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ABSTRACT

This paper describes a variation of the well-known HiLAM approach to speaker authentication which enables
reliable text-dependent speaker recognition with short-duration enrollment. The modifications introduced in this
system eliminate the need for an intermediate text-independent speaker model. While the simplified system is
admittedly a modest modification to the original work, it delivers comparable levels of automatic speaker verification
performance while requiring 97% less speaker enrollment data. Such a significant reduction in enrollment data
improves usability and supports speaker authentication for smart device and Internet of Things applications.

1 Introduction

The rapidly-growing smart device market and the explo-
sion of the Internet of Things (IoT) has fueled the need
for low footprint and efficient speaker authentication
solutions, e.g. [1]. Unfortunately, many approaches
to Automatic Speaker Verification (ASV) place un-
realistic demands on enrollment and recognition/test
data [2]. The need for anything more than a few sec-
onds of speech impacts on usability and creates resis-
tance among mass-market users.

ASV research has largely been driven by the Speaker
Recognition Evaluations (SREs) administered by the
US National Institute of Standards and Technology
(NIST)1. These evaluations have typically focused on
enrollment and testing with a duration in the order
of a few minutes. While the SREs have stimulated

1https://www.nist.gov/itl/iad/mig/
speaker-recognition-evaluation-2016

tremendous progress over the last two decades, today’s
state-of-the-art speaker verification technology is often
ill-suited to authentication applications which demand
reliable recognition using utterances with a duration
in the order of a few seconds [3, 4, 5]. With a clearly
different use case scenario, the NIST SREs have also fo-
cused on text-independent recognition, whereas short-
duration recognition generally calls for text-dependent
operation.

State-of-the-art i-Vector and probabilistic linear dis-
criminant analysis (PLDA) techniques are difficult to
apply in text-dependent tasks [6, 7, 8] unless training
data is plentiful [9] and unless impostor trials involve
matching text [10]. Studies reported in [11, 12, 13, 14]
demonstrated that joint factor analysis (JFA) systems
can work well with little enrollment data, however,
even under those conditions, both JFA and PLDA still
rely on prior knowledge of the text content.

Initiatives dedicated to furthering progress in text-
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dependent recognition have gathered pace in recent
years, prominent examples being the release of the
RSR2015 [15] and RedDots [16] databases and associ-
ated evaluation campaigns. The RSR2015 database was
furthermore introduced together with a baseline ASV
system referred to as HiLAM (Hierarchical multi-Layer
Acoustic Model) [6]. It involves a 3-layer approach to
text-dependent speaker modeling. The HiLAM sys-
tem is today a reference approach. Even it, though,
is ill-suited to our target application since it learns an
intermediate text-independent speaker model which in
turn requires significant speaker enrollment data.

We have thus sought to develop an alternative to the
HiLAM system which reduces demands on enrollment
data for a short-duration, text-dependent speaker au-
thentication application. Since the target application
is text-dependent, the aim is to dispense with text-
independent enrollment entirely. While an admittedly
modest modification to the original work, the result is
a simpler two-layer approach which achieves compara-
ble ASV performance with a dramatic reduction in the
need for enrollment data.

The remainder of this paper is organized as follows.
Section 2 describes the RSR2015 database which was
used for all experimental work reported herein. The
original HiLAM baseline system is summarized in Sec-
tion 3 whereas modifications to support short-duration
speaker enrollment are presented in Section 4. A thor-
ough comparison of the two systems performed using
the standard RSR2015 evaluation protocol is presented
in Section 5. Conclusions are presented in Section 6.

2 Database and Protocols

Almost all experimental work undertaken using the
HiLAM system [6, 17, 18] is performed using the
RSR2015 database [15]; the two were released almost
in tandem and the database is distributed with proto-
cols suited to the assessment of HiLAM-based text-
dependent speaker verification systems. The RSR2015
database is one of the most versatile and comprehen-
sive databases for such research. One particular aspect
of RSR2015 which makes it better suited to this work
than the more recent RedDots [19] successor is the
particular speaker/part/session structure illustrated in
Fig. 1. This is described below.
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Fig. 1: RSR2015 database partition for male speakers.
The partition is identical for female speakers
but with only 43 speakers in the evaluation set.

