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Abstract—Energy consumption is one of the primary concerns
of modern dense small cell networks. One of the key concepts
to improve the energy efficiency of a dense network is to turn
off a part of its base stations (BS) when they are idle or only
lightly loaded, since even then a considerable amount of energy is
consumed. In this paper we analytically investigate the tradeoff
between energy efficiency and user experience, which is measured
in terms of users’ delay assuming a non-saturated traffic model.
We provide an overall network performance with respect to
the BS density and insights that can be valuable in terms of
network design. Our analysis is based on a) a BS’s linear energy
consumption model b) stochastic geometry to model the topology
of the network and the users and c) queuing theory in order to
capture the flow-level performance. Our model is being applied
to the popular LTE radio access technology but it can easily be
extend to others. Our results provide guidelines and bounds that
are able to predict the energy efficiency of the designed network.

Index Terms—Stochastic Geometry; Queueing; LTE; Perfor-
mance Analysis; Flow-level; Green Communications; Energy
Efficiency, Densification.

I. INTRODUCTION

One way to increase area capacity in cellular networks
is to add more base stations (BS) a process also known as
densification. Especially the addition of small cells is expected
to be one of the key solutions to tackle the exponential increase
of traffic on the upcoming years [1]–[3]. On the other hand, as
the data traffic and the density of the networks are increasing,
the energy consumption is becoming more and more crucial
for both environmental (reducing of the carbon footprint) and
economical reasons [4].

Studies have shown that around of 50%-70% of the total
power consumption of telecommunications is taking place on
the BSs [5]. A considerable amount of energy is consumed
on the BS (for staying on or cooling) despite serving little
or no traffic [6]. Furthermore, we should consider industrial
zones, shopping roads, etc. those dense networks are deployed
in order to serve the high amount of connected users on
rush hours but for the rest of the day the network becomes
under-utilized. Therefore, one of the key concepts for energy
reduction is to turn off (or put in sleep mode) such BSs.

Depending on the radio access technology used, this can be
achieved by various sleeping techniques [7]. In 3GPP LTE-
Advanced (release 10) for example, the carrier aggregation
feature can be used to steer traffic to another cell and to power
off cells with no traffic. This feature has been improved in
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release 12 using the discovery reference signal, which is sent
by sleeping cells only in configurable intervals [8].

The problem of switching on/off BSs has been investigated
in various works. In [9] authors solve the optimization problem
of user association taking into account the energy consumption
as well as the flow-level performance (delay), but this analysis
does not provide analytical results for the overall network
performance. In [10] authors take a queuing analytic approach
to study the impact of turning off a BS on neighboring ones
for different traffic models, but they only do a network wise
performance analysis through numerical simulations. In [11]
authors follow a stochastic geometry approach in order to
provide the network performance while turning off BSs, this
work assumes saturated BSs and does not provide impact
about the flow-level performance of the network.

Our analysis is based on a common used energy cost model
[6] combined with our recently developed framework that
analyzes the flow-level performance of a random placed net-
work [12], [13]. We combine tools from stochastic geometry
and queuing theory in order to analyze the whole network
performance and provide insights about the tradeoff between
users’ QoE (which is measured in terms of delay) and energy
efficiency, without assuming saturated BSs.

We apply our results for the LTE radio access technology
and mainly to the case of decreasing the network density
by turning off (sleep) a part of the network, but the same
framework can analyze the case of increasing the network
density by adding BS (densify). In oder to provide close form
expressions and to avoid complex system-level simulators we
assume that BSs to be turned off are selected randomly, but as
we will see this worst case approach is not so far from more
sophisticated criteria such as minimum associated users.

Summarizing, our contributions are:
• We derive analytical and semi analytical formulas to

study the tradeoff between energy efficiency and users’
delay. to the best of the authors knowledge, this is
the first analytical work that combines the flow-level
performance of a non-saturated network with energy
consumption.There are cases where it is possible to
have large energy gain and on the other hand affordable
reduction of users’ performance.

• We validate our analytical model by comparison with the
results of packet-level simulator.

