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Abstract

5G comes with the promise of sub-millisecond latency, which is critical for realizing an array of

emerging Ultra-Reliable Low Latency Communication (URLLC) services, including industrial, enter-

tainment, telemedicine, automotive, and tactile Internet applications. At the same time, slicing-ready 5G

networks face the challenge of accommodating other heterogeneous coexisting services with different

and potentially conflicting requirements. Providing latency and reliability guarantees to URLLC service

slices is thus not trivial. We identify transmission scheduling at the Radio Access Network (RAN) level

as a significant contributor to end-to-end latency when considering Network Slicing. In this direction,

we propose a two-level MAC scheduling framework that can effectively handle uplink and downlink

transmissions of network slices of different characteristics over a shared RAN, applying different per-

slice scheduling policies, and focusing on reducing latency for URLLC services. Our scheme offers the

necessary flexibility to dynamically manage radio resources to meet the stringent latency and reliability

requirements of URLLC, as demonstrated by our simulation results.

I. INTRODUCTION

5G is assumed to not only increase the physical data rate, but also support a diverse set of new

services coming from the vertical industry. These types of services are known to have different needs

in terms of network performance, such as low latency access, high communication reliability and the

support of massive numbers of devices. Therefore, the “one size fits all architecture” currently in use

by 4G is no more sufficient. This led to think of new ways to design the network architecture at all

system levels. Particularly, network slicing is envisioned as a solution to create virtual network instances

sharing the common network infrastructure, and hence guarantee the heterogeneous requirements of the
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vertical industry. Taking advantage of the advances in network virtualization, using NFV, SDN and cloud

computing, the 5G system is making network slicing a reality. In fact, recent European research projects
1 2, as well as the 3GPP [1], have issued several 5G architectures that natively support network slicing.

One common agreement is to classify slices into three types: (i) extreme Mobile Broadband (xMBB),

which requires high data rates, even in dense areas, (ii) Ultra-Reliable Low-Latency Communication

(URLLC), and (iii) massive Machine-Type Communication (mMTC) to enable IoT services.

The URLLC service category is envisioned to support automotive industry services, such as vehicular

networks and industry 4.0, and other services such as cloud robotics as well as tactile Internet. All

these services require low-latency access. For instance, the most stringent requirement on the end-to-end

latency for tactile Internet services may be 1 ms. End-to-end latency within a slice connection is mainly

composed of (i) access to the service (typically hosted in the Cloud) latency, (ii) core network latency, (iii)

fronthaul/backhaul latency, and (i) Radio Access Network (RAN) latency. While the fronthaul/backhaul

and core network latencies could be reduced using high capacity links, RAN and service access latencies

represent the main challenge to satisfy URLLC requirements. Indeed, the RAN is seen as the bottleneck

of the system, where different important functions are shared among slices, such as Medium Access

Control (MAC) scheduling and low-level Radio-Link Control (RLC) functions. At the same time, access

to the cloud service is not under the full control of the network operator as traffic passes via external

routers. One emerging solution to deal with cloud access latency is to locate the service at the edge of the

network, following the Multi-access Edge Computing (MEC) concept. However, RAN latency persists

and efficient solutions are required, particularly in network-slicing-ready networks, where slices have to

share common RAN functions.

In this article, we propose a novel MAC scheduling mechanism, covering both the uplink (UL) and the

downlink (DL), to reduce access latency for URLLC slices, even with radio resources shared among

them. The proposed scheme relies on the concept of two-level scheduling introduced in [3]: (i) a first

level of UE scheduling is slice-specific, i.e. carried out by a slice-specific scheduler; (ii) a second level is

responsible for inter-slice resource partitioning, that is, sharing the channel among slices and enforcing the

scheduling decisions of the first level, using the Slice-Dedicated Bandwidth (SDB) policy communicated

by the Slice Orchestrator (SO). The improved two-level scheduler presented in this paper provides more

details on how URLLC requirements can be met, and covers not only DL but also UL communication.

