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Abstract—Human factors include human errors and human
weaknesses such as long reaction time, limited visibility, limited
jerk sustainability, etc. Such human factors account for a
large portion of vehicular accidents involving manually driven
vehicles (MDVs). Future Intelligent Vehicles (IVs) are expected to
have higher perception ranges, faster reactions and coordinated
mobility capability. At early market penetration, IVs will share
road with MDVs and will adjust its driving dynamics according
to the dynamics of other neighboring vehicles.

In such a scenario, we investigate how IVs can compensate
for human factors impacting MDVs and accordingly improve
traffic safety in mixed traffic conditions. We model a centralized
Model Predictive Control (MPC) based controller and integrate
constraints derived from human factors. We show that IVs may
not only reduce collisions, but also increase traffic density without
negatively impacting traffic safety. We finally assess the impact
of a gradual penetration of IVs in a mixed vehicle scenario.

I. INTRODUCTION

Advanced Driver Assistance Systems (ADAS) are being
developed to support human drivers in their driving duties.
Warning-based ADAS alert human drivers about imminent
threats or advanced navigations through GUI (visual), auditory
or haptic feedback [1]. Control-based ADAS provide control
functions for lane keeping, lane change, automated vehicle
parking, or adaptive cruise control (ACC). Vehicles equipped
with ACC functionalities can ensure front end collision avoid-
ance. It yet may not be able to avoid rear end collisions with
following (manually driven) vehicles [2] without cooperation
and coordinations. Vehicles equipped with ACC and Vehicle-
to-Everything (V2X)1 communication technologies, which co-
operate and coordinate by sharing vehicle state and control
information, are known as Cooperative ACC (CACC) vehicles.
Both ACC and CACC vehicles are considered as Intelligent
Vehicles (IVs).

In a traffic consisting of CACC vehicles only, coordinated
control strategies are necessary to harmonize flows or avoid
collision [3] (e.g. Fig. 1). Examples of coordinated control
strategies for multi vehicle braking, roundabout clearance, lane
merging, etc. can be found in the survey [4] assuming perfect
knowledge of parameters under ideal circumstances. Under
less than ideal circumstances (delayed or missed detection),
coordinated control strategies face emergency-like situations to

1V2X technologies refer either to DSRC/ITS-G5 or to the future C-V2X.

avoid collisions. In such situation, the objective changes from
coordinated control for maneuvering to coordinated control for
braking [5].

The presence of manually driven vehicles (MDVs) without
V2X capabilities brings additional challenges to cooperative
control strategies. Compared to IVs, human drivers in MDVs
are subject to human factors, such as long reaction times,
limited anticipation or visibility, over-speeding and unexpected
driving maneuvers. These human factors have a negative
impact on safety and can result in collisions. At early IV
market penetration, IVs and MDVs will coexist, which will
lead to uncertainties in the control strategies. Accordingly, IVs
and MDVs will adjust their maneuvers based on one another
and create an indirect interaction between them. To maneuver
safely in mixed traffic scenarios, CACC vehicles might need to
parameterize and model MDV’s behavior [6] or perform intent
estimation [7]. CACC vehicles are also expected to impact
MDVs by mitigating the impact of human factors on traffic
safety.

In this paper, we purposely evaluate this aspect. Considering
perception response time as human factor, we investigate
how CACC vehicles mitigate its propagation on a string
of MDV vehicles in a coordinated braking scenario. We
model a centralized controller according to a Model Predictive
Control (MPC) method and include human factor constraints.
We gradually mix CACC vehicles with MDV and evaluate
the capabilities of our proposed MPC controller to avoid
collisions. We also evaluate how the recommended safety
distance between MDVs may be occupied by CACC vehicles
without creating accidents. Reduced inter-distance is known
to increase traffic flow in pure CACC scenarios. We aim at
demonstrating to also be the case in mixed scenarios, thanks
to CACC vehicles compensating for human factors affecting
MDVs. Moreover, the proposed technique is non-intrusive and
does not actually require installation of additional hardware in
MDVs.

The rest of this paper is organized as follows: In Section II,
we provide background on centralized control systems. In
Section III, we model a mixed traffic scenario and formulate
our MPC based control strategy. In Section IV, we evaluate
its performance to compensate for human factors. Section V
finally draw conclusions and shed light on future work.