2.1 Database

RSR2015 contains speech data collected from both
male and female speakers and is partitioned into 3
evenly-sized subsets whose usual purpose is for back-
ground modeling, experimental development and evalu-
ation. Each subset is comprised of 3 parts: phonetically-
balanced sentences (part I), short commands (part II)
and random digits (part III). Each part contains data
collected in one of nine sessions. Three of these ses-
sions are reserved for training while the remaining six
are set aside for testing. The three training sessions
are recorded using the same smart device (i.e. the same
mobile phone or tablet) whereas the six testing sessions
are recorded using two different smart devices.

Since our target application relates to short-duration
pass-phrases, all experimental work reported in this
paper was performed using part I data consisting of
phonetically-balanced sentences. These are the same
30 Harvard sentences used in the collection of the
better-known TIMIT database [6] which were designed
to give a broad coverage of phonemes in the English
language.

2.2 Training Protocol

Data reserved for background modeling is disjoint from
training and testing data; there is no overlap in terms of
speakers or sentences. Second-layer HiLAM models
(GMMs) are trained with data from all three training
sessions and all 30 sentences, totaling 90 utterances.
Third-layer HiLAM models (HMMs) are trained with
the three training utterances corresponding to each spe-
cific sentence (30 models each adapted from the second-
layer model with three repetitions of each sentence).
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Table 1: The four different trial types used to assess
the performance of a text-dependent speaker
verification system. They involve different
combinations of matching speakers and text.

Trial Type Speaker
Match

Text
Match

Target-Correct (TC) Yes Yes
Target-Wrong (TW) Yes No
Impostor-Correct (IC) No Yes
Impostor-Wrong (IW) No No

Initial experiments reported in this paper were per-
formed using the standard protocols which are dis-
tributed with the RSR2015 database. However, since
the goal of the work reported here is to reduce the quan-
tity of data (number of utterances) needed for speaker
enrollment, subsequent experiments were performed
with subsampled versions of the standard protocols. As
described later, the amount of data used for the learning
of second-layer models is then either reduced (3-layer
system with protocol sub-sampling) or eliminated en-
tirely.

2.3 Testing Protocols

Test results reflect recognition performance estimated
from a large number of single-utterance trials. Test-
ing protocols used for all experiments are the standard
part I testing protocols distributed with the RSR2015
database. All relate to one of the four trial types il-
lustrated in Table 1. Any given trial involves either
a target (model and test utterance correspond to the
same speaker) or an impostor (model and test utter-
ance correspond to different speakers). In addition,
the text content either matches across model and test
utterance (correct) or is different (wrong). This leads
to three testing conditions which assess performance
combining target-correct trials with trials of one mis-
matching combination: target-wrong, impostor-correct
or impostor-wrong (note that target-wrong is therefore
considered an impostor trial). The number of trials
for each type in the standard RSR2015 protocols is
illustrated in Table 2 for development and evaluation
sets. The number of trials for each testing condition
is TC+TW, TC+IC and TC+IW respectively. Finally,
performance is expressed in terms of the equal error
rate (EER).

Table 2: Number of trials for Part I of the RSR2015
database for each of the four trial types illus-
trated in Table 1 and for development (Dev)
and evaluation (Eval) subsets.

Speaker-Text Dev Eval
Target-Correct (TC) 8,931 10,244
Target-Wrong (TW) 259,001 297,076
Impostor-Correct (IC) 437,631 573,664
Impostor-Wrong (IW) 6,342,019 8,318,132

UBM

GMM

HMM
State 

1

HMM
State 

2

HMM
State 

3

HMM
State 

4

HMM
State 

5

Gender-dependent
Universal 
Background Model

Text-independent 
Speaker Model

Text-dependent 
Speaker Model

Fig. 2: The original HiLAM system architecture repro-
duced from [17].

3 The HiLAM Baseline

This section describes the original HiLAM architecture
and essential elements of the basic algorithm. Maxi-
mum a posteriori (MAP) adaptation [20] is given par-
ticular attention; its optimization is fundamental to the
simplified version of HiLAM presented later. Also
presented are results for our specific implementation
assessed using the RSR2015 database.

3.1 Architecture and Algorithm

The HiLAM system is a flexible, efficient and com-
petitive approach to text-dependent automatic speaker
verification. The architecture is illustrated in Fig. 2
and is composed of three distinct layers. They rep-
resent (i) a gender-dependent universal background
model (UBM), (ii) a text-independent speaker model
and (iii) a text-dependent speaker model. The first and
second layers take the form of Gaussian mixture mod-
els (GMMs) whereas the third layer is a hidden Markov
model (HMM).

