
Blind Fractionally-Spaced Equalization Based on Cyclostationarity

Dirk T.M. Slock and Constantinos B. Papadias

Eurecom Institute, 2229 route des Crêtes
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Abstract| Equalization for digital communi-

cations constitutes a very particular blind de-

convolution problem in that the received signal

is cyclostationary. Oversampling (OS) (w.r.t.

the symbol rate) of the cyclostationary received

signal leads to a stationary vector-valued sig-

nal (polyphase representation (PR)). OS also

leads to a fractionally-spaced channel model and

equalizer. In the PR, channel and equalizer can

be considered as an analysis and synthesis �l-

ter bank. Zero-forcing (ZF) equalization corre-

sponds to a perfect-reconstruction �lter bank.

We show that in the OS case FIR ZF equal-

izers exist for a FIR channel. In the PR, the

noise-free multichannel power spectral density

matrix has rank one and the channel can be

found as the (minimum-phase) spectral factor.

The multichannel linear prediction of the noise-

less received signal becomes singular eventually,

reminiscent of the single-channel prediction of a

sum of sinusoids. As a result, a ZF equalizer can

be determined from the received signal second-

order statistics by linear prediction in the noise-

free case, and by using a Pisarenko-style modi�-

cation when there is additive noise. In the given

data case, Music (subspace) or ML techniques

can be applied. We also present some Cramer-

Rao bounds and compare them to the case of

channel identi�cation using a training sequence.

I. Previous Work

Consider linear digital modulation over a linear

channel with additive Gaussian noise so that the re-

ceived signal can be written as

y(t) =
X
k

akh(t� kT ) + v(t) (1)

where the ak are the transmitted symbols, T is the

symbol period, h(t) is the combined impulse response

of channel and transmitter and receiver �lters, but is

often called the channel response for simplicity. Assum-

ing the fakg and fv(t)g to be (wide-sense) stationary,

the process fy(t)g is (wide-sense) cyclostationary with

period T . If the channel would be known, then one

could pass the received signal through a matched �lter

and sample the output at the symbol rate. These sam-

ples would provide su�cient statistics for the detection

of the transmitted symbols. If fy(t)g is sampled with

period T , the sampled process is (wide-sense) station-

ary and its second-order statistics contain no informa-

tion about the phase of the channel. Tong, Xu and

Kailath [1] have proposed to oversample the received

signal with a period � = T=m; m > 1. In what fol-

lows, we assume h(t) to have a �nite duration. Tong et
al. have shown that the channel can be identi�ed from

the second-order statistics of the oversampled received

signal. They introduce an observation vector y(k) of

received samples over a certain time window and con-

sider a matrix linear model of the form

y(k) = Ha(k) + v(k) : (2)

The drawback of their approach is that they need the

sampled channel matrix H to have full column rank.

This leads to an unnecessary overparameterization of

the channel as will become clear below (the matrix H

could be parameterized in terms of the samples of the

channel response, but this parameterization is not ex-

ploited by Tong et al. ). Tong et al. found that the

condition for identi�ability of the (oversampled) chan-

nel from the second-order statistics of the received sig-

nal is that the z-transform of the oversampled channel

should not havem equispaced zeros on a circle centered

in the origin. One should also remark that the identi-

�cation of the channel from the received signal second-

order statistics can only be done up to a multiplicative

constant (with magnitude one in certain cases), a not

unusual phenomenon in blind equalization. This con-

stant can be identi�ed by other means. If the channel

contains a delay, then this delay can also not be identi-

�ed blindly. The results presented here generalize the

results in [2] where an oversampling factor m = 2 was

considered.

II. Fractionally-Spaced Channels and

Equalizers, and Filter Banks

We assume the channel to be FIR with duration of

approximately NT . With an oversampling factor m,

the sampling instants for the received signal in (1) are

t0+T (k +
j

m
) for integer k and j = 0; 1; : : :;m�1. We

introduce the polyphase description of the received sig-

nal: yj(k) = y(t0+T (k +
j

m
)) for j = 0; 1; : : : ;m�1 are



the m phases of received signal, and similarly for the

channel impulse response and the additive noise. In

principle, it su�ces to introduce a restricted t0 2 [0; T )

to be fully general. However, we shall take t0 = t
0

0+dT

where t00 2 [0; T ) and d is chosen as the smallest integer

such that�
h(t00 + dT ) � � �h(t00 + (d+

m � 1

m
)T )

�
6= 0 : (3)