• We compare our assumption were we chose at random
the BS that will be turned off with simulations of more
sophisticated criteria such as minimum number of asso-



ciated users and we will see that both approaches are
converging as the network density increases.

• In off-peak hours the amount of users is significantly
reduced and the network becomes under-utilized. For this
scenario, we derive the maximum amount of BS that can
be switched off without affecting the performance of the
remaining users. Additionally, we provide a simple rule
under which conditions this BS reduction leads to energy
gain (is possible that the energy consumption increases
despite turning off some BSs).

The rest of the paper is organized as follows Section II presents
our system model, including all of our assumptions on the
topology, propagation model, scheduler etc. Section III derives
the MCS distribution for the arbitrary BS. Section IV presents
the BS’s energy cost model and modifies it to the more useful
metric, energy per unit area, the scenario of users’ density
reduction and some theoretical results are presented as well.
Finally, in Section V we present some interesting results of
our analysis about the flow-level performance and the energy
efficiency of the network.

II. OUR MODEL

A. PHY Layer Modeling

The first step is to define the assumptions about the topology
(both BS and users) as well as the PHY-layer characteristics.

A.1: Both BSs and users follow a homogeneous Poisson
Point Processes (PPP) with densities λBS and λu accordingly.
Therefore, the number of BSs (or users) in an area S is

P (N = n | S) =
(λBSS)ne−λBSS

n!
, n = 0, 1, . . . , (1)

and their placement is random.
A.2: A standard power loss propagation model is used,

usually the path loss exponent is 2 < α < 5. Additionally,
assume a Rayleigh fading channel with mean 1 and constant
transmit power of Ptx. So, the received power at distance d
from the BS is given by Prx = hd−α where h follows an
exponential distribution, h ∼ exp (Ptx). Hence, the SINR if
the user is associated with the i-th BS is given by

SINRi =
Prxi∑

n 6=i
Prxn + σ2

, (2)

where σ2 is the thermal noise. Usually, σ2
dBm = −174 +

10 log10(BW ), where BW is the systems bandwidth [14].
A.3: We assume that all BSs have equal transmit power

and implement the same scheduling policy. Additionally, we
assume that each user gets connected to the closest BS, so, the
BSs coverage area could be represented by Voronoi Regions
(Tessellations).

Taking into account A.1 and A.3 the users’ cardinality n for
an arbitrary BS, is a random variable. Observe that the size of
an arbitrary cell is a random variable, depending on the random
BS topology, and the number of users given a specific cell size
is also a random variable. The following lemma provides the
probability mass function (pmf) fN (n), of users cardinality

on an arbitrary cell. The proof of it as well as a useful and
accurate approximation could be found at our technical report
[15] or [16], [17].

Lemma 2.1: Consider BSs distributed in 2D as a homoge-
neous PPP with density λBS, and offering coverage to a set
of users distributed as another PPP with density λu, (A.1).
Assume further that user association within this tier is done
using the closest-distance rule, (A.3). Then, the probability of
having exactly n users in an arbitrary cell, fN (n), is given by:

fN (n) =
343

n!15

√
7

2π

ζn

(ζ + 7
2 )n+ 7

2

Γ(n+
7

2
) , (3)

where ζ = λu
λBS

and Γ is the gamma distribution.
A.4: In this work we assume that the part of the network

that will be turned off is selected randomly. The random
selection can serve as a worst case scenario (assuming that
we do not exploit our knowledge of the network in order
to intentionally decrease its performance). There are more
sophisticated criteria that can decide which BSs to turn off
in order to improve the energy performance of the network
(minimum amount of connected users, minimum providing
service rate, etc.) but those criteria, in most cases cannot be
modeled mathematically.

If we turn off randomly the 10% of the initial BSs, the
remaining are again a Poisson process with densisty BS,
λ

′

BS = 0.9λBS due to the following lemma.
Lemma 2.2: Let a Poisson process with rate λ if we divide

it randomly with probability p and (1 − p) to two processes,
Then, the two outcome processes are again Poisson with new
rates λ

′

1 = pλ and λ
′

2 = (p− 1)λ respectively due to Poisson
thinning property.