The obtained simulation results demonstrate that the SDB as defined in [3] should be updated in order to

1H2020 EU-Japan 5G!Pagoda, https://5g-pagoda.aalto.fi/, last access November 2017.
2H2020 5GPPP 5Gexchange (5Gex), http://www.5gex.eu/, last access November 2017.
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include not only the amount of resources dedicated to a slice, but also the number of active UEs tolerated

per slice as well as the Modulation and Coding Scheme (MCS) to be used. Particularly, the latter two

are very important to be appropriately configured in order to guarantee low latency and reliability for a

URLLC slice.

The article is organized as follows: Section II provides an overview of the factors contributing to latency

and state-of-the art solutions to limit it in a 5G context. Our proposed approach is presented in Section III

and evaluated via simulation in Section IV. We conclude the article in Section V.

II. RELATED WORK

URLLC slices require low-latency access to remote services. It is important to understand what are

the factors contributing to increased end-to-end latency in 5G (featuring network slicing), and how it

could be reduced to fulfill URLLC requirements. This section reviews the root causes and the solutions

to reduce separately each latency component.

A. Access to the service

This latency component is related to the time needed to access the service endpoint from the mobile

network. In the typical case of a cloud-hosted service, this latency consists in the delay to access a

service from the Packet Data Gateway (P-GW) to the cloud provider, which, to most cloud platforms, is

in the order of 200 ms [2] and may significantly vary due to fluctuations in network conditions. This is

intolerable for URLLC services. Large cloud providers are thus proposing to build a dedicated network

connection with user networks (e.g., Amazon’s direct connect service). However, such a type of solution

suffers from a lack of Service Level Agreement (SLA) support with network operators. Another trend

to reduce cloud service access latency is to locate storage and computing resources at the network edge

(i.e., Edge Computing). Similar to the case of Content Delivery Networks (CDN), which has known a

huge success by using caching techniques, locating computing resources at the edge may reduce latency

considerably (less than 50 ms) [5]. Edge computing is an emerging concept, where two technologies are

well established: Fog computing and MEC. In the former, computing resources are located at (or close)

to edge routers, while in the latter they are located close to eNodeBs or Core Networks. Fog is highly

pushed by large industrial players, while MEC is being standardized by the ETSI. For more details on

edge computing solutions and the differences between MEC and Fog, the reader may refer to [4].

B. Fronthaul/Backhaul and core network

This type of latency is mainly related to the capacity of the links connecting the core network to the

RAN, the core network to the Internet, and more recently, the Baseband Unit (BBU) to Remote Radio
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Fig. 1: Relation of functional split with timing.

Heads (RRH) (fronthaul links). While the latency caused by the links connecting the mobile network

to the Internet is negligible, the latency of the fronthaul links may highly impact the end-to-end delay.

Indeed, with recent advances in Cloud RAN and Centralized RAN (C-RAN), the fronthaul/backhaul links

become vital as they should ensure the transport of radio signals with a low-latency connection from the

RRH to the BBU, particularly in the context of the RAN functional split. The latter refers to the choice

of the RAN functions that should be run at a central unit (BBU) and those that should be run at the

RRHs. The choice between running some RAN functions in the RHH and some in the BBU shall depend

on their latency tolerance and the fronthaul capacity (i.e., bandwidth and latency). Fig. 1 illustrates a

high level view of RAN functions, their relation with latency, and whether they belong to the control
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or data plane. Besides, the IEEE NGFI (Next Generation Fronthaul Interface) group has studied seven

options to split RAN functions between BBU and RRH. In [10], these options are studied and compared

in terms of interface bandwidth and latency. Recently, the 3GPP, via the RAN3 study group, has started

discussing the 5G RAN architecture featuring functional split [9]. In the 3GPP design, the BBU will

consist of two new entities named the Central Unit (CU), which may host time-tolerant functions like

PDCP, and the Distributed Unit (DU) that performs time-critical functions, such as MAC and/or part of

the physical layer functions. Note that the DUs are envisioned to be located close to the network edges.