The channel being causal implies that d will be nonneg-

ative; d represents an inherent delay. The oversampled

received signal can now be represented in vector form

at the symbol rate as

y(k) =

N�1X
i=0

h(i)ak�i + v(k) = HNAN (k) + v(k) ;

y(k) =

264 y1(k)
...

ym(k)

375 ;v(k) =
264 v1(k)

...

vm(k)

375 ;h(k) =
264 h1(k)

...

hm(k)

375
HN = [h(0) � � �h(N�1)] ; AN (k) =

�
a
H
k � � �a

H
k�N+1

�H
(4)

where superscript H denotes Hermitian transpose. We

formalize the �nite duration NT assumption of the

channel as follows

(AFIR) : h(0) 6= 0, h(N�1) 6= 0 and h(i) = 0 for

i < 0 or i � N .

The z-transform of the channel response at the sam-

pling rate m
T

is H(z) =
Pm

j=1 z
�(j�1)

Hj(z
m). Sim-

ilarly, consider a fractionally-spaced ( T
m
) equalizer of

which the z-transform can also be decomposed into its

polyphase components: F (z) =
Pm

j=1 z
(j�1)

Fj(z
m),

see Fig. 1. Although this equalizer is slightly non-

causal, this does not cause a problem because the

discrete-time �lter is not a sampled version of an un-

derlying continuous-time function. In fact, a partic-

ular equalizer phase z
(j�1)

Fj(z
m) follows in cascade

the corresponding channel phase z�(j�1)Hj(z
m) so that

the cascade Fj(z
m)Hj(z

m) is causal. We assume the

equalizer phases to be causal and FIR of length L:

Fj(z) =
PL�1

k=0 fj(k)z
�k
; j = 1; : : : ;m.
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Fig. 1. Polyphase representation of the T=m fractionally-spaced
channel and equalizer for m = 2.

III. FIR Zero-Forcing (ZF) Equalization

We introduce f(k) = [f1(k) � � �fm(k)], FL =

[f(0) � � � f(L�1)], H(z) =
PN�1

k=0 h(k)z
�k and F(z) =PN�1

k=0 f(k)z
�k. The condition for the equalizer to be

ZF is F(z)H(z) = z
�n where n = 0; 1; : : : ; N+L�2.

The ZF condition can be written in the time-domain

as

FL TL (HN ) = [0 � � �0 1 0 � � �0] (5)

where the 1 is in the n+1st position and TM (x) is

a (block) Toeplitz matrix with M (block) rows and�
x 0p�(M�1)

�
as �rst (block) row (p is the number of

rows in x). (5) is a system of L+N�1 equations in Lm

unknowns. To be able to equalize, we need to choose

the equalizer length L such that the system of equations

(5) is exactly or underdetermined. Hence

L � L =

�
N � 1

m � 1

�
: (6)

The matrix TL (HN ) is a generalized Sylvester matrix.

It can be shown that for L � L it has full column

rank if H(z) 6= 0; 8z or in other words if the Hj(z)

have no zeros in common. This condition coincides

with the identi�ability condition of Tong et al. on H(z)

mentioned earlier. Assuming TL (HN ) to have full col-

umn rank, the nullspace of T H
L (HN ) has dimension

L(m�1)�N+1. If we take the entries of any vector in

this nullspace as equalizer coe�cients, then the equal-

izer output is zero, regardless of the transmitted sym-

bols.

To �nd a ZF equalizer (corresponding to some de-

lay n), it su�ces to take an equalizer length equal to

L. We can arbitrarily �x L(m�1)�N+1 equalizer co-

e�cients (e.g. take L(m�1)�N+1 equalizer phases of

length L�1 only). The remaining L+N�1 coe�cients

can be found from (5) ifH(z) 6= 0; 8z. This shows that

in the oversampled case, a FIR equalizer su�ces for ZF

equalization! With an oversampling factor m = N , the

minimal required total number of equalizer coe�cients

N is found (L = 1).

��
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Fig. 2. Fractionally-spaced channel and equalizer.

The ZF condition (with delay n = 0) can be inter-

preted in the frequency domain as follows (see Fig. 2).

Consider the cascade G(z) =
X
k

gkz
�k = H(z)F (z)

of fractionally-spaced channel and equalizer. Then the

ZF condition F(z)H(z) = 1 becomes8><>:
gmk = �k0
m�1X
j=0

G(
f + j

m
) = m

(7)



This is similar to the Nyquist condition in the

continuous-time case. If the channel is bandlimited

with bandwidth B 2 ( 1
T
;
m
T
), this poses no particular

problem for the determination of a ZF equalizer (as-

suming in�nite length). If B <
1
T

however, then the

Hj(f); j = 1; : : : ;m are zero simultaneously for some

f rendering ZF equalization impossible. This is the in-

�nite length equivalent of the condition of no zeros in

common in the FIR case.