B. BS level Modeling

We assume that each BS experiences a dynamic traffic load
and we would like to study the performance at flow-level. We
now state our assumptions regarding a single randomly chosen
BS, and comment where necessary.

A.5: Each connected user to a BS generates new flow
requests randomly, and independently of other users, according
to a Poisson Process with density λf .

A.6: A flow is a sequence of packets corresponding to the
same user or application request (e.g., a file or web page
download). Each flow has a random size, in terms of bits,
drawn from a generic distribution with mean value 〈s〉.

The following Lemma follows easily, by using a simple
Poisson merging argument [18].

Lemma 2.3: If n users are associated with a given BS, the
aggregate flow arrival process to that BS is Poisson(nλf ).

Remark: While a Poisson arrival model is pretty standard
in related literature, note that if the number of users n at
a BS is relatively large, assumption (A.1) can be relaxed
to more general traffic arrivals, and we can then use the
Palm-Khintchine theorem [18] to support Lemma 2.3 as an
approximation.

A.7: In the absence of other flows, a single flow will be
served at full rate, with the maximum Modulation and Coding



Scheme (MCS) that the BS can offer to that user, which in
turns depends on the SINR-BLER specifications for that RAT.
In this work we examine an LTE network, so, according to
[16] the SINR thresholds and the corresponding rate for each
MCS depicted in table I.

TABLE I: LTE’s SINR threshold (τ ) in dB and the corre-
sponding rate (MB/s) w.r.t. MCS index, for the case of 20MHz
bandwidth and acceptable BLER 10−1

# τ rate # τ rate # τ rate
0 -2.3 2.8 9 3.8 15.8 18 10.3 32.9
1 -1.6 3.6 10 5.3 16.0 19 11.5 36.7
2 -1.0 4.6 11 5.5 17.6 20 12.1 39.2
3 -0.2 5.7 12 5.9 19.8 21 12.9 43.8
4 0.6 7.2 13 6.8 22.9 22 13.4 46.9
5 1.3 8.8 14 7.9 25.5 23 14.6 51.0
6 1.8 10.3 15 8.6 28.3 24 15.3 55.1
7 2.6 12.2 16 9.1 30.6 25 16.0 57.3
8 3.2 14.1 17 10.2 30.8 26 16.9 61.7

The MCS probability mass function fMCS(mcs) is derived
in Section III.

We will assume a SISO system and a single carrier in our
analysis [19]. Increased rates due to spatial multiplexing and
carrier aggregation could be included with a proper physical
abstraction models.

C. Queueing Model for BS Schedulers

When more than one flows are served in parallel by a
BS, the BS operates as a queueing system. The service rate
for a flow is generally smaller than what assumption (A.6)
predicts. It actually depends on the number of active flows (BS
load), and the BS scheduler or media access control (MAC)
mechanisms which decide how the available resources will be
distributed between flows.

Resource Fair Scheduler: Assume all flows are allocated
the same amount of resources by the BS, and are served
simultaneously, e.g., in a round-robin, TDMA-like manner. If
the service time slot is small (e.g., of packet size) compared
to the total size of a flow, the flow level performance at that
BS can be approximated by a multi-class M/G/1 Processor
Sharing (PS) system. This model has already been used to
analyzed 3G/3G+ BS performance [20], [21].

LTE schedulers are significantly more complex, allocating
competing flows both time and frequency resources (Resource
Blocks), possibly taking into account the queue backlog of
each flow and flow priority, and also attempting to take advan-
tage of instantaneous SINR variations in time and frequency to
achieve further multi-user diversity [19]. While a large number
of algorithms have been proposed [22], in the lack flow
priority, most implemented schedulers lead to a proportionally
fair throughput allocation between flows [19].

The following is a direct application of the multi-class
M/G/1/PS result [23].