The UBM is trained according to a conventional max-
imum likelihood / expectation maximization crite-
rion [21]. The second layer text-independent speaker
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model is derived from the UBM via MAP adaptation;
this procedure is described in detail below. Differ-
ent third-layer text-dependent speaker models are then
learned for each sentence or pass-phrase. These take
the form of 5-state, left-to-right HMMs. Each state
of the HMM is initialized with the second layer text-
independent GMM of the corresponding speaker and
then adapted with several iterations of Viterbi realign-
ment and retraining [22]. Each HMM therefore cap-
tures both speaker characteristics in addition to the
time-sequence information which characterizes the sen-
tence or pass-phrase. Full details of the HiLAM system
in addition to the training and testing procedures can
be found in [6].

3.2 MAP Adaptation

MAP adaptation is used to obtain the second-layer
GMM from the first-layer UBM. A fundamental param-
eter of the MAP algorithm which governs the degree of
adaptation is the so-called relevance factor, τ . Together
with a probabilistic count of new data ni for each Gaus-
sian component i, it is used to determine an adaptation
coefficient given by:

α
ρ

i =
ni

ni + τρ
(1)

where ρ ∈ {ω,µ,σ} indicates the relevance factor for
the weight, mean or variance parameters of the GMM.
The adaptation coefficients are then used to obtain the
new weight, mean and variance estimates according to:

ω̂i = [αω
i ni/T +(1−α

ω
i )ωi]γ (2)

µ̂i = α
µ

i Ei(x)+(1−α
µ

i )µi (3)

σ̂2
i = α

σ
i Ei(x2)+(1−α

σ
i )(σ

2
i +µ

2
i )−µ

2
i (4)

where each equation gives a new estimate from a combi-
nation of the respective training data posterior statistics
with weight α and prior data with weight (1−α). T is
a normalization factor for duration effects; γ is a scale
factor which ensures the unity sum of weights. Ei(x)
and Ei(x2) are the first and second moments of poste-
rior data whereas µi and σ2

i are the mean and variance
of prior data, respectively [23].

In our experiments, each stage of adaptation is per-
formed with a common value of τ , and hence α , for

Equations 2, 3 and 4; the use of different values does
not lead to better performance. Two distinct relevance
factors are used at each stage, however: (i) for the
adaptation of the UBM to the GMM, τ1 and (ii) for
the adaptation of the GMM to the HMM, τ2. The first
relevance factor, τ1, acts to balance the contribution of
the UBM and speaker-specific adaptation data to the
parameters of the new speaker model, while the second,
τ2, controls adaptation between the text-independent
and text-dependent speaker models.

3.3 Configuration and Performance

Silence removal is first applied to raw speech signals
sampled at 16 kHz. This is performed according to
ITU-T recommendation P.562 which specifies an ac-
tive speech level of 15.9 dB. In practice this results in
the removal of approximately 36% of the original data.
The remaining 64% is then framed in blocks of 20ms
with 10ms overlap. The feature extraction process is
standard and results in 19 static Mel frequency cep-
stral coefficients (MFCC) without energy (C0). These
are appended with delta and double-delta coefficients
resulting in feature vectors of 57 dimensions.

The number of Gaussian components is empirically op-
timized. The literature shows that higher values (512-
2048) are often used for text-independent tasks [24, 23]
or with systems based on i-Vector and PLDA tech-
niques [10, 25]. In contrast, lower values (128-256) are
typically used in text-dependent tasks and techniques
such as HiLAM [26, 17]. We obtained the best perfor-
mance with 64 Gaussian components.

Results for our implementation of the HiLAM base-
line are presented in Table 3 alongside those presented
in the original work [27]. Results are presented for
male speakers only and for the most challenging IC
impostor condition. While results for our system are
worse than those in the original work, performance is
still respectable, with EERs of less than 2% for both
development and evaluation subsets.

4 Simplified HiLAM

Described in this section are experiments which assess
the necessity of text-independent enrollment and a num-
ber of modifications to the original HiLAM baseline
system which enable competitive performance with

2http://www.itu.int/rec/T-REC-P.
56-201112-I/en
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Table 3: Comparison of results for our implementa-
tion of the HiLAM system with original re-
sults reported in [27]. Results shown for male
speakers in part I of the RSR2015 database
and for the IC impostor condition.

Subset Our
Implementation

Larcher
et al. [27]

Development 1.63% 1.43%
Evaluation 1.81% 1.33%

greatly reduced durations of speaker enrollment data.
Among these modifications is the reduction of the 3-
layer approach to only two layers and associated re-
optimization. The new system learns text-dependent
speaker models using only three training utterances.