IV. Channel Identification from

Second-order Statistics: Frequency

Domain Approach

Consider the noise-free case and let the transmitted

symbols be uncorrelated with variance �
2
a. Then the

power spectral density matrix of the stationary vector

process y(k) is

Syy(z) = �
2
aH(z)HH (z��) : (8)

The following spectral factorization result has been

brought to our attention by Loubaton [3]. Let K(z)

be a m � 1 rational transfer function that is causal

and stable. Then K(z) is called minimum-phase if

K(z) 6= 0; jzj > 1. Syy(z) is a rational m�m spectral

density matrix of rank 1. Then there exists a ratio-

nal m � 1 transfer matrix K(z) that is causal, stable

, minimum-phase, unique up to a unitary constant, of

(minimal) McMillan degree deg(K) = 1
2
deg(Syy) such

that

Syy(z) = K(z)KH (z��) : (9)

In our case, Syy is polynomial (FIR channel) and

H(z) is minimum-phase since we assumeH(z) 6= 0; 8z.

Hence, the spectral factor K(z) identi�es the channel

K(z) = �a e
j�
H(z) (10)

up to a constant �ae
j�. So the channel identi�cation

from second-order statistics is simply a multivariate

MA spectral factorization problem.

V. ZF Equalizer Determination from

Second-order Statistics by Multichannel

Linear Prediction

We consider again the noiseless case: v(t) � 0. The

input-output relation of the channel is

YL(k) = TL (HN ) AL+N�1(k) (11)

where YL(k) =
�
y
H (k) � � �yH (k�L+1)

�H
. Therefore,

the structure of the covariance matrix of the received

signal y(k) is

R
y

L = EYL(k)Y
H
L (k) = TL (HN )R

a
L+N�1T

H
L (HN )

(12)

where RaL = EAL(k)A
H
L (k). When mL > L+N�1, R

y

L

is singular. If then L increases further by 1, the rank

of R
y

L increases by 1 and the dimension of its nullspace

increases by m�1. Consider now the problem of pre-

dicting y(k) from YL(k�1) The prediction error can

be written as

ey(k)j
YL(k�1)

= y(k)� by(k)j
YL(k�1)

= [Im �PL]YL+1(k):
(13)

Minimizing the prediction error variance leads to the

following optimization problem

min
PL

[Im � PL] R
y

L+1 [Im �PL]
H

= �
2ey;L (14)

or hence

[Im �PL]R
y

L+1 =
h
�
2ey;L 0 � � �0

i
: (15)

When mL > L+N�1, TL (HN ) has full column rank.

Hence, using (11),

ey(k)j
YL(k�1)

= ey(k)jAL+N�1(k�1) : (16)

Now, ey(k)jAL+N�1(k�1) =

[Im �PL]TL+1 (HN ) AL+N (k) ? AL+N�1(k�1)

(17)

which leads to

[Im �PL]TL+1 (HN )R
a
L+N

�
0 � � �0

IL+N�1

�
= 0 :

(18)

Now let us consider the prediction problem for the

transmitted symbols. We get similarly

â(k)jAM (k�1) = QM AM (k�1) ; (19)

[1 �QM ]Ra
M+1 =

h
�
2ea;M 0 � � �0

i
: (20)

Comparing (18) and (20), we �nd

[Im � PL] TL+1 (HN ) = h(0)
�
1 �QL+N�1

�
:

(21)

which, using (14), leads to

�
2ey;L = �

2ea;L+N�1h(0)hH (0) : (22)

All this holds for L � L. We can summarize:

rank
�
�
2ey;L�

8<: = 1 ; L � L

2 f2; 3; : : : ;mg ; L = L�1

= m ; L < L�1

(23)

We continue, assuming L � L. Then (22) allows us

to �nd h(0) up to a scalar multiple. If the transmit-

ted symbols are uncorrelated, then from (21) we see



that
h
H

(0)

h
H

(0)h(0)
[Im �PL] is a ZF equalizer (and us-

ing (5), we could also determine the channel HN up to

a scalar multiple)! In this case, the prediction prob-

lem allows us also (in theory) to check whether the Hj

have zeros in common. Indeed, the common factor col-

ors the transmitted symbols (MA process) and hence

once �2ey;L becomes of rank 1, its one nonzero eigenvalue

�
2ea;L+N�1hH (0)h(0) continues to decrease as a function

of L since for a MA process, �2ea;L is a decreasing func-

tion of L.