Fig. 1. Scenario description - intersection collision avoidance

II. INTRODUCTION TO CENTRALIZED CONTROL SYSTEMS

Consider a Model Predictive Control (MPC)-based con-
troller receiving status information (position and velocity) of
each of the nv vehicles at each instant. Based on a set of given
constraints, the MPC controller calculates a set of control
inputs u minimizing a target cost function while respecting
the constraints. The first control input is applied by each
vehicle and then the process is repeated in the next iteration.
Accordingly, optimal control inputs for all vehicles over a
finite time horizon2 N are calculated using the following
model:
MPC Control Input
Considering the state variable xi of vehicle i (i ∈ 1...nv) as
a position-speed tuple:

xi = [pi vi]
T (1)

the control system in a continuous time domain can be
represented as:

ẋi(t) = fi(xi(t), ui(t))

ẋi(t) = Axi(t) + Bui(t)
(2)

where u(t) is the control input, and assuming a linear control
system. In discrete form, (2) may be expressed as (see [3]):

xi(n + 1) = Axi(n) + Bui(n) (3)

where n is any sampling instant (n ∈ 1...N ). Assuming basic
kinematic relationships (e.g. ṗi = vi, v̇i = ui, u̇i = ji), exact
discretization of (2) leads to:

A =

[
1 ∆t
0 1

]
B =

[
(∆t)2/2

∆t

]
(4)

where ∆t is the time between two consecutive samples n and
n + 1; j denotes jerks.
MPC Constraints
The control system given by (3) is subject to the following
constraints:

• Initial and final state constraints
Initial state and the final state vectors are represented as
xi(0) and xi(N).

• Path constraints
If Ti corresponds to the set of spatial coordinates on
a predefined path and G(xi) corresponds to the spatial
coordinates (area) that vehicle occupies when the state is

2Setting the correct value of such time horizon is important as it influences
the computational time.

xi at instant n, the constraint, which ensures that each
vehicle stays on the initially decided path is given as:

G(xi(n)) ⊂ Ti (5a)

where an intersection can be defined as an area where
two paths intersect:

Ti ∩ Tk ∀i, k ∈ 1...nv, i 6= k (5b)

• Vehicle and passenger constraints
In real life scenarios, there are limitations related to ad-
missible values of jerks, acceleration, velocities modeled
as follows: [

pmin
i

vmin
i

]
≤ xi(n) ≤

[
pmax
i

vmax
i

]
(6a)

umin
i ≤ ui(n) ≤ umax

i (6b)

jmin
i ≤ ji(n) ≤ jmax

i (6c)

where (·)min
i , (·)max

i corresponds to minimum and
maximum value of that parameter for vehicle i. Please
note that negative acceleration signifies braking and umax

i

and umin
i stand for maximum acceleration and maximum

braking limits.
• Safety constraints

Condition 1: Two vehicles cannot occupy the same space,
neither completely nor partially at any time instant.
Condition 2: Distance between vehicles cannot be re-
duced to zero, at any time instant. These conditions can
be expressed as:

G(xi(n)) ∩G(xk(n)) = ∅ ∀i, k ∈ 1...nv, ∀i 6= k
(7a)

di,k(n) > 0 ∀i ∈ 2...nv, k = i− 1
(7b)

where di,k denotes the distance between vehicles i and
k.

MPC Cost function
Rapid acceleration or deceleration is shown [8] to be stressful
to the vehicles occupants. The goal is therefore to maximize
comfort whilst ensuring collision avoidance. Accordingly, we
take the 2-norm on the control inputs to penalize large devia-
tions as follows:

J =

nv∑
i=1

N∑
n=1

‖ui(n)− ui(n− 1)‖2 (8)

MPC centralized CACC control model
We can incorporate the various constraints and the cost func-
tion given by (8) into an optimization model as:

minimize
nv∑
i=1

N∑
n=1

‖ui(n)− ui(n− 1)‖2 (9)

subject to (1), (3), (4), (5), (6), (7)

Equation (9) returns a set of control inputs (acceleration
values) for a CACC only traffic scenario. If collisions are



inevitable, (9) will not return any control input. Solving such
a scenario is out of scope of this paper.

To highlight human factors affecting MDV and the benefit
of CACC vehicles in a mixed traffic scenario, we modify the
MPC formulation in (9) to include state parameters and con-
straints describing human factors impacting manually driven
vehicles.

III. COORDINATED BRAKING IN MIXED TRAFFIC

A. System Modeling

Based on the level of automation and communication/sensing
capabilities, we categorize vehicles as active participants (APs)
or passive participants (PPs). APs support dedicated V2X
communications and coordinated control capabilities (e.g.:
CACC). Other vehicles, which are manually driven and subject
to human factors are PPs. In this paper we consider a mixed
traffic scenario consisting of PPs (MDV) and APs (CACC). We
consider a scenario with multiple vehicles braking on a single
lane (1D) as shown in Fig. 2.