Lemma 2.4: For a BS with n users generating flows of
mean size 〈s〉, with instantaneous transmission rates r(mcs)

drawn from distribution fMCS(mcs), and allocated resources
by a resource fair scheduler, the effective service rate of the
cell is

〈µ〉 =

(∑
mcs

fMCS(mcs) · 〈s〉
r(mcs)

)−1

flows/sec, (4)

and the mean flow delay is given by

Delay =
1

〈µ〉 − nλf
, (5)

The load of a system could be defined as ρ = input job rate
service job rate ,

for our case the average network load could be defined as

ρ =
ζ · λf
〈µ〉

, (6)

where ζ = λu/λBS , additionally, when the system is stable
ρ < 1 . There are a lot of ways to express network load,
we chose the following, the percentage of time that a BS is
ON. Performance gains from opportunistic scheduling can be
included in the above equation as a multiplicative factor in
front of 〈µ〉. Additionally, another kind of schedulers could
be modeled with different queues i.e. WiFi scheduler [24].

III. MCS DISTRIBUTION

A. Coverage Probability

The probability that a user’s SINR is grater than a given
threshold τ , P (SINR > τ), is called coverage probability.
The coverage probability for the arbitrary user in a random
placed cellular network, assuming that the surrounding BSs
are interfering only for the amount of time that are serving a
user has been derived in [12],

plbc (τ, α,Nmax) =

Nmax−1∑
n=0

(
fN (n | ζ)

1

1 +Aρ

)
+FN (Nmax| ζ)

1

1 +Aρ=1
. (7)

Where Nmax = 〈µ〉 /λf is the maximum amount of
associated users per BS, Aρ = (τρ)

2/α ∫∞
(Tρ)2/α

1
1+uα/2

du,
we can consider the BS load as ρ = n

Nmax
. Additionally, α is

the path loss exponent, fN and FN are the pdf and ccdf of
users’ cardinality and as previously used ζ = λu/λBS , (see
Lemma 2.1). Further simplifications of Eq. (7) could be found
in [12].

B. MCS distribution

Assuming an SINR threshold τi for each MCS (table I), the
pmf of the MCS fMCS(mcsi) can be obtained through the
coverage probability as follows

fMCS(mcsi) = pc (τi, α,Nmax)−pc
(
τ(i+1), α,Nmax

)
. (8)

Taking into account that Nmax = 〈µ〉 /λf , we can observe
from Eq. (7) that the coverage probability depends on service
rate 〈µ〉. Thus, MCS distribution depends on the 〈µ〉 as well.
On the other hand, 〈µ〉 is depending on MCS distribution as
we can see at Eq. (4).
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Fig. 1: Left and right part of the Eq. (9)

C. Service Rate 〈µ〉

Due to the aforementioned dependencies we re-write Eq. (4)
to more proper form

〈µ〉 =

(∑
mcsi

fR(mcsi| 〈µ〉) · 〈s〉
r(mcsi)

)−1

. (9)

With respect to 〈µ〉 Eq. (9) has exactly one solution. As a
remark we mention that the left part of equation Eq. (9) is a
strictly increasing function with derivative equal to one, and
the right part is again a strictly increasing function with respect
to 〈µ〉 but its derivative is strictly smaller than one for the
cases of LTE or Shannon’s rates (calculated computationally).
Fig 1 depicts the left and the right part of Eq. (9) w.r.t. 〈µ〉 for
two cases a) the right part of the equation computed assuming
LTE rate and b) assuming Shannon’s rate. In both cases there
is exactly one solution for the Eq. (9) and could be approached
by simple gradient methods.

IV. ENERGY COST MODEL

The linear cost model is the most common energy con-
sumption model [6]. The model consists of: a) a constant
term that captures energy consumption of the BS in order
to be ON and ready to operate and b) a linear term that
is responsible for the energy consumption while the BS is
operating (exchanging data). We set as Eon the amount of
energy that the BS consumes in order to be ON for a period
T . Additionally, Eop is the energy consumption while the BS
is operating with a user and ∆t is the amount of time that the
BS is operating (∆t 6 T ). So, the total energy consumption
of the BS for period T is given by

EBS = Eon + Eop
∆t

T
. (10)

We are not interested about the energy consumption of a
specific BS but for the total energy consumption per unit area.
After some trivial calculations and expressing ∆t

T as network
load ρ we end up with

E = λBS
[
Eon + Eop · ρ(ζ)

]
, (11)

where ρ(ζ) is the average utility of the network Eq. (6) and
ζ = λu

λBS
.