Accordingly, the flexible functional split can highly impact the performance of network slicing, with the

optimal split being different for specific slices considering service-specific constraints. For example, a

URLLC slice may require that most RAN functions run on DU to fulfill latency requirements, while

in an xMBB slice, a higher centralization can enhance the throughput by aggregating RRHs enabling,

e.g., Coordinated Multipoint (CoMP) transmissions. In addition to the delay due to the functional split,

the use of Ethernet as a fronthaul can also introduce latency. In [7], the authors studied the impact of

packetisation (i.e., the time needed to create an Ethernet packet to convey a radio signal) on the latency

in the context of an Ethernet-based fronthaul. They demonstrated that according to the functional split the

impact of packetisation on latency is different. For each split option, a packetisation method is deduced

aiming at reducing latency.

C. RAN latency

RAN latency is heavily contributing to end-to-end latency. Although it is assumed that slice Network

Functions (NF) are isolated and may not be impacted by the presence of other slices, most important

channel access-related functions are shared among all slices. Indeed, it is agreed [3], [8] that MAC

scheduling should be a common NF at the MAC level as it is in charge of sharing the common radio

resources among slices (i.e., UEs) in both directions, uplink and downlink.

RAN latency is composed of the time needed to access the channel (random access channel procedure),

and the latency associated with UE scheduling procedures. The random access channel is used by a UE

to send Sending Reports (SR) to the eNodeB to indicate that data are in its uplink buffer, or to attach

to the network. When the number of active UEs competing for channel access increases, the collision

number increases as well, leading to considerably increased latency as UEs should defer their transmission

attempts by waiting for a random amount of time (back-off). For instance, if we consider one sub-frame

that provides 64 preambles for random access,3 and if 1000 UEs are contending for the channel with 30

3The preamble is a random access channel signal with a specific signature sent by a UE. Up to 64 distinct preambles are

available in a cell. If two users select and simultaneously transmit the same preamble, a collision occurs.
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transmission attempts per second, then the collision probability reaches 0.99, which significantly increases

channel access latency. Such a situation mostly occurs in the case of mMTC. Hence, several works have

been proposed to improve the random channel access procedure aiming at supporting mMTC, while

reducing the impact on normal UE traffic. In [15], the authors propose an analytical model to predict

MTC traffic, which is then used to propose a new paging mechanism to organize the channel access of

a group of MTC devices (i.e., based on the service). This significantly reduces the collision probability,

hence reducing channel access latency. Another solution proposed in [3] involves using a semi-persistent

uplink scheduler for MTC, adding a new Radio Resource Control (RRC) state (RRC connected, UE

inactive), which allows to keep a state for inactive MTC devices (assumed to be active periodically).

Consequently, this avoids the use of the random access procedure each time a device has data to send,

as the radio bearer is always active at the RAN level.

The second component of the RAN latency is the delay introduced by the DL and UL scheduling

procedures. The particular context of network slicing introduces a new challenge on latency, as the

channel resources should be shared among slices with different requirements (latency, bandwidth, etc.),

using a common scheduling algorithm. Several works have been devised for delay-based scheduling,

featuring DL and UL scheduling procedures. For downlink scheduling algorithms, the reader is referred

to [11] and [13]. Regarding the uplink, the most notable work is proposed in [12]. The authors propose

a new uplink scheduling process that uses an analytical model to estimate packet latency, using the

Buffer Status Report (BSR) mechanism provided by LTE, and solves an optimization problem which

aims to minimize UE delays. However, all these solutions are not defined for the case of network slicing,

which requires a joint scheduling algorithm as specified in [14]. The latter formulates a multi-objective

optimization problem in order to satisfy all slice requirements at the same time. However, due to the

problem’s complexity, it is very hard to derive the optimal scheduling solution during one Transmission

Time Interval (TTI).

