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Abstract. We consider the problem of blind equalization of a constant modulus signal. One of the most

popular classes of algorithms in this context is the Godard family of blind equalizers [1], which includes among others

the Constant Modulus Algorithm (CMA) [2]. A common drawback of these algorithms is that they may converge

to undesired equalizer settings if not properly initialized. This is known as the problem of ill convergence and is

primarily due to the non-convex form of the cost function of algorithms of this class with respect to the equalizer

parameters. We propose a di�erent approach to the problem, namely, a bilinear one, which leads to a di�erent

parameterization and to the construction of a convex cost function with respect to the parameters introduced. In

a perfectly parameterized case (the equalizer's order matches exactly the order of the channel inverse), the solution

to the problem is unique and permits for a direct calculation of the optimal equalizer. In over-parameterized cases

however, there exist multiple solutions to our cost function. However, we propose a method that still allows to

determine the channel inverse in this case. Di�erent adaptive schemes are proposed to adaptively compute the

solution of our criterion and the in
uence of additive noise is also discussed.

1. The Constant Modulus Algorithm

The classical setup for adaptive blind-equalization is shown in

�gure 1. We denote by ak, xk and yk the transmitted symbol,
received sample and equalizer output, respectively, all at time
instant k. The equalizer (a FIR �lter of order N�1) at the same

time instant is denoted by a N � 1 vector Wk = [w0 � � �wN�1]
T

and its output can be written as yk = X
H
k
Wk, where Xk =

[xk xk�1 � � �xk�N+1]
H , T denotes transpose and H complex con-

jugate transpose. The Godard algorithms are stochastic gradi-
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Figure 1: An adaptive blind equalization setup

ent algorithms that attempt to solve the following minimization
problem:

min
W

Jp(W ) =
1

2p
E(jyjp � lp)

2
p 2 f1;2; : : :g ; (1)

where E denotes statistical expectation and lp =
Ejak j

2p

Ejak j
p . The

popular CMA 2-2 corresponds to the particular choice p = 2
and if one assumes that the constellation modulus equals one

(jakj = 1), is given by:

Wk+1 = Wk � �Xkyk(jykj
2
� 1) ; (2)

where � denotes the algorithm's stepsize. Due to the non-convex
form of the cost function Jp(W ) w.r.t. W , the problem (1) admits

more than one solutionwhich can be found by setting the gradient

of Jp(W ) w.r.t. W equal to zero. This gives for p = 2:

E((jykj
2
� 1)ykXk) = 0 : (3)

The stochastic gradient algorithm described by (2) may therefore
converge to one of the solutions of (3) which does not correspond

to the global but to a local minimum of J2(W ) if it is initialized
close to it and if a small stepsize � (necessary for the stability of

(2)) is used [3]. This is the problem of ill-convergence of CMA's
and in the sequel we will present a di�erent approach that tries
to circumvent it.

2. A bilinear approach

Consider the following expansion of the squared modulus of the
equalizer's output:

jyk j
2 = yky

�

k
= (w0w

�

0xkx
�

k
+ � � �+ w0w

�

N�1
xkx

�

k�N+1
) + � � �+

+(wN�1w
�

0xk�N+1x
�

k
+ � � �+ wN�1w

�

N�1
xk�N+1x

�

k�N+1
) ;

(4)
where � denotes complex conjugate. If now we introduce a N2

�1

bilinear regression vector

Xk = [xkx
�

k
� � �xkx

�

k�N+1
xk�1x

�

k
� � �xk�1x

�

k�N+1
� � �

xk�N+1x
�

k
� � �xk�N+1x

�

k�N+1
]H ;

(5)

and a N2
� 1 parameter vector

�k = [w0w
�

0 � � �w0w
�

N�1
w1w

�

0 � � �w1w
�

N�1
� � �

wN�1w
�

0 � � �wN�1w
�

N�1
]T ;