Partial Reduction of Users Density (Off-Peak Hours)

A network is deployed in order to achieve a specific user
performance. Some areas suffers for high users’ variability
in a day, shopping streets, industrial zones, etc. The network
design aims to achieve a predefined users’ performance even at
the high traffic period. That means that the network is under-
utilized on the low traffic period. The operator’s goal is to turn
off a part of the network in order to save energy, but without
decreasing the performance of the remaining users.

Lemma 4.1: If we assume that the density of the users in a
given area decreased according to a factor lu and the thermal
noise is negligible compared to interference σ2 << I , the
maximal decrease factor of the BS density lbs but without
affecting the average delay of the remaining users is

lbs = lu . (12)

Proof: The Delay in both cases (before and after users
reduction) should be the same

Delay1 = Delay2 ,

where according to processor sharing

1

〈µ〉1 − λ1
=

1

〈µ〉2 − λ2
,

were we express service rate 〈µ〉 as a function of the densities
ratio ζ = λu

λBS
. Assuming that the other network parameters

constant 〈
µ(ζ)

〉
− ζ · λf =

〈
µ( lulbs

ζ)

〉
− lu
lbs
ζ · λf . (13)

further we define

g(x) =
〈
µ(x)

〉
− x · λf . (14)

Both
〈
µ(x)

〉
and −x ·λf are strictly decreasing functions with

respect to x. So g(x) is a strictly decreasing function as well.
If g(·) is a strictly monotonic function and g(a) = g(b) then
a = b. Thus, applying that to Eq. (13) we have

ζ =
lu
lbs
ζ . (15)

Unfortunately, switching off some BS does not lead directly
to energy improvement. When we switch off a part of the
network, on the one hand we save some energy by Eon factor
of the BSs that we turned off, but on the other hand, the
network in total consumes higher amount of Eop than before,
because the remaining BSs serve the users with worse channel
conditions (therefore, for more time) than before.

Lemma 4.2: The BS reduction according to the reduction of
users density that was presented in Lemma 4.1, surely reduces
the energy consumption of the network if

Eon
Eop

>
1

1− lbs
. (16)



Proof: Regarding the energy consumption of this scenario
the answer is not trivial. We aim the energy consumption of
the thinned Eth network to be less than the consumption of
the full network Ef

Eth < Ef . (17)

Assuming that for a portion of time pt the users density has
been reduced by a factor lu, thus, according to Lemma 4.1
the BS’s density will reduced by a factor lBS = lu and by
applying to the Eq. (11)

ptlBSλBS [Eon + ρthEop] < ptλBS [Eon + ρfEop] , (18)

after some trivial calculations we derive that in order to have
some energy gain through the thinning of BS the following
inequality should hold

Eon
Eop

>
lbsρth − ρf

1− lbs
. (19)

taking into account that the nominator of Eq. (19) is upper
bounded by lBSρth − ρf < 1, we end up to the asymptotic
rule of thumb of Eq. (16)
If Eq. (16) does not hold, we should calculate the load for
each case by following the whole procedure of Section III and
Eq. (6) as to decide if the energy consumption of the network
will be decreased by turning off a part of the network or not.

V. RESULTS / SENSITIVITY ANALYSIS

A. Validation

The packet-level simulator generates both BSs and users
randomly placed in a large surface with given densities (λBS ,
λu). Users are associated with the closest BS and generate
flows according to Poisson distribution with density λf . The
flows are forwarded to the corresponding BS which is modeled
as a multi-class M/G/1/PS. The service rate of each flow for
every time quantum is calculated via SINR. At the calculation
of the interference we are taking into consideration only the
base stations that are ON at this time quantum (load based
case), for comparison with the most common assumption in
the literature we also implement the case of taking into con-
sideration, at the interference calculation, all the BS (saturated
case). In order to compare fairly both interference cases we
consider only the users whose SINR is at least higher than
the threshold of the lowest MCS at saturated case. We should
mention that the packet-level simulator needs extremely high
computational resources, so, the theoretical prediction is even
more valuable.