III. PROPOSED SOLUTION

Even by employing solutions to reduce the first three latency components (i.e. cloud access, fronthaul,

core network), it is still difficult to fulfill the requirements of a URLLC service without reducing as much

as possible the latency associated with RAN access. Although the random access channel procedure could

be improved by applying techniques described in the previous section, the scheduling process remains the

system’s bottleneck, as potentially conflicting slice-specific requirements should be satisfied while sharing

the radio resources among slices. In this article, we focus on providing a MAC scheduling solution in

order to sustain URLLC requirements in the context of a slicing-ready 5G network. As stated earlier,

DRAFT April 24, 2018



7

Fig. 2: System Model

state-of-the-art MAC schedulers for delay sensitive applications operate in one step, requiring the solution

of a complex and multi-objective optimization problem. Contrary, we favor a solution based on two-level

scheduling so as to relax the complexity of the MAC scheduler in both directions.

A. Overview of the two-level MAC scheduling

A global view of the envisioned architecture, where the two-level scheduling process operates, is

illustrated in Fig. 2. The figure shows a case of different slices running over a shared radio channel.

The different involved entities are: (i) the Slice Orchestrator (SO) that manages the lifecycle (creation,

configuration and management) of network slices; (ii) Software-Defined RAN, composed by an eNodeB

hosting an agent, and a remote controller that configures and manages the eNodeB using a southbound

protocol. Each slice is composed of a certain number of RAN functions depending on its requirements.

Note that even though low RLC is shown as common, it could be run within a slice as a NF. However,

unlike high RLC, it cannot be tailored to a specific slice. Each slice has its own NF to schedule its UEs,

in both UL and DL. This function is noted as Slice Specific Resource Management (SSRM). The SSRM

of each slice may run a different scheduling algorithm. The result of each SSRM is an assignment of

virtual Resource Blocks (vRB) to UEs. Note that the vRB number is not limited, and its size should

be aligned with the physical Resource Block (pRB) size. Based on the communication direction, the

SSRM algorithm is different. The SSRM for the DL direction is based on the logical channel queue of
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UEs, while in the UL direction it is based on the periodic Buffer Status Reports (BSR). The common

MAC scheduling NF (Common Resource Management - CRM) is responsible to translate the vRB-UEs

assignment into a pRB-UE assignment. Since there is a limited number of pRBs, the CRM performs

inter-slice resource partitioning by limiting the pRB-UE assignment according to the SDB policy (pRB

percentage dedicated to a slice), which is communicated by the Slice Orchestrator (SO) when instantiating

a new slice at the RAN level. Note that the SO is communicating with the eNodeB using a southbound

protocol like FlexRAN [6]. FlexRAN is a framework to enable a Software Defined RAN. An agent hosted

in the eNodeB communicates with a remote controller, using the FlexRAN southbound API in order to

dynamically (re-)configure and get information on the RAN. If a user participates in multiple different

slices, it maintains a different logical channel per slice. At the eNodeB level, each slice is associated

with its respective set of logical channels, one per UE. The group of logical channels that corresponds

to a slice is collectively managed by a specific SSRM. Readers may refer to [3] for more details on how

the network slice is enforced using FlexRAN.

B. The proposed scheduling algorithm

1) SSRM downlink scheduling: The SSRM process manages the scheduling of UE packets belonging

to its slice. We distinguish between the SSRM for the UL and the DL directions. As in [3], the SSRM

scheduling algorithm for xMBB slices is based on proportional fair (PF) queuing, while for mMTC

it may be based on a semi-persistent algorithm, if the communication timing of the MTC devices is

known, or on the PF algorithm. However, it is well-known that MTC traffic is uplink dominant. Hence

the UL scheduler should be more finely defined than the DL scheduler. On the other hand, for URLLC

slices, the PF algorithm does not appear to be appropriate. This leads us to consider a delay-oriented

scheduling algorithm, or a combination of a delay-based algorithm and PF to both address latency and

increase the channel usage. However, in the latter case, a specific tuning should be achieved to avoid

violating delay requirements. We thus propose that the SSRM of URLLC uses the Earliest Deadline First

scheduling algorithm. First, the SSRM starts by mixing all the UE queues belonging to a URLLC slice,

which will create a single queue per slice. Then, the queue is sorted by placing the packets having their

delays close to the deadline first. Therefore, the head of the queue corresponds to the packet (UE) that

shall be scheduled first. The deadline represents the maximum tolerated delay by the URLLC slice. This

information is communicated by the SO to the eNodeB at slice instantiation time using the FlexRAN

protocol. Finally, the SSRM proposes a vRB-to-UE allocation sorted by priority (i.e., delays).

