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ABSTRACT

Equalization for digital communications constitutes a

very particular blind deconvolution problem in that

the received signal is cyclostationary. Oversampling

(OS) (w.r.t. the symbol rate) of the cyclostationary re-

ceived signal leads to a stationary vector-valued sig-

nal (polyphase representation (PR)). OS also leads to

a fractionally-spaced channel model and equalizer. In

the PR, channel and equalizer can be considered as an

analysis and synthesis �lter bank. Zero-forcing (ZF)

equalization corresponds to a perfect-reconstruction �l-

ter bank. We show that in the OS case FIR ZF equal-

izers exist for a FIR channel. In the PR, the noise-free

multichannel power spectral density matrix has rank

one and the channel can be found as the (minimum-

phase) spectral factor. The multichannel linear predic-

tion of the noiseless received signal becomes singular

eventually, reminiscent of the single-channel prediction

of a sum of sinusoids. As a result, a ZF equalizer can

be determined from the received signal second-order

statistics by linear prediction in the noise-free case, and

by using a Pisarenko-style modi�cation when there is

additive noise. In the given data case, Music (subspace)

or ML techniques can be applied. We also present some

Cramer-Rao bounds and compare them to the case of

channel identi�cation using a training sequence.

1. FRACTIONALLY-SPACED CHANNELS

AND EQUALIZERS, AND FILTER BANKS

Consider linear digital modulation over a linear channel

with additive Gaussian noise so that the received signal

can be written as

y(t) =
X
k

akh(t� kT ) + v(t) (1)

where the ak are the transmitted symbols, T is the

symbol period, h(t) is the (overall) channel impulse re-

sponse. Assuming the fakg and fv(t)g to be (wide-

sense) stationary, the process fy(t)g is (wide-sense) cy-

clostationary with period T . If fy(t)g is sampled with

period T , the sampled process is (wide-sense) station-

ary and its second-order statistics contain no informa-

tion about the phase of the channel. Tong, Xu and

Kailath [1] have proposed to oversample the received

signal with a period � = T=m; m > 1. This leads

to m symbols-spaced channels. The results presented

here generalize the results in [2] where an oversampling

factorm = 2 was considered. As an alternative to over-

sampling, multiple channels could also arise from the

use of multiple antennas. Corresponding to each an-

tenna signal, there is a channel impulse response. Each

antenna signal could furthermore be oversampled. The

total number of symbol rate channels is then the prod-

uct of the number of antennas and the oversampling

factor. In what follows, we use the terminology of the

case of one antenna.

We assume the channel to be FIR with duration

of approximately NT . With an oversampling factor

m, the sampling instants for the received signal in (1)

are t0+T (k +
j

m
) for integer k and j = 0; 1; : : :;m�1.

We introduce the polyphase description of the received

signal: yj(k) = y(t0+T (k +
j

m
)) for j = 0; 1; : : : ;m�1

are them phases of received signal, and similarly for the

channel impulse response and the additive noise. The

oversampled received signal can now be represented in

vector form at the symbol rate as

y(k) =

N�1X
i=0

h(i)ak�i + v(k) = HNAN (k) + v(k) ;

y(k) =

264 y1(k)
...

ym(k)

375 ;v(k) =
264 v1(k)

...

vm(k)

375 ;h(k) =
264 h1(k)

...

hm(k)

375
HN = [h(0) � � �h(N�1)] ; AN (k) =

�
a
H
k � � �a

H
k�N+1

�H
(2)

where superscript H denotes Hermitian transpose. We

formalize the �nite duration NT assumption of the

channel as follows

(AFIR) : h(0) 6= 0, h(N�1) 6= 0 and h(i) = 0 for

i < 0 or i � N .



The z-transform of the channel response at the sam-

pling rate m
T

is H(z) =
Pm

j=1 z
�(j�1)

Hj(z
m). Sim-

ilarly, consider a fractionally-spaced ( T
m
) equalizer of

which the z-transform can also be decomposed into its

polyphase components: F (z) =
Pm

j=1 z
(j�1)

Fj(z
m),

see Fig. 1. Although this equalizer is slightly noncausal,

this does not cause a problem because the discrete-

time �lter is not a sampled version of an underlying

continuous-time function. In fact, a particular equal-

izer phase z
(j�1)

Fj(z
m) follows in cascade the corre-

sponding channel phase z�(j�1)Hj(z
m) so that the cas-

cade Fj(z
m)Hj(z

m) is causal. We assume the equal-

izer phases to be causal and FIR of length L: Fj(z) =PL�1
k=0 fj(k)z

�k
; j = 1; : : : ;m.
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Figure 1: Polyphase representation of the T=m

fractionally-spaced channel and equalizer for m = 2.