Modeling PPs
Two major human factors affecting PPs are the reaction time
and the limited visibility. We model the PP’s reaction time
as the driver’s perception reaction time (PRT) (tprt) [9], and
assume PP’s visibility to be limited to the front vehicle only.
Moreover, we define tprt,i=[ti,i−1, ti,1] as the pair of PRT of
a PP i compared to the vehicle in front and the first vehicle
respectively. It means that a PP i would react ti,i−1 seconds
after vehicle i− 1 and ti,1 seconds after vehicle 1. And ti,1=
ti,i−1+ti−1,i−2+...+ t2,1 if all 2, 3..i front vehicles are PPs (e.g
Fig. 2). Thus the reaction time of a PP is proportional to the
number of other PPs immediately ahead. Assuming each PP i
brakes at maximum capacity after its PRT and comes to a halt
in tsi seconds, the braking profile of manually driven vehicles
can be defined by:

ui(n) =


0 0 ≤ n ≤ c · ti,1
umin
i c · ti,1 < n ≤ c · T s

i

0 n > c · T s
i

∀ i ∈ Zc (10)

where T s
i = ti,1 + tsi . Values in seconds are multiplied with

constant c = 10 and converted to instances (1 second = 10
instances). Let Z be the set of all APs, 1 ≤ size{Z} ≤ nv .
Thus Zc is the complement set of Z, which signifies that
i /∈ Z ∀i ∈ nv . If size{Z} is zero, means no APs, only PPs.
Equation (10) is used to generate state parameters (location
and velocity) of manually driven vehicles for simulations.
But in real life scenarios, state parameters for PPs would be
regularly updated at the centralized controller by the use of
detectors placed by the side of the roads, or extracted by
CACC vehicles’ camera’s and lidar scanners, and transmitted
via V2X communications.

We assume that APs are warned at the same instant of a
potential collision and immediately react on control inputs
from the centralized entity. APs implicitly warn PPs of their
braking through braking lights. Accordingly, the reaction time

Fig. 2. braking delays derived from finite reaction time of MDVs.

of a PP i behind an AP will be much shorter than a PP k
behind another PP (i.e.: ti,1 < tk,1), as indicated in Fig. 2.

Equation (10) ensures PPs come to a halt, whereas to ensure
that all APs also reach zero terminal velocity before the
intersection, we modify the final state parameter as follows:

vi(N) = 0 ∀i ∈ Z (11)

B. Proposed Mixed Traffic Centralized Control Model

Computing control inputs for APs whilst considering spe-
cific braking profile for PPs (10) signifies a mixed vehicle
scenario. Ensuring zero terminal velocity (11) signifies a brak-
ing scenario. Equation (7b) further ensures collision avoidance
considering human factors. Restricting jerks within certain
bounds (6c) ensures smooth braking for APs3. As it is a
1D scenario, the initial and final position information directly
define the path T thus (5a) and (5b) can be ignored. The
cost function is chosen to maximize comfort (8). At each
instant the centralized controller computes control inputs for
APs considering all vehicles (APs and PPs) in the traffic by
solving the following:

minimize
nv∑
i=1

N∑
n=1

‖ui(n)− ui(n− 1)‖2 (12)

subject to
xi(n + 1) = Aixi(n) + Biui(n)

ṗi = vi; v̇i = ui; u̇i = ji

A =

[
1 ∆t
0 1

]
B =

[
(∆t)2/2

∆t

]
[
pmin
i

vmin
i

]
≤ xi(n) ≤

[
pmax
i

vmax
i

]
umin
i ≤ ui(n) ≤ umax

i

jmin
i ≤ ji(n) ≤ jmax

i ∀i ∈ Z

di,k(n) > 0 ∀i ∈ 2...nv, k = i− 1

ui(n) =


0 0 ≤ n ≤ c · ti,1
umin
i c · ti,1 < n ≤ c · T s

i

0 n > c · T s
i

∀i ∈ Zc

vi(N) = 0 ∀i ∈ Z

Without loss of generality, it is assumed that a centralized
entity has full knowledge (at instant n = 0) of the state
parameters and vehicular constraints of all PPs and APs.
The centralized entity is further able to solve the convex

3PPs’ control inputs cannot be controlled and thus jerks are not considered
for PPs



optimization problem represented by (12). We solve it using
CVX [10] on MATLAB4. The proposed model calculates
control inputs for APs taking into account APs and the human
factors from PPs. APs will implement control inputs derived
from (12), whereas PPs will implement the braking model
described by (10).