2) SSRM uplink scheduling: In the uplink direction, the SSRM process is different. Unlike DL, to

allocate vRBs to UEs, the SSRM relies on the BSR defined by LTE, which allows the UE to indicate
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its buffer size in the uplink direction. The BSR is sent by a UE either periodically or after the UE has

sent a Scheduling Request (SR) and has gotten a grant from the eNodeB to send a packet. Therefore, we

propose to periodically (TTI-based) organize the received BSRs in a matrix indexed by the UE and slice

identifiers. For that, we introduce a three-dimensional matrix C, where C(s, u, t) represents the BSR sent

by UE u belonging to slice s at time instant t. We also introduce γu,s(t) = C(u, s, t) − C(u, s, t − 1),

which represents the difference between the size of the buffer at t and t − 1. If γu,s is positive, it

means that even if the UE was served during the precedent period, it may still have some data in its

buffer from that period. For xMBB and URLLC slices, the UEs are sorted according to γ; the higher

the value of γ, the higher the UE priority. The SSRM then proceeds to allocate vRBs to UEs. mMTC

traffic, which is uplink-dominant, requires a specific algorithm. We can either adopt the solution in [3]

by considering a semi-persistent scheduler (SPS) and hence add a new RRC state, or use a specific

SSRM-UL for mMTC. In case of using SPS, the SO communicates the timing to the CRM, and the latter

dedicates specific resources to the mMTC slice during the activation period, avoiding high contention

on the channel. Therefore, the mMTC slices will not have a SSRM network function. In case of using

an SSRM dedicated to mMTC, the usage of BSR reports may overload the channel, due to the massive

number of MTC connections. Therefore, we propose to deactivate the BSR report for MTCs; the SSRM

will use only the SR report sent by MTC devices, and apply a simple Round Robin (RR) scheduling

algorithm, as it is assumed that there is no QoS requirement for the mMTC service.

3) Common Resource Manager: The first step of the CRM is similar in both communication directions.

The CRM begins by serving the URLLC slices. This process ends either if the SDB defined for a URLLC

slice has been reached or when the allocation proposed by the SSRM scheduler (for both directions) has

been entirely treated. After having served all the URLLC slices, the CRM moves to the remaining slices

(i.e., xMBB and/or mMTC). When this process ends and there are still some remaining pRBs available,

then the CRM gives priority to the URLLC slices (if these slices have not reached their SDB). Here,

a different strategy is followed between the UL and DL. For the DL direction, we propose that all the

waiting UE/vRB allocations of URLLC, which have not consumed their SDB, are sorted and merged

into one unique queue. In order to deal with different URLLC requirements (i.e., different maximum

tolerated delay), we introduce δv,i =
MaxDelay(i)−waiting timev

MaxDelay(i) , which corresponds to the proportion of

time remaining for vRB v allocated to slice i before reaching the maximum delay constraint specified

for the latter. This implies that if δv,i is close to zero, then the system is close to violating the delay

requirement. In the UL direction, all URLLC queues are mixed and sorted according to the value of γ;

those having higher value of γ are served first. By using γ and δ to sort the different SSRM (URLLC)

assignment in two queues (one for UL and one for DL), we tackle the difference in the delay requirements
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of coexisting URLLC slices. The CRM then serves the first UE/vRB until either the allocation list is

empty or all slices have consumed their SDB or no more pRBs are free. In any cases, the loop is ended

after the second iteration, in order to ensure that the SSRM and CRM scheduling can be done during

a TTI interval, i.e. 1ms. Indeed, the two-level scheduler’s complexity is kept low, as the SSRM can be

run on parallel, and the CRM complexity is proportional to the number of Slices. Note that to increase

reliability, all the scheduled pRBs of URLLC slices are using a robust MCS.