If the transmitted symbols are correlated, we pro-

ceed as follows (Pisarenko-style [4, page 500]). Lin-

ear prediction corresponds to the LDU factorization

LRyLH = D. The prediction �lters are rows of L while

the prediction variances are the diagonal elements of D.

Let's take l prediction �lters corresponding to singular-

ities in D and assume the longest one has block length

L. So we obtain FbL of size l � mL. We introduce a

block-componentwise transposition operator t, viz.

H
t
N = [h(0) � � �h(N�1)]

t
=
h
h
T (0) � � �hT (N�1)

i
F
t
N = [f(0) � � � f(N�1)]

t
=
h
f
T (0) � � � fT (N�1)

i
(24)

where T is the usual transposition operator. Due to

the singularities, we have

F
b
L TL (HN ) = 0 () H

t
N TN

�
F
b t
L

�
= 0 : (25)

Since FbLYL(k) = 0, we call FbL a blocking equalizer.

We �nd: if l(L+N�1) � mN�1 , then

dim
�
Range

?

n
TN

�
F
b t
L

�o�
= 1 : (26)

In that case, we can identify the channel HtH
N (up

to scalar multiple) as the last right singular vector of

TN

�
F
b t
L

�
. In particular, let h? be m� (m�1) of rank

m�1 such that h?H
h(0) = 0, then with L = L+1 and

l = m�1, we can take

F
b
L+1 = h

?H
�
Im �PL

�
: (27)

>From (21), one can furthermore identify QL+N�1 and

via (20), this leads to the identi�cation of the (Toeplitz)

symbol covariance matrix RaL+N up to the multiplica-

tive scalar �2a (which may be known).

VI. Signal and Noise Subspaces

Suppose now that we have additive white noise v(t)

with zero mean and unknown variance �2v (in the com-

plex case, real and imaginary parts are assumed to be

uncorrelated, colored noise could equally well be han-

dled). Then since

R
y

L = TL (HN )R
a
L+N�1T

H
L (HN ) + �

2
vImL ; (28)

For L � L, �2v can be identi�ed as the smallest eigen-

value of R
y

L
. Replacing R

y

L
by R

y

L
��

2
vImL, all results of

the prediction approach in the noiseless case still hold.

Given the structure of R
y

L in (28), the column space of

TL (HN ) is called the signal subspace and its orthogonal

complement the noise subspace. In [2], a linear param-

eterization of the noise subspace is given in terms of a

blocking equalizer for m = 2. For m > 2 however, a

linear minimal parameterization of the noise subspace

does not exist.

Consider the eigendecomposition of R
y

L of which the

real nonnegative eigenvalues are ordered in descending

order:

R
y

L =

L+N�1X
i=1

�iVi V
H
i +

mLX
i=(m�1)L�N+1

�iVi V
H
i

= VS�SV
H
S

+ VN�NV
H
N

(29)

where �N = �
2
vI(m�1)L�N+1 (see (28)). Assuming

TL (HN ) and Ra
L+N�1 to have full rank, the sets of

eigenvectors VS and VN are orthogonal: V
H
S
VN = 0,

and �i > �
2
v ; i = 1; : : : ; L+N�1. We then have the

following equivalent descriptions of the signal and noise

subspaces

Range fVSg = Range fTL (HN )g ; V
H
N
TL (HN ) = 0 :

(30)

VII. Channel Estimation from an Estimated

Covariance Sequence by Subspace Fitting

When the covariance matrix is estimated from data,

it will no longer satisfy exactly the properties we have

elaborated upon. We assume that the detection prob-

lem of the signal subspace dimension L+N�1 has been

solved correctly. The signal subspace will now be de-

�ned as the space spanned by the eigenvectors corre-

sponding to the L+N�1 largest eigenvalues, while the

noise subspace is its orthogonal complement. Consider

now the following subspace �tting problem

min
HN ;T

kTL (HN )� VS TkF (31)

where the Frobenius norm of a matrix Z can be de�ned

in terms of the trace operator: kZk
2

F = tr
�
Z
H
Z
	
.