(6)

that contain all the bilinear terms xk�ix
�

k�j
and wiw

�

j
of the

expansion in (4), respectively, then the squared modulus of the
output yk can be written as:

jyk j
2 = zk = X

H
k �k ; (7)



and may be viewed as the output of a linear \�lter" with impulse
response � which is excited by the \bilinear" regression vector
X , at time instant k. A constant-modulus cost function can now
be constructed in terms of the new parameter vector � and the
resulting minimization problem will be:

min
�

J
bil(�) = min

�
E(z � 1)2 = min

�
E(XH

� � 1)2 : (8)

Note that the cost function J
bil(�) is quadratic, and therefore

convex. The principle behind this parameterization of the prob-

lem is the following: in traditionalblind equalization, the received
discrete-time signal is �rst passed through a linear �lter (equal-
izer) and then some kind of nonlinearity is applied to its output in

order to provide the higher order moments needed for the identi�-
cation of the channel (or the channel's inverse) impulse response.
Here we have somewhat \interchanged" the order of these two
operations in that we �rst apply a nonlinearity to the received

signal (in order to form the bilinear regression vector Xk) and
pass the resulting process through a linear �lter whose output is

not submitted to further nonlinearities.

The gradient of Jbil(�) w.r.t. � is given by:

5�J
bil(�) = 2E(X (XH

� � 1)) ; (9)

and therefore any solution � to (8) should satisfy the following
equation:

E(XXH)� = E(X ) : (10)

Now if the matrix E(XXH) is invertible, the problem (8) has the
following unique solution:

� = fE(XXH)g�1E(X ) : (11)

In this case the corresponding equalizer can be found from � as
follows: a zero-forcing (ZF) FIR equalizer of order (N-1) exists if

the channel is all-pole of order (N � 1):

ak =

N�1X
i=0

cixk�i = X
H
k C ; (12)

where C = [c0 � � � cN�1]
T contains the coe�cients of the impulse

response of the channel's inverse. Then the optimal (ZF) equal-
izer will equal the inverse impulse response (W opt = C) and the
corresponding parameter vector will be given by:

�
opt = [c0c

�

0 � � � c0c
�

N�1
c1c

�

0 � � � c1c
�

N�1
� � �

cN�1c
�

0 � � � cN�1c
�

N�1
]T :

(13)

It is clear that �opt solves (8) since Jbil(�opt) = 0. Moreover, as
the matrix E(XXH) was supposed to be invertible, (8) admits a

unique solution which is given by (11). Therefore the following
lemma holds:

Lemma: When the channel is all-pole of order N � 1 and the
N
2
� N

2 matrix E(XXH) is invertible, the criterion (8) admits

the unique solution �opt given by (13).

Consider now the N � N matrix � that has as columns the N
consecutive partitions of the vector � of N elements each:

� =

2
6664

�
(0)

�
(N)

� � � �
(N2

�N)

�
(1)

�
(N+1)

� � � �
(N2

�N+1)

: : � � � :

: : � � � :

�
(N�1)

�
(2N�1)

� � � �
(N2

�1)

3
7775 : (14)

Then it follows that �opt = CC
H . The optimal equalizer setting

W
opt can now be found from �opt as follows:

W
opt = e

j�
p

�maxVmax ; (15)

where �max and Vmax denote the maximum eigenvalue and the
corresponding eigenvector of �opt and � 2 (0;2�). Note that an

ambiguity is inherent in the choice of the optimal equalizer, since
the factor ej� cannot be determined. This is a usual phenomenon
in blind equalization and can be eliminated by using di�erential
coding at transmission.

Identi�cation of the (generally non-minimumphase) transmis-
sion channel is therefore achievable by minimizing the cost func-
tion J

bil(�) w.r.t. �. This should not be an astonishing result,
since the matrix E(XXH) contains 4th order moments of the re-
ceived signal (it is known that identi�cation of a non-minimum
phase channel is not possible at the baud rate by use of only sec-
ond order statistics).