2. FIR ZERO-FORCING (ZF)

EQUALIZATION

We introduce f(k) = [f1(k) � � �fm(k)], FL = [f(0) � � �

f(L�1)], H(z) =
PN�1

k=0 h(k)z
�k and F(z) =PN�1

k=0 f(k)z
�k. The condition for the equalizer to be

ZF is F(z)H(z) = z
�n where n = 0; 1; : : : ; N+L�2.

The ZF condition can be written in the time-domain

as

FL TL (HN ) = [0 � � �0 1 0 � � �0] (3)

where the 1 is in the n+1st position and TM (x) is

a (block) Toeplitz matrix with M (block) rows and�
x 0p�(M�1)

�
as �rst (block) row (p is the number of

rows in x). (3) is a system of L+N�1 equations in Lm

unknowns. To be able to equalize, we need to choose

the equalizer length L such that the system of equations

(3) is exactly or underdetermined. Hence

L � L =

�
N � 1

m� 1

�
: (4)

The matrix TL (HN ) is a generalized Sylvester matrix.

It can be shown that for L � L it has full column

rank if H(z) 6= 0; 8z or in other words if the Hj(z)

have no zeros in common. This condition coincides

with the identi�ability condition of Tong et al. on H(z)

mentioned earlier. Assuming TL (HN ) to have full col-

umn rank, the nullspace of T H
L (HN ) has dimension

L(m�1)�N+1. If we take the entries of any vector in

this nullspace as equalizer coe�cients, then the equal-

izer output is zero, regardless of the transmitted sym-

bols.

To �nd a ZF equalizer (corresponding to some de-

lay n), it su�ces to take an equalizer length equal to

L. We can arbitrarily �x L(m�1)�N+1 equalizer co-

e�cients (e.g. take L(m�1)�N+1 equalizer phases of

length L�1 only). The remaining L+N�1 coe�cients

can be found from (3) ifH(z) 6= 0; 8z. This shows that

in the oversampled case, a FIR equalizer su�ces for ZF

equalization! With an oversampling factor m = N , the

minimal required total number of equalizer coe�cients

N is found (L = 1).

3. CHANNEL IDENTIFICATION FROM

SECOND-ORDER STATISTICS:

FREQUENCY DOMAIN APPROACH

Consider the noise-free case and let the transmitted

symbols be uncorrelated with variance �2a. Then the

power spectral density matrix of the stationary vector

process y(k) is

Syy(z) = �
2
aH(z)HH (z��) : (5)

The following spectral factorization result has been brought

to our attention by Loubaton [3]. Let K(z) be a m� 1

rational transfer function that is causal and stable.

Then K(z) is called minimum-phase ifK(z) 6= 0; jzj >

1. Syy(z) is a rational m �m spectral density matrix

of rank 1. Then there exists a rational m � 1 transfer

matrix K(z) that is causal, stable , minimum-phase,

unique up to a unitary constant, of (minimal) McMil-

lan degree deg(K) = 1
2
deg(Syy) such that

Syy(z) = K(z)KH (z��) : (6)

In our case, Syy is polynomial (FIR channel) andH(z)

is minimum-phase since we assumeH(z) 6= 0; 8z. Hence,

the spectral factor K(z) identi�es the channel

K(z) = �a e
j�H(z) (7)

up to a constant �ae
j�. So the channel identi�cation

from second-order statistics is simply a multivariate

MA spectral factorization problem.