The problem considered in (31) is quadratic in both

HN and T . If VS contains the signal subspace eigen-

vectors of the actual covariance matrix R
y

L , then the

minimal value of the cost function in (31) is zero. If

R
y

L is estimated from a �nite amount of data however,



then its eigenvectors (and eigenvalues) are perturbed

w.r.t. their theoretical values. Therefore, in general

there will be no value for HN for which the column

space of TL (HN ) coincides with the signal subspace

Range fVSg. But it is clearly meaningful to try to esti-

mateHN by taking that TL (HN ) into which VS can be

transformed with minimal cost. This leads to the sub-

space �tting problem in (31). The optimization prob-

lem in (31) is separable. With HN �xed, the optimal

matrix T can be found to be (assuming V H
S
VS = I)

T = V
H
S
TL (HN ) : (32)

Using (32) and the commutativity of the convolution

operator as in (25), one can show that (31) is equivalent

to

min
H
t

N

H
t
N

0@ mLX
i=(m�1)L�N+1

TL

�
V
H t
i

�
T
H
L

�
V
H t
i

�1AH
tH
N

=min
H
t

N

"
L



Ht
N



2
2
�H

t
N

 
L+N�1X
i=1

TL

�
V
H t
i

�
T
H
L

�
V
H t
i

�!
H
tH
N

#
(33)

where V H
i (like FL) is considered a block vector with L

blocks of size 1�m. These optimization problems have

to be augmented with a nontriviality constraint onHt
N .

In case we choose the quadratic constraint


Ht

N




2
= 1,

then the last term in (33) leads equivalently to

max

Ht

N




2
=1

H
t
N

 
L+N�1X
i=1

TL

�
V
H t
i

�
T
H
L

�
V
H t
i

�!
H
tH
N

(34)

the solution of which is the eigenvector corresponding

to the maximum eigenvalue of the matrix appearing

between the brackets.

VIII. Channel Estimation from Data using

Deterministic ML

In the case of given data (samples of y(:)), the

subspace �tting approach of the previous section in-

volves the data through the sample covariance matrix.

Though this leads to computationally tractable opti-

mization problems, the following deterministic Maxi-

mum Likelihood approach leads to more e�cient esti-

mates. The stochastic part is considered to come only

from the additive noise, which we shall assume Gaus-

sian and white with zero mean and unknown variance

�
2
v. We assume the data YM (k) to be available. The

maximization of the likelihood function boils down to

the following least-squares problem

min
HN ;AM+N�1(k)

kYM (k)� TM (HN )AM+N�1(k)k
2
2 :

(35)

The optimization problem in (35) is again separable.

Eliminating AM+N�1(k) in terms of HN , we get

min
HN





P?

TM(HN )
YM (k)





2
2

or max
HN




P
TM(HN )YM (k)




2
2
:

(36)

Since T
H
M (HN )YM (k) = T

T
N

�
Y
t T
M

�
H
tH
N , we can

rewrite the second approach in (36) as

max

Ht

N




2
=1

H
t
N T

�

N

�
Y
t T
M (k)

�
�
T
H
M (HN ) TM (HN )

�
�1
T
T
N

�
Y
t T
M (k)

�
H
tH
N

(37)

This optimization problem can now easily be solved

iteratively in such a way that in each iteration, a

quadratic problem appears [4]. An initial estimate

may be obtained from the subspace �tting approach

discussed above. To determine the CR bound, note

that TM (HN )AM+N�1(k) = AM;N (k)H
t T
N where

AM;N (k) = AM;N (k) 
 Im and

AM;N (k) =

264 a(k) � � � a(k�N+1)
... . .

. ...

a(k�M+1) � � � a(k�M�N+2)

375
(38)

(Hankel matrix). This leads to a singularity in the joint

information matrix for AM+N�1(k) and H
t T
N , which

translates into a singularity for the information matrix

for Ht T
N separately (we can only determine HN up to

a scalar multiple). If we consider the estimation of the

channel modulo the problem of determining the proper

scale factor, then the 1
�2
v

CRB bHt T

N

can be shown to be�
A
H
M;N (k)P

?

TM(HN)
AM;N (k)

�+
�

�
A
H
M;N (k)AM;N (k)

��1
(pseudo-inverse). The last expression is the CR bound

if the data AM+N�1(k) were known (training se-

quence). For smallm (e.g. 2), we �nd that the quality of

the channel estimate may be relatively bad if the chan-

nel impulse response tapers o� near the ends (channel

length detection problem!). For large m however, the

CR bound appraches the value corresponding to known

data (which is independent of the channel)!
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