RAM con-
sumption depicted in figure RKDE and LOF both run out of memory before
the completion of the benchmark and reach, respectively, 158 GB and 118GB
memory usage for 72,000 and 193,000 samples. SOD consumes about as much
memory as RKDE though reaches the timeout with fewer samples. This amount
of memory is mostly caused by the use of a pairwise distance matrix by these
algorithms, which requires 76GB of RAM for 100,000 samples using 8 bytes
per double precision distance. The other methods scale much better and do
not exceed 5GB for 10 million samples, except IFOREST and LSA which allocate

Lrpy2 stores R objects in the running Python process. In addition, R prevents concurrent
accesses which do not allow us to use dedicated R commands to measure memory.
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Table 4: Resistance to the curse of dimensionality, runtime scalability and memory scalability
on datasets of increasing size and dimensionality. Performance on background noise detection

is also reported for datasets of increasing noise proportion.

Training/prediction time Mem. usage Robustness

Algorithm » Samples ~ Features » Samples  Features  Noise High dim. Stability
GMM Low/Low Medium/Medium  Low Medium High Medium Medium
BGM Low/Low Medium/Medium  Low Medium High Medium High
DPGMM Medium/Low High/High Low High High High High
RKDE High/High High/High High Low High High High
PPCA Low/Low High/Low Low Low High Medium Medium
LSA Low/Medium Low/Low Medium Low Low Low Medium
MAHA Low/Medium Medium/Low Low Medium Medium  Low High
LOF High/High Low/Low High Low Medium  High High
ABOD Low/High Low/Medium Low Low Medium  Low Medium
SOD High/High Low/Medium High Low Low High Medium
KL Low/Medium Low/Medium Low Medium High Medium High
GWR Medium/Medium  Medium/Low Low Low Low High Medium
0CSVM High/High Low/Low Low Low Low High High
IFOREST Low/Medium Low/Low Medium Low High High Medium

60GB and 38GB RAM. For the sake of completeness, we performed the same
experiment with the k-nearest neighbors implementation of ABOD with k = 15,

and observed a scalability and memory usage similar to RKDE.

Memory usage benchmark (2 float features, 10.0% outliers)
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We have seen that several algorithms have important memory requirements
which must be carefully considered depending on the available hardware. Al-
gorithms relying on multivariate covariance matrices will be heavily impacted
by the growing number of features, while methods storing a pairwise distance
matrix are not suitable for a large number of samples. Our implementation of
DPGMM scales as well as other mixture models though comes with a much higher
memory usage on high dimensional datasets. 0CSVM, GWR and ABOD have the
best memory requirements and scalability and never exceed 250MB RAM, at
the cost of a higher computation time since these three methods reach our 24

hours timeout.
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4.5. Segmentation contours

Figure shows the normalized density returned by each algorithm when
applied to the scaled OLD FAITHFUL|dataset. Warm colors depict high anomaly
scores. The density was interpolated from the predicted score of 2,500 points

distributed on a 50x50 mesh grid.

GMM DPGMM RKDE

LOF

ABOD

r -

GWR OCSVM |Forest

Figure 13: Normalized anomaly scores predicted - Models are trained on the scaled oLD
FAITHFUL dataset

The two first plots are the result of Gaussian mixture models, using 2 com-
ponents for GMM and an upper bound of 10 components for bPGMM. If the
plots are very similar, we denote a slightly higher density area between the two
clusters for bPGMM. This difference is caused by the remaining mixture compo-
nents for which the weight is close to 0 and the covariance matrix based on the
entire dataset. The information theoretic algorithm based on the KL divergence
predicts scores based on a GMM, which explains the similarity between the two.

The contribution of each observation to the overall density is clearly visible
for RKDE which finds a density estimation tightly fitting the dataset. In con-
trast, the models used by PPCA and the Mahalanobis distance are much more
constrained and fail at identifying the two clusters. LSA and LOF perform much
better though also assign very low anomaly scores to the sparse area located
between the two clusters. However, these methods should be able to handle
clusters of arbitrary shape.

The density of ABOD is of great interest as it highlights some limitations of
the method. In the case of a data distribution composed of several clusters, the
lowest anomaly scores are located in the inter-cluster area instead of the cluster
centroids due to the sole use of angles variance and values. This is caused by
large angles measured when an angle targets two points belonging to distinct
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clusters, small angles when the points belong to the same cluster and thus a
high overall variance for the inter-cluster area. In contrast, the dense areas
surrounding the cluster centroids are assigned high anomaly scores since many
angles are directed toward the other clusters, suggesting data points isolated
and far from a major cluster. The same issue arises for the inter-cluster area
when computing the anomaly scores with the alternative k-nearest neighbors
approach instead of randomly sampling from the dataset.

SOD is able to estimate a very accurate density, despite some low scores
between the clusters. The neurons belonging to the GWR network result in
circular blue areas highlighting their position. The presence of a neuron at the
center of the plot once again results in very low scores for the inter-cluster area,
as low as for the theoretical cluster centroids. Using an additional threshold to
detect outlying neurons as suggested in [21] would solve this issue.

A high density is also assigned by 0CSvM to this region due to the mapping
of the continuous decision boundary from the high-dimensional space. The
segmentation made by IFOREST is much tighter than previous methods and seem
less prone to overfitting than RKDE. Light trails emerging from the clusters can
however be observed and may result in anomalous observations receiving a lower
score than patterns slightly deviating from the mean.

5. Conclusions

In the context of outlier detection, we benchmarked the average precision,
robustness, computation time and memory usage of 14 algorithms on synthetic
and real datasets. Our study demonstrates that IFOREST is an excellent method
to efficiently identifying outliers while showing an excellent scalability on large
datasets along with an acceptable memory usage for datasets up to one million
samples. The results suggest that this algorithm is more suitable than RKDE in
a production environment as the latter is much more computationally expensive
and memory consuming. OCSVM is a good candidate in this benchmark, but it
is not suitable either for large datasets.

Sampling a small proportion of outliers from classification datasets as sug-
gested in [7] resulted in dense clouds of outliers which made simple methods
such as GMM with one component, KL, PPCA and the Mahalanobis distance
perform well. However, these scalable solutions are not generally optimal for
datasets where the nominal class has a complex shape or is distributed across
several distinct clusters. In these cases, the results indicate that nonparametric
clustering alternatives are superior.

soD showed good outlier detection performance and efficiently handled high-
dimensional datasets at the cost of poor scalability. Exponential-family repre-
sentations for DPMM revealed to be extremely time-consuming without substan-
tially improving the detection of outliers made by Gaussian-based approaches
such as DPGMM. Nonetheless, the use of categorical distributions in DPMM re-
sulted in a reduced computation time and better outlier detection performance.
LOF, ABOD, GWR, KL and LSA reached the lowest performance while the three
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first methods also showed poor scalability. The ability to accurately shape nom-
inal data was assessed for each method while a borderline case was highlighted
for ABOD by studying the distribution of the anomaly scores in datasets com-
posed of several clusters.

While the coverage of this study should suffice to tackle most outlier detec-
tion problems, specific algorithms may be chosen for constrained environments.
Distributed implementations, streaming or mini-batch training are a prerequi-
site to deal with large datasets, and several methods have been extended to
support these features, e.g. DPMM, K-MEANS, SVM or GMM on Spark MLIib [20].
Other promising directions leading the research on outlier detection also focus
on ensemble learning [32] and detecting outliers from multi-view data [I1].
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