4. ZF EQUALIZER DETERMINATION

FROM SECOND-ORDER STATISTICS BY

MULTICHANNEL LINEAR PREDICTION

We consider again the noiseless case: v(t) � 0. The

input-output relation of the channel is

YL(k) = TL (HN ) AL+N�1(k) (8)

where YL(k) =
�
yH(k) � � �yH(k�L+1)

�H
. Therefore,

the structure of the covariance matrix of the received

signal y(k) is

R
y
L = EYL(k)Y

H
L (k) = TL (HN )R

a
L+N�1T

H
L (HN )

(9)

where RaL = EAL(k)A
H
L (k). When mL > L+N�1,

R
y
L is singular. If then L increases further by 1, the

rank of R
y
L increases by 1 and the dimension of its

nullspace increases by m�1. Consider now the problem

of predicting y(k) from YL(k�1) The prediction error

can be written as

ey(k)jYL(k�1)
= y(k)� by(k)jYL(k�1)

= [Im �PL]YL+1(k):
(10)

Minimizing the prediction error variance leads to the

following optimization problem

min
PL

[Im �PL]R
y
L+1 [Im �PL]

H
= �

2ey;L (11)

or hence

[Im �PL]R
y
L+1 =

h
�
2ey;L 0 � � �0

i
: (12)

When mL > L+N�1, TL (HN ) has full column rank.

Hence, using (8),

ey(k)jYL(k�1)
= ey(k)jAL+N�1(k�1) : (13)

Now, ey(k)jAL+N�1(k�1) =

[Im �PL]TL+1 (HN ) AL+N (k) ? AL+N�1(k�1)

(14)

which leads to

[Im �PL]TL+1 (HN )R
a
L+N

�
0 � � �0

IL+N�1

�
= 0 :

(15)

Now let us consider the prediction problem for the

transmitted symbols. We get similarly

â(k)jAM (k�1) = QM AM (k�1) ; (16)

[1 �QM ]Ra
M+1 =

h
�
2ea;M 0 � � �0

i
: (17)

Comparing (15) and (17), we �nd

[Im � PL] TL+1 (HN ) = h(0)
�
1 �QL+N�1

�
:

(18)

which, using (11), leads to

�
2ey;L = �

2ea;L+N�1h(0)hH(0) : (19)

All this holds for L � L. We can summarize:

rank
�
�
2ey;L�

8<:
= 1 ; L � L

2 f2; 3; : : : ;mg ; L = L�1

= m ; L < L�1

(20)

We continue, assuming L � L. Then (19) allows us

to �nd h(0) up to a scalar multiple. If the transmit-

ted symbols are uncorrelated, then from (18) we see

that
hH (0)

hH (0)h(0)
[Im � PL] is a ZF equalizer (and us-

ing (3), we could also determine the channel HN up to

a scalar multiple)! In this case, the prediction prob-

lem allows us also (in theory) to check whether the Hj

have zeros in common. Indeed, the common factor col-

ors the transmitted symbols (MA process) and hence

once �
2ey;L becomes of rank 1, its one nonzero eigen-

value �2ea;L+N�1hH(0)h(0) continues to decrease as a

function of L since for a MA process, �2ea;L is a decreas-

ing function of L.

In the case of uncorrelated transmitted symbols, the

channel can also be determined by LDU triangular fac-

torization of the covariance matrix R
y
L . A fast algo-

rithm for factoring a block Toeplitz matrix is the Schur

algorithm, in this case properly extended to handle sin-

gular matrices. Since R
y
L is banded, the triangular fac-

tor will also be banded. The triangular factorization of

R
y
L is intimately related to the Gram-Schmidt orthog-

onalization of the components of YL(k). The orthog-

onalized components correspond to prediction errors

and from the prediction problem, we known that at a

certain prediction order, the prediction error equals a

transmitted symbol (apart from a certain scaling fac-

tor). A that corresponding order, the column of the

triangular factor of YL(k) will contain the channel im-

pulse response (in a time-reversed fashion and possibly

scaled). From that order onwards, the \triangular" fac-

tor ofYL(k) turns out to be block-Toeplitz with blocks

of size m � 1. So the factorization of the power spec-

tral density matrix of the received signal corresponds

in the time domain with the triangular factorization of

the covariance matrix. Due to the FIR character of the

impulse response, this factorization degenerates after a

�nite number of steps.