4.1 Enrollment Demands

The HiLAM system is well-suited to applications
involving both text-independent and text-dependent
speaker recognition scenarios. Satisfactory perfor-
mance in these two scenarios calls for a large amount
of training data; the original HiLAM system reported
in [6] used 90 utterances for training middle layer text-
independent speaker models.

The need for such an amount of enrollment data can
be impractical, if not unusable in many cases such as
smart device and Internet of Things applications. This
paper extends the past work to address an exclusive text-
dependent scenario which demands far less enrollment
data. The following describes a simplified approach
which eliminates the middle layer entirely and which
delivers competitive text-dependent recognition with
only three training utterances with only modest perfor-
mance degradation.

4.2 Necessity of Text-Independent Enrollment

Our optimization of the original HiLAM system
showed that the best performance is delivered with
comparatively higher and lower values of τ1 and τ2
respectively (see Equation 1). This finding indicates
that only modest adaptation is applied between layers
1 and 2, whereas more significant adaptation is applied
between layers 2 and 3. This then calls into question
the real need for text-independent enrollment or, in
other words, the real need for the middle layer.

Table 4: Performance for different durations of 2nd

layer text-independent training. The last row
shows results for the simplified HiLAM system
with no text-independent training. Results
shown for the RSR2015 development set and
for the IC condition.

Number of utterances EER

3-Layer

90+3 1.63%
60+3 1.66%
30+3 1.62%

3 2.33%
2-Layer 3 1.84%
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Fig. 3: The simplified 2-layer architecture: text-
dependent speaker models are adapted directly
from the UBM.

In order to assess the necessity of text-independent en-
rollment, we conducted a sequence of experiments in
which the number of text-independent utterances used
for layer-two training was successively subsampled
from 90 to 60 and then 30 by taking 2 and 1 training
sessions out of 3, respectively. Results are illustrated
in Table 4. They show that performance remains un-
changed as the quantity of text-independent enrollment
data is reduced from 90 to 30 utterances. This find-
ing suggests that text-independent enrollment may be
unnecessary when the recognition task is ultimately
text-dependent.

4.3 Layer Reduction

Given the observations reported above, we decided
to assess performance when the middle layer, text-
independent enrollment is dispensed with entirely.
Speaker enrollment is then performed in text-dependent
fashion exclusively as illustrated in Fig. 3. Each state
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Table 5: Comparison of results for the original work [27] and those obtained with the simplified system reported
in this paper. Results for male speakers in part I of the RSR2015 database. (Results for each condition
correspond to their combination with TC trials.)

System IC-Dev TW-Dev IW-Dev IC-Eval TW-Eval IW-Eval
Larcher 3-Layer 1.43% 1.00% 0.20% 1.33% 0.66% 0.09%
Valenti 2-Layer 1.84% 1.09% 0.32% 1.24% 0.52% 0.05%

of the HMM speaker model is now initialized using the
UBM instead of the speaker-specific text-independent
GMM. Adaptation is otherwise the same as before and
performed using the same three utterances of the same
sentence. The number of Gaussian components (64) is
left unchanged from the 3-layer implementation (see
Section 3.3) and the single remaining relevance factor
τ (3) is set to the same value of τ2 (see Section 3.2).
These parameters were found to be optimal in the case
of the simplified system.

Results are illustrated in the last row of Table 4. Per-
formance degrades slightly, from an EER of 1.6% for
the baseline 3-layer system to 2.3% when enrollment
is performed with only 3 speaker-specific utterances.
Performance for the reduced 2-layer system improves
slightly to 1.8%. Despite a reduction in enrollment data
in the order of 97%, the increase in error rate is only
0.2%. Such a compromise between performance and
usability would be quite acceptable in many practical
scenarios.

5 Evaluation Results

Results presented above relate to the development set
and the IC condition only. Presented in this section is a
full performance comparison of the original HiLAM ap-
proach in [27] to the simpler 2-layer system presented
in this paper using the full RSR2015 development and
evaluation sets, including the three different test condi-
tions, namely IC, TW and IW.