IV. PERFORMANCE ANALYSIS

A. Simulation set I

For this simulation set, we consider a scenario of five
vehicles5. The first vehicle is an AP. The ego vehicle X (the
subject vehicle) is located in the slot slotego and the rest are
PPs. We use the following notation: [PP X PP PP AP], the
right most vehicle is closest to the intersection, and vehicles
are located at [p5 p4 p3 p2 p1] with velocities [v5 v4 v3 v2
v1]. Three potential scenarios are considered as function of
the role of the ego vehicle:
Scenario 1: The ego vehicle X is absent, slotego is empty.
Only four vehicles are present in this scenario.
Scenario 2: The ego vehicle X is a PP.
Scenario 3: The ego vehicle X is an AP.
Figure 3 depicts these three scenarios, where slotego is
location p4.

Fig. 3. 3 scenarios being simulated:- 1. ego vehicle is absent 2. ego vehicle
is a PP 3. ego vehicle is an AP.

Simulation parameters
We evaluate the performance of our proposed control model
given by (12) by solving it for input values sampled from
the input space (umin, tprt, di,k, vi(0), slotego). umin is
sampled from a normal distribution N (−0.6g, (0.1g)2) [11]
and capped at –0.4g and –0.8g, and tprt is sampled from a
normal distribution N (1.33, (0.27)2) [9] and capped at 0.8s
and 1.8s. The initial velocity of vehicles vi(0) is chosen
between vp± 2.5%, where vp = 96kmph to model a high
speed scenario. slotego denotes the position of ego vehicle,
randomly chosen to be either position 3 (p3) or 4 (p4).

To reflect a high collision probability scenario, a high initial
velocity, small inter vehicular distances and a small distance

4Strict inequalities have been avoided wherever possible by adding a small
offset and converting them into a non-strict ones.

5Our methodology may be extended to an arbitrary large set of vehicles.
We limited it to five for computational purpose only.

to potential-collision are configured. We set the initial location
of the lead vehicle p1(0) = 95.9m, which is the distance
by which at least one DSRC/ITS-G5 safety message may be
received with 99.5% probability, derived from [12]6. The time
headway between vehicles di,k is chosen between 0.2s (≈5
m) and recommended time headway 1.8s [13].

TABLE I
GENERAL VALUES

Symbol Parameter description Value
g gravitational constant 9.88 m/s2

lv length of any vehicle 4 m
∆t sampling time 0.1 s
N Sampling horizon 140 instances (14 s)

The location of the potential collision is the intersection,
assumed to be the origin (0 in 1D space), and vehicles are
moving towards the origin. pmin

i > 0 ensures vehicles do
enter the intersection. vmin

i = 0 implies vehicles cannot go
in reverse direction. Simulations performed in this paper do
not require pmax and vmax. umax = 0 guarantees a pure
deceleration scenario, and jmin

i and jmax
i values are capped

to -0.25 and 0.25 m/s3 respectively. We do not assume any
restrictions on the jerk for PPs. Other general parameters used
in the simulations can be found in Table I.

For consistent evaluation results, we perform 100 runs for
each of the three simulation scenarios, with different values
for each vehicle being generated from the above distributions
in the input space (umin, tprt, di,k, vi(0), slotego) for each
run. We can observe that out of 100 runs, if the location
of the ego vehicle is left empty (scenario 1), 21 accidents
were avoided, whereas if the ego vehicle is present and is
a PP (scenario 2) only 1 accident was avoided. This is a
straightforward observation from the fact that larger inter
vehicular distances reduce the chances of collisions. If slotego
contains an automated vehicle, then the number of collisions
avoided increases to 25. This is an 19.04% improvement
compared to scenario 1 (4 additional collisions avoided).

For a more detailed investigation, we choose one simulation
run out of the 100, where our proposed model effectively
avoids collisions in scenario 3, and collisions take place in
scenarios 2 and 1. Parameters corresponding to this particular
simulation run can be found in Table II. The initial distance
between vehicles is [d2,1...d5,4] is [5 25 10 5] m.

In scenario 1, as there are multiple consecutive manually
driven vehicles, the reaction delay keeps accumulating down-
stream, and thus vehicles downstream and the first vehicle do
not start braking at the same time. This is illustrated on Fig. 4,
which shows vehicle 2 starting to brake after vehicle 1 (AP),
vehicle 3 does after vehicle 2, so on... Due to this cumulative
reaction time, despite the adaptive control from the AP (see
Fig. 4), manually driven vehicles collide as shown in Fig. 5.