If the transmitted symbols are correlated, we pro-

ceed as follows (Pisarenko-style [4, page 500]). Lin-

ear prediction corresponds to the LDU factorization



LRyLH = D. The prediction �lters are rows of L while

the prediction variances are the diagonal elements of

D. Let's take l prediction �lters corresponding to sin-

gularities in D and assume the longest one has block

length L. So we obtain FbL of size l�mL. We introduce

a block-componentwise transposition operator t, viz.

Ht
N = [h(0) � � �h(N�1)]

t
=
h
hT (0) � � �hT (N�1)

i
FtN = [f(0) � � � f(N�1)]

t
=
h
fT (0) � � � fT (N�1)

i
(21)

where T is the usual transposition operator. Due to

the singularities, we have

FbL TL (HN ) = 0 () Ht
N TN

�
Fb tL

�
= 0 : (22)

Since FbLYL(k) = 0, we call FbL a blocking equalizer.

We �nd: if l(L+N�1) � mN�1 , then

dim
�
Range

?

n
TN

�
Fb tL

�o�
= 1 : (23)

In that case, we can identify the channel HtH
N (up

to scalar multiple) as the last right singular vector of

TN

�
Fb tL

�
. In particular, let h? be m� (m�1) of rank

m�1 such that h?Hh(0) = 0, then with L = L+1 and

l = m�1, we can take

FbL+1 = h?H
�
Im �PL

�
: (24)

From (18), one can furthermore identify QL+N�1 and

via (17), this leads to the identi�cation of the (Toeplitz)

symbol covariance matrix RaL+N up to the multiplica-

tive scalar �2a (which may be known).

5. SIGNAL AND NOISE SUBSPACES

Suppose now that we have additive white noise v(t)

with zero mean and unknown variance �2v (in the com-

plex case, real and imaginary parts are assumed to be

uncorrelated, colored noise could equally well be han-

dled). Then since

R
y
L = TL (HN )R

a
L+N�1T

H
L (HN ) + �

2
vImL ; (25)

For L � L, �2v can be identi�ed as the smallest eigen-

value of R
y
L . Replacing R

y
L by R

y
L � �

2
vImL, all results

of the prediction approach in the noiseless case still

hold. Given the structure of R
y
L in (25), the column

space of TL (HN ) is called the signal subspace and its

orthogonal complement the noise subspace. In [2], a

linear parameterization of the noise subspace is given

in terms of a blocking equalizer for m = 2. For m > 2

however, a linear minimal parameterization of the noise

subspace does not exist.

Consider the eigendecomposition of R
y
L of which the

real nonnegative eigenvalues are ordered in descending

order:

R
y
L =

L+N�1X
i=1

�iVi V
H
i +

mLX
i=L+N

�iVi V
H
i

= V
S
�
S
V
H
S

+ V
N
�
N
V
H
N

(26)

where �
N

= �
2
vI(m�1)L�N+1 (see (25)). Assuming

TL (HN ) and Ra
L+N�1 to have full rank, the sets of

eigenvectors V
S
and V

N
are orthogonal: V H

S
V
N

= 0,

and �i > �
2
v ; i = 1; : : : ; L+N�1. We then have the

following equivalent descriptions of the signal and noise

subspaces

Range fV
S
g = Range fTL (HN )g ; V

H
N
TL (HN ) = 0 :

(27)

6. CHANNEL ESTIMATION FROM AN

ESTIMATED COVARIANCE SEQUENCE

BY SUBSPACE FITTING

When the covariance matrix is estimated from data,

it will no longer satisfy exactly the properties we have

elaborated upon. We assume that the detection prob-

lem of the signal subspace dimension L+N�1 has been

solved correctly. The signal subspace will now be de-

�ned as the space spanned by the eigenvectors corre-

sponding to the L+N�1 largest eigenvalues, while the

noise subspace is its orthogonal complement. Consider

now the following subspace �tting problem

min
HN ;T

kTL (HN )� V
S
TkF (28)

where the Frobenius norm of a matrix Z can be de�ned

in terms of the trace operator: kZk
2
F = tr

�
Z
H
Z
	
.