C. URLLC management

In order to ensure that URLLC slices are optimally served, the SO, using the FlexRAN protocol,

periodically requests statistics from the RAN (eNodeBs) about the packets that have violated their deadline

requirement. This information allows the SO to monitor the status of URLLC and dynamically optimize

its operation. If the ratio of packets that do not meet their latency requirement is high, the cause might

be that either the URLLC slice does not have enough resources (the SDB is low) or is using large

packets. In the latter case, the use of a robust MCS may increase the time needed to transmit a packet,

in turn causing queuing delays to increase (increased γ). Therefore, depending on this information, the

SO may request to increase the SDB of the URLCC slice or, in the case of large packets, to use the CQI

information to derive the MCS.4 However, the optimal MCS from a delay perspective may not coincide

with the optimal one in terms of reliability. This reveals an interesting trade-off that the SO needs to

address.

IV. PERFORMANCE EVALUATION

A. Results

We present results on the performance of our two-level scheduler after implementing it in Matlab. Our

objective is to demonstrate how our two-level scheduler is able to ensure URLLC requirements in terms

of latency, while guaranteeing throughput to xMBB and mMTC slices. As UL and DL results are similar,

we only present the DL ones, since they can offer a good insight on the scheduler performance. The

reader may refer to [6] about performance issues with respect to the interaction of the SO (controller)

with the eNodeB agent.

We begin with a scenario where one URLLC, one xMBB and one mMTC slices are deployed. For both

xMBB and mMTC slices, a proportionally fair SSRM is used. Each slice has 5 active UEs. We used

a channel bandwidth of 5 Mhz, allowing to have 25 pRBs. The scheduling interval (i.e., TTI) is 1 ms.

4A table mapping CQI to MCS values for LTE is included in the 3GPP Technical Specification 36.213.
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Parameter Value

Slices [URLLC,xMBB,mMTC]

Average Packet Size [100/1000,1400,20] Bytes

SDB between [0,20] seconds [33,33,33]% [URLLC,xMBB,mMTC]

SDB between [20,40] seconds [60,20,20]% [URLLC,xMBB,mMTC]

SDB between [40,60] seconds [20,40,40]% [URLLC,xMBB,mMTC]

Bandwidth 5 Mhz

Transmission Time Interval (TTI) 1 ms

Inter-arrival time of packets [20, 25, 50] ms

TABLE I: Simulation parameters
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Fig. 3: Throughput vs. time.

The simulation is divided into three periods (resource partitioning windows). In the first period, each

slice gets an equal share of the channel; the SDB is fixed to 33% of the system resources for each slice.

During the second period, we increase the resources of the URLLC slice to 60%. In the last period, we

reduce the resources of the URLLC slice to 20%.

The objective is to show how the two-level scheduler is able to satisfy the slice requirements in terms

of bandwidth, latency and reliability, and the impact of SDB as well as the number of active UEs per slice

on the performance. Table I summarizes the simulation parameters and the considered scenario. Fig. 3

shows the evolution of the throughput regarding the simulated time, when changing dynamically (at t=20 s

and t=40 s) the SDB value of each slice. Fig. 3(a) shows the case of running a URLLC application with

a small packet size, while Fig. 3(b) illustrates the case of a URLLC application using a large packet size.

We clearly see that the proposed two-level scheduler is able to react to the dynamic change of SDB by

ensuring more throughput if the SDB is increased, and inversely. Moreover, we remark that the packet
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Fig. 4: CDF of latency

size (in case of URLLC) impacts the throughput performance; the throughput is higher when using large

packet sizes.