Scenario 2 has more vehicles in the same space, thus if
collisions could not be avoided in scenario 1, collisions cannot

6We leave a more detailed investigation of such detection range to future
work.



TABLE II
SIMULATION PARAMETER VALUES CORRESPONDING TO A PARTICULAR

RUN IN SIMULATION SET I

Vehicle 1 2 3 4 5
pi(0) [m] 95.90 104.90 133.90 147.90 156.90
vi(0) [m/s] vp vp 0.98vp 1.01vp vp
umin
i [m/s2] −0.55g −0.63g −0.68g −0.6g −0.65g

tprt [s] – 1.3 1.2 1.4 1.3

Fig. 4. Scenario 1 - adaptive deceleration of a single AP does not helping in
avoiding accidents.

be avoided in scenario 2, which is indeed the case (not shown
due to the lack of space).

Scenario 3 has the same density of vehicles as scenario 2,
but an AP occupies p4 instead of a PP or an empty space.
We observe that the vehicle 5 in position p5 avoids collisions
unlike in scenarios 2 and 1. The corresponding locations and
decelerations are depicted on Fig. 7 and Fig. 6 respectively.
This collision avoidance may be explained as follows: (i) the
time taken by a PP behind an AP (vehicle 5 behind vehicle
4) to start braking in scenario 3 is lower compared to the one
in scenario 1 and 2 (which has a PP behind another PP); (ii)
Note that the MPC based model assigns APs control inputs
(braking profile) based on the braking of other PPs and APs,
to avoid front and rear end collisions. A secondary observation
is that the penetration of APs (CACC vehicles) in PP traffic
can actually increase traffic density without impacting safety.

B. Simulation set II

To study the impact of a bigger penetration of APs, we
consider different number of APs (0,1,2...5) and PPs (5,4,3...0)
such that the total number of vehicles nv is constant. The
locations of APs and PPs are random. 100 simulation runs
of each of the six combinations are conducted with different
values for parameters sampled from the input space (umin,
tprt, di,k, vi(0)). The corresponding results are summarized
in Table III. Results show that a bigger percentage of APs
brings more flexibility to the system to accommodate PPs and
compensate for human factors impacting PPs.

Fig. 5. Scenario 1 - Illustration of collision despite slotego being left empty
(collisions observed by intersecting lines).

Fig. 6. Scenario 3 - Adaptive braking of two APs (vehicles 1 and 4) in a
five vehicle braking scenario helps avoid collisions despite an extra vehicle.

Although scenario 2 from the simulation set I and 40%
AP penetration in simulation set II have the same number of
APs (2), but the number of collisions avoided are 25 and 11
respectively. This is due to the fact that the position of APs
relative to PPs influences the collision avoidance statistics in
mixed vehicle scenario. Evenly spread APs between PPs are
more efficient in helping collisions compared to them being
grouped.

V. CONCLUSIONS

In this work, we investigated how future Intelligent Vehicles
(IV) supporting Cooperative Adaptive Cruise Control (CACC)
can compensate for human factors affecting manually driven
vehicles (MDVs). We formulated a mixed vehicle coordinated
traffic scenario and presented a Model Predictive Control
(MPC) based controller integrating constraints derived from
human factors affecting MDVs. We showed that a gradual



Fig. 7. Scenario 3 - Location of vehicles over time showing no impact, despite
an extra vehicle.

TABLE III
SIMULATION SET II RESULTS

Percentage penetration of APs 0 20 40 60 80 100
Collisions Avoided 0 1 11 35 57 61

penetration of CACC vehicles not only reduces collisions
induced by human factors, but also increases the traffic density
at no impact on traffic safety. Major reasons behind this are
the ability of CACC vehicles to: (i) react immediately and
synchronously; (ii) adjust controls to avoid collisions at both
ends; (iii) intercept the shockwaves created by the propagation
of the perception response time through anticipative actions

This study only considered the impact of human factors
consisting of perception reaction times of MDVs. It is ex-
pected that human drivers feel uncomfortable driving beside
IVs. MDV could show unpredictable or antipathetic reactions
whereas IVs could try to mimic MDV’s driving behavior.
In future work, we plan to extend our MPC model by first
incorporating other human factors and second accounting for
these reactions. We will also extend the scale of our study
to evaluate the impact of IVs on a larger scale and in more
complex scenarios.

Our study also showed that solving the optimization model
and generate control inputs took a few seconds on a 4 core
processor at 3.10GHz and 16 GB ram. This delay is a critical
limiting factor for real time implementations. In future work,
we will develop a decentralized version of our strategy. Addi-

tionally, we will study the impact of imperfect communications
and localization, as well as control implementation delays.
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