We are interested in investigating the scalable performance
of a large, random placed network while we turn off a
percentage of BSs in order to improve the energy efficiency. In
this section the user’s density does not change, so by turning
off BSs we know a priori that users’ performance will be
reduced, so we want to compare the energy gain with the
performance reduction. In our theoretical analysis we select
randomly which BSs will turn off. As we mention before,
the random selection is a worst case scenario, there are more
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sophisticated criteria in order to decide which BSs to turn off
(minimum associated users).

Figs. 2 and 3 shows how the flow level performance of the
network (average flow delay and the average network load)
scales with respect to the density of the BS (λBS) in four
different cases i) our theoretical prediction that assumes load
based interference (l-b) and the selection of which BSs to
turn off is random (rnd) ii) simulation results for the case
of load based interference and the selection of which BSs to
turn off is random iii) simulation results assuming load based
interference and the selection of which BSs to turn according
to minimum associated users (min) criterion and iv) simulation
results assuming saturated (sat) BSs and the selection of which
BSs to turn off is made randomly. We can obtain three interest-
ing conclusions from Figs 2 and 3: 1) our theoretical prediction
is very accurate (for both load and delay) compared with the
simulation results, 2) the assumption of saturated BSs (which
is common at stochastic geometry works) changes totally the
network’s performance not only quantitative but qualitative as
well and 3) the minimum associated users criterion does not
differ a lot from the random one, especially when the network
is very dense the difference is negligible. That means that for
dense networks it is better to randomly switch off BS than
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using the centralized and more complex minimum associated
users criterion to determine which BS to switch off.

B. Energy Vs Delay

In this subsection we are interested to investigate the trade-
off between energy efficiency and users delay. Regarding the
interference we assume the more realistic case of load based.
Initially, the network is under-utilized (ρ ≈ 0.1), let E0 and
D0 be the energy consumption and the average delay of this
initial state. Then gradually we turn off a part of the network,
we define as E/E0 the relative energy gain and as D/D0 the
relative delay, for simplicity we will call those metrics energy
gain and relative delay respectively.

Fig. 4 shows the performance for different Eon
Eop

ratios.
Initially, by observing the case of Eon = Eop we note that for
low load the derivative of the energy gain is very high, so there
is the capability of energy improvement without large delay
cost. When the load of the network is ρ ≈ 0.5 the derivative
decreased dramatically, thus the delay cost is extremely high
compered to the energy gain.

Furthermore, in Fig. 4 there two more remarks 1) as the ratio
between constant and operational energy becomes higher, the
possible gain by turning off the BS is increasing. Considering
the traditional small cells, the case that the constant energy
term be much higher than the operational one seems unrealis-
tic, but in future networks (e.g. drones) this could be the case,
2) when the constant energy term is less than the operating
one, there is a turning point in the performance curve. This
means that after a point, as we turn off more BS, both the
energy as well as the delay performance are getting worse. For
the extreme case where the particular cost of a BS to be ON
is negligible compared to the operational cost Eon

Eop
→ 0 there

is no capability for energy improvement, thus, the optimal
strategy is simply to set all BSs ON.

VI. CONCLUSIONS / FUTURE WORK

We presented an analytical frame work that provides the
energy performance of the network and we investigated the
tradeoffs between network’s energy efficiency and user’s QoE.

We observe that even under the worst case assumption of
random selection of which BS turn off, there is capability of
energy improvement without affecting a lot user’s QoE when
the operational energy in not much greater than the constant
energy term. As future work, we will expand the framework
to heterogenous networks and investigate different tier associ-
ation criteria that maximize networks energy efficiency of the
network constrained to user’s QoE.
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