The problem considered in (28) is quadratic in both

HN and T . If V
S
contains the signal subspace eigen-

vectors of the actual covariance matrix R
y
L , then the

minimal value of the cost function in (28) is zero. If

R
y
L is estimated from a �nite amount of data however,

then its eigenvectors (and eigenvalues) are perturbed

w.r.t. their theoretical values. Therefore, in general

there will be no value for HN for which the column

space of TL (HN ) coincides with the signal subspace

Range fV
S
g. But it is clearly meaningful to try to esti-

mateHN by taking that TL (HN ) into which VS can be

transformed with minimal cost. This leads to the sub-

space �tting problem in (28). The optimization prob-

lem in (28) is separable. With HN �xed, the optimal

matrix T can be found to be (assuming V H
S
V
S
= I)

T = V
H
S
TL (HN ) : (29)



Using (29) and the commutativity of the convolution

operator as in (22), one can show that (28) is equivalent

to

min
Ht

N

Ht
N

 
mLX

i=L+N

TN

�
V
H t
i

�
T
H
N

�
V
H t
i

�!
HtH
N (30)

where V H
i (like FL) is considered a block vector with L

blocks of size 1�m. This optimization problem has to

be augmented with a nontriviality constraint on Ht
N .

7. CHANNEL ESTIMATION FROM DATA

USING DETERMINISTIC ML

The stochastic part is considered to come only from

the additive noise, which we shall assume Gaussian and

white with zero mean and unknown variance �2v. We

assume the data YM (k) to be available. The maxi-

mization of the likelihood function boils down to the

following least-squares problem

min
HN ;AM+N�1(k)

kYM (k)� TM (HN )AM+N�1(k)k
2

2 :

(31)

The optimization problem in (31) is again separable.

Eliminating AM+N�1(k) in terms of HN , we get

min
HN





P?TM(HN)
YM (k)





2
2

: (32)

In order to �nd an attractive iterative procedure for

solving this optimization problem, a minimal parame-

terization of the noise subspace. The signal subspace

is the column space of TM (HN ), which has mN�1 de-

grees of freedom (the channel can only be determined

up to a scale factor). Similarly, the noise subspace can

also be determined as the column space of (a slight

modi�cation of) some block Toeplitz G(G) which is de-

termined by G. G can be taken to be (an appropriate

parameterization of) the �rst set of m�1 prediction �l-

ters that give zero prediction error (in the noiseless case

with uncorrelated transmitted symbols). The number

of degrees of freedom in G is again mN�1. HN (apart

from a scaling factor) and G can be uniquely deter-

mined from one another. The optimization problem in

(32) now becomes

min
G



P
G(G)YM (k)



2
2
: (33)

Due to the commutativity of convolution, we can write

G(G)YM (k) = Y(YM (k))[1 G
T ]T . This leads us to

rewrite (33) as

min
G

�
1

G

�H
Y
H(YM (k))

�
G
H(G)G(G)

�
�1
Y(YM (k))

�
1

G

�
(34)

This optimization problem can now easily be solved it-

eratively in such a way that in each iteration, a quadratic

problem appears [4]. An initial estimate may be ob-

tained from the subspace �tting approach discussed

above. Such an initial estimate is consistent and hence

one iteration of (34) will be su�cient to generate an es-

timate that is asymptotically equivalent to the global

optmizer of (34). To determine the CR bound, note

that TM (HN )AM+N�1(k) = AM;N (k)H
t T
N where

AM;N (k) = AM;N (k) 
 Im and

AM;N (k) =

264 a(k) � � � a(k�N+1)
... . .

. ...

a(k�M+1) � � � a(k�M�N+2)

375
(35)

(Hankel matrix). This leads to a singularity in the joint

information matrix for AM+N�1(k) and Ht T
N , which

translates into a singularity for the information matrix

for Ht T
N separately (we can only determine HN up to

a scalar multiple). If we consider the estimation of the

channel modulo the problem of determining the proper

scale factor, then the 1
�2
v

CRB bHt T

N

can be shown to be

�
A
H
M;N (k)P

?

TM(HN )
AM;N (k)

�+
�

�
A
H
M;N (k)AM;N (k)

�
�1

(pseudo-inverse). The last expression is the CR bound

if the dataAM+N�1(k) were known (training sequence).

For small m (e.g. 2), we �nd that the quality of the

channel estimate may be relatively bad if the chan-

nel impulse response tapers o� near the ends (channel

length detection problem!). For large m however, the

CR bound appraches the value corresponding to known

data (which is independent of the channel)!
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