However, for URLLC slices it is more important to focus on the latency performance; Fig. 4 illustrates

the CDF of latency for URLLC packets, and for each of the three periods. Here, we compared a delay-

based SSRM to a PF-based SSRM. For each SSRM, we considered small and large packet size (100 and

1000 bytes). Moreover, for the delay-based SSRM we considered the use of robust MCS (i.e., increased

reliability) and CQI-based MCS (i.e., less reliability but maximizing the spectrum usage). Note that the

latency represents the needed time for a packet to be scheduled, i.e., the time spent by a packet in the

SSRM queue before being scheduled. We remark that the delay-based SSRM always outperforms PF-

based SSRM, by ensuring lower latency. Furthermore, we observe that using small packet sizes allows to

reduce the latency in all the cases. This is explained by the fact that small packets require less pRBs to

be transmitted, even when using robust MCS (the case of delay-based SSRM). Since the SDB is fixed for

a URLLC slice, using small packets requires less pRBs, and hence more pRBs are available. This allows

to reduce queuing delays, as more packets are scheduled during a TTI. Also, we confirm that the SDB
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value has a great impact on latency performance; increasing the SDB of the URLLC slice (between the

20th and 40th second) permits to considerably reduce latency. For instance, the latency is less than 3 ms

and 5 ms, for delay-based SSRM with small and large packet sizes, respectively. Regarding reliability,

we notice that ensuring it (using a robust MCS) comes with increased latency. Indeed, we observe from

the figure that using CQI-based MCS reduces latency, as the throughput is maximized. Therefore, there

is a need to find a trade-off between ensuring reliability and reducing latency, which is a subject of our

ongoing research.

Having seen the impact of both SDB and packet size on latency performance, we investigate the impact
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(a) Small packet size.
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(b) Large packet size.

Fig. 5: Latency vs. number of UE and SDB.

of the number of active UEs on a URLLC slice. Fig 5 (a) and (b) indicate the latency with respect to

the number of UEs and the value of SDB, when using a small and a large packet size, respectively. We

clearly remark that increasing the number of UEs per slice increases latency, as a result of increased

queuing delays. Furthermore, we observe that increasing the SDB, even when a high number of UEs are

active, allows to keep latency low. For instance, an SDB of 50% enables to keep latency to less than

5 ms when 25 UEs are active. However, we observe that there is a number of UEs beyond which latency

increases exponentially for each SDB value. Finally, we observe that reducing the packet size always

reduces latency.

It worth noting that using high bandwidth (more pRBs) will indicate the same results trend. The only

difference will be the threshold of the number of UEs beyond which the latency increases exponentially.
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B. Discussion

From the obtained results, we clearly observed that the two-level scheduler is able to satisfy the different

requirements of the envisioned 5G slices at the MAC scheduling level. Particularly, it allows to guarantee

the strict latency requirements of URLLC slices. However, there is a need to carefully dimension the

SDB value, and use an admission control scheme to limit the number of UE per URLLC slice. Indeed,

we demonstrated that keeping latency under a certain value requires to not exceed a certain number

of UEs per slice, for a specific SDB value and packet size. Therefore, we propose that the SO, when

instantiating a URLLC slice, sends the SDB value along with the maximum number of supported UEs

in order to guarantee a maximum latency value. The SDB format thus has to be extended to include not

only the bandwidth share (amount of resources dedicated to a slice), but also the maximum number of

UEs and the mode of selecting the MCS to be applied (i.e., robust-only or CQI-based). We should finally

note that our solution operates purely at the MAC scheduling level. As such, further research could be

directed towards complementing it with lower-layer schemes, including HARQ.

V. CONCLUSION

We presented a two-level MAC scheduling framework tailored to slicing-ready 5G systems, specifi-

cally designed to accommodate the delay and reliability requirements of URLLC, while respecting the

heterogeneous needs of coexisting xMBB and mMTC services. We demonstrated the flexibility of our

design to carry out dynamic slice management decisions and its capability to improve on timely data

delivery, which is an important step towards providing latency guarantees for URLLC. One of the future

directions of this work is to study the impact of very small TTI (125 µs), as expected in 5G, as it will

introduce more burden on the scheduling process at the MAC layer.
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