Results are illustrated in Table 5. The first row indicates
the specific test condition for development (dev) and
evaluation (eval) sets. Results presented in the original
work [27] are illustrated in the second row whereas
those for the new 2-layer system are presented in the
third row. They correspond respectively to the full
enrollment condition (90 text-independent utterances
for layer 2 and 3 text-dependent utterances for layer 3)
and the reduced enrollment condition (3 text-dependent
utterances only). These results confirm the findings

presented above, namely that significant improvements
to usability can be delivered by reducing the demand
for enrollment data with only modest increases in error
rates. Both systems achieve better performance for
the evaluation set than for the development set. While
this finding is counter-intuitive, it is consistent with
other results in the literature, e.g. [15, 17, 26, 27, 28],
one possible explanation for which is differences in
the distributions of recording devices across the two
subsets.

Compared to the original work, performance for the
2-layer system deteriorates for the development set. In
contrast, performance for the evaluation set improves.
This result is particularly encouraging. The drop from
1.33% to 1.24% corresponds to a 7% relative reduction
in the EER and comes with the same 97% reduction
in demand for enrollment data. This is a significant
improvement to usability in the case of text-dependent
recognition.

6 Conclusions

This paper proposes a simplified version of the HiLAM
approach to text-dependent automatic speaker verifica-
tion in order to reduce the demand for speaker enroll-
ment data. Many practical use case scenarios such as
speaker authentication for smart device/home applica-
tions and those in the Internet of Things (IoT) domain
call for enrollment with only a small number of pass-
phrase repetitions. Experimental work presented in
the paper questions the necessity of text-independent
enrollment used in the conventional HiLAM system
in the case that the ultimate recognition task is text-
dependent in nature. Results produced using a pub-
licly available, standard database and protocols show
that text-independent, middle-layer enrollment impacts
unnecessarily on usability. The paper shows that the
middle layer of the HiLAM system and, hence, text-
independent enrollment can be dispensed with entirely.
Speaker enrollment is then performed using only three
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repetitions of a given sentence or pass-phrase in a sim-
plified two-layer approach. Since the collection of
enrollment data is one of the most invasive and inconve-
nient tasks from the end user perspective, the usability
of the new system improves greatly on the previous 3-
layer HiLAM baseline system. The proposed approach,
admittedly a modest modification of the original sys-
tem, delivers largely comparable levels of automatic
speaker verification performance with a 97% reduction
in enrollment data.

References

[1] Lee, K. A., Ma, B., and Li, H., “Speaker Verifi-
cation Makes Its Debut in Smartphone,” in IEEE
SLTC Newsletter, February 2013.

[2] Martınez, P. L. S., Fauve, B., Larcher, A., and Ma-
son, J. S., “Speaker Verification Performance with
Constrained Durations,” in International Work-
shop on Biometrics and Forensics (IWBF), IEEE,
2014.

[3] Kenny, P., Dehak, N., Ouellet, P., Gupta, V., and
Dumouchel, P., “Development of the primary
CRIM system for the NIST 2008 speaker recog-
nition evaluation.” in INTERSPEECH, pp. 1401–
1404, 2008.

[4] Fauve, B. G., Evans, N. W., and Mason, J. S.,
“Improving the performance of text-independent
short duration SVM-and GMM-based speaker
verification,” in Odyssey Speaker and Language
Recognition Workshop, pp. 18–25, 2008.

[5] Poddar, A., Sahidullah, M., and Saha, G., “Per-
formance comparison of speaker recognition sys-
tems in presence of duration variability,” in 2015
Annual IEEE India Conference (INDICON), pp.
1–6, IEEE, 2015.

[6] Larcher, A., Lee, K., Ma, B., and Li, H.,
“Text-dependent speaker verification: Classifiers,
databases and RSR2015,” Speech Communica-
tion, 60, pp. 56–77, 2014.

[7] Aronowitz, H., “Voice Biometrics for User Au-
thentication,” in Afeka-AVIOS Speech Processing
Conference 2012, 2012.

[8] Sahidullah, M. and Kinnunen, T., “Local spec-
tral variability features for speaker verification,”
Digital Signal Processing, 50, pp. 1–11, 2016.

[9] Stafylakis, T., Kenny, P., Ouellet, P., Perez,
J., Kockmann, M., and Dumouchel, P., “I-
Vector/PLDA variants for text-dependent speaker
recognition,” CRIM Technical Report, 2013.

[10] Stafylakis, T., Kenny, P., Ouellet, P., Perez,
J., Kockmann, M., and Dumouchel, P., “Text-
dependent speaker recognition using PLDA with
uncertainty propagation,” in INTERSPEECH, pp.
3651–3655, 2013.

[11] Kenny, P., Stafylakis, T., Ouellet, P., and Alam,
M. J., “JFA-based front ends for speaker recogni-
tion,” in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp.
1705–1709, IEEE, 2014.

[12] Kenny, P., Stafylakis, T., Alam, J., and Kockmann,
M., “JFA modeling with left-to-right structure
and a new backend for text-dependent speaker
recognition,” in IEEE International Conference
on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4689–4693, IEEE, 2015.

[13] Kenny, P., Stafylakis, T., Alam, J., Ouellet, P.,
and Kockmann, M., “Joint Factor Analysis for
Text-Dependent Speaker Verification,” in Odyssey
Speaker and Language Recognition Workshop, pp.
1705–1709, 2014.

[14] Stafylakis, T., Kenny, P., Alam, M. J., and
Kockmann, M., “Speaker and channel factors in
text-dependent speaker recognition,” IEEE/ACM
Transactions on Audio, Speech, and Language
Processing, 24, pp. 65–78, 2016.

[15] Larcher, A., Lee, K., Ma, B., and Li, H.,
“RSR2015: Database for Text-Dependent Speaker
Verification using Multiple Pass-Phrases.” in IN-
TERSPEECH, pp. 1580–1583, 2012.

[16] Lee, K. A., Larcher, A., Wang, G., Kenny, P.,
Brummer, N., and others, “The RedDots data
collection for speaker recognition,” in INTER-
SPEECH, pp. 2996–3000, 2015.

[17] Larcher, A., Lee, K., Ma, B., and Li, H.,
“RSR2015: Database for Text-Dependent Speaker
Verification using Multiple Pass-Phrases,” in IN-
TERSPEECH, pp. 1580–1583, 2012.

[18] Larcher, A., Lee, K. A., Ma, B., and Li, H., “Im-
posture classification for text-dependent speaker

AES 143rd Convention, New York, NY, USA, 2017 October 18–21
Page 7 of 8



Valenti, Daniel, and Evans Simplified 2-Layer Speaker Authentication

verification,” in IEEE International Conference
on Acoustics, Speech and Signal Processing
(ICASSP), 2014.

[19] Lee, K. A., Larcher, A., Wang, G., Kenny, P.,
Brümmer, N., et al., “The RedDots Data Col-
lection for Speaker Recognition,” in Sixteenth
Annual Conference of the International Speech
Communication Association, 2015.

[20] Lee, C.-H. and Gauvain, J.-L., “Speaker adapta-
tion based on MAP estimation of HMM parame-
ters,” in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), vol-
ume 2, pp. 558–561, IEEE, 1993.

[21] Bishop, C. M., Pattern recognition and ma-
chine learning, Information science and statistics,
Springer, 2006.

[22] Rodríguez, L. J. and Torres, I., “Comparative
study of the baum-welch and viterbi training al-
gorithms applied to read and spontaneous speech
recognition,” in Pattern Recognition and Image
Analysis, pp. 847–857, Springer, 2003.

[23] Reynolds, D. A., Quatieri, T. F., and Dunn,
R. B., “Speaker Verification Using Adapted Gaus-
sian Mixture Models,” Digital Signal Processing,
10(1-3), pp. 19–41, 2000.

[24] Bimbot, F., Bonastre, J.-F., Fredouille, C., and
others, “A tutorial on text-independent speaker
verification,” EURASIP journal on applied signal
processing, 2004, pp. 430–451, 2004.

[25] Larcher, A., Bousquet, P.-M., Lee, K. A., Matrouf,
D., Li, H., and Bonastre, J.-F., “I-vectors in the
context of phonetically-constrained short utter-
ances for speaker verification,” in IEEE Interna-
tional Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 4773–4776, IEEE,
2012.

[26] Larcher, A., Bonastre, J.-F., and Mason, J., “Re-
inforced temporal structure information for em-
bedded utterance-based speaker recognition.” in
INTERSPEECH, pp. 371–374, 2008.

[27] Larcher, A., Lee, K. A., Martınez, P. L. S.,
Nguyen, T. H., Ma, B., and Li, H., “Extended
RSR2015 for text-dependent speaker verification

over VHF channel,” in Fifteenth Annual Confer-
ence of the International Speech Communication
Association, 2014.

[28] Larcher, A., Lee, K. A., Ma, B., and Li, H.,
“Phonetically-constrained PLDA modeling for
text-dependent speaker verification with multiple
short utterances,” in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pp. 7673–7677, IEEE, 2013.

AES 143rd Convention, New York, NY, USA, 2017 October 18–21
Page 8 of 8