The solution of (8) can be calculated either in a batch or in

an adaptive way. In the �rst case one just has to estimate the
quantitiesE(XXH) andE(X ) and use (11) to calculate the corre-
sponding estimate for �. In the second case, an adaptive �ltering
algorithm can be employed for the parameter vector � that uses
at each iteration Xk as the regression vector and the scalar 1 as
the \desired"sample. An LMS-like algorithm(stochastic gradient
minimization) for �k will be as follows:

�k = 1� X
H
k
�k

�k+1 = �k + �Xk�k ;
(16)

where �k is the a priori error at time instant k and � the stepsize
parameter that controls both the convergence speed and steady-

state error of the algorithm. As the parameter vector � is of
length N

2, the complexity of the above algorithm will be 2N2

multiplications/iteration. Similarly, an RLS-like algorithm can
be used that will allow for faster convergence (in approximately
2N2 iterations) but at the expense of a higher computational

complexity (O(N4) multiplications/iteration):

�k = 1� X
H
k
�k

R
�1
k

= �
�1

R
�1
k�1

� �
�1

R
�1
k�1

Xk(1 + X
H
k
�
�1

R
�1
k�1

Xk)
�1
�

�X
H
k
�
�1

R
�1
k�1

�k+1 = �k + R
�1
k
Xk�k ;

(17)
where Rk is N2

� N
2 and � is the forgetting factor. A multi-

channel Fast Transversal Filter algorithm [4] can be used in order
to reduce the complexity to O(N3) multiplications/iteration (see

�gure 2).

When the received samples xk are real (which corresponds

to a PAM modulation and a real channel), a reduction in the
requirednumber of parameters for the bilinearmethod is possible.

Namely, in this case the expansion in (4) will have only
N�(N+1)

2
terms, and therefore the regression and parameter vectors will be
de�ned as :

Xk = [x2k 2xkxk�1 � � � x
2
k�1 2xk�1xk�2 � � � x

2
k�N+1]

T
;

(18)
and

� = [�(0) �
(1)

� � � �
(
N�(N+1)

2
�1)]T ; (19)

respectively. All the above mentioned equations are still valid in
this case, the only di�erence being the dimensions of �, X and
the matrix E(XXH). All Hermitian transposes can also be re-
placed by simple transposes in this case. Figure 2 shows the setup

for bilinear equalization in the real case, where the
N�(N+1)

2
entries of � are organized in N equalizers of respective lengths
N;N �1; : : : ; 1. Note the multichannel structure that allows also
for a multichannel FTF algorithm as mentioned above.

3. Over-parameterized case

In this section we consider the case where the true channel is
all-pole of order N � 1 (AP(N � 1)) and the equalizer FIR of
orderM � 1 (FIR(M � 1)), M > N . This case does not seem to
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Figure 2: A bilinear blind equalization setup

be of practical interest, since in practice the transmission chan-
nel is a FIR �lter and therefore an equalizer of any length will
never exceed the order of the channel's inverse impulse response.
However, it merits special attention because it gives insight in
the behaviour of the bilinear method. Suppose that the equal-

izer is FIR(N). Then both equalizer settings W 1 = [CT 0]T and
W

2 = [0 C
T ]T are zero forcing. If the corresponding bilinear

parameter vectors are denoted by �
1 and �

2, respectively, then
they will both satisfy (10). Moreover, any vector of the form

��
1 + ��

2, where � and � are scalars such that � + � = 1 will
also satisfy (10):

E(XXH)(��1 + ��
2) = EX ; �+ � = 1 : (20)

In the general case M = N + L, the eq. (10) will be satis�ed by
any vector of the form:

� =

LX
i=1

�i�
i
; with

LX
i=1

�i = 1 ; (21)

where �i is the bilinear parameter vector corresponding to W i =
[01�(i�1) C

T 01�(L�i+1)]
T . This means that when the equalizer

is over-parameterized w.r.t. the inverse of the channel impulse re-

sponse, the matrix E(XXH) is singular, and as a consequence,
the problem (8) has an in�nite number of solutions. Running an
adaptive algorithm like the one in (16) or in (17) will converge to
one of these solutions. The same will happen if one uses a batch

technique to estimate E(XXH) and E(X ) and a pseudo-inverse
for the matrix inversion needed in (11). In all cases, the solution

obtained will no longer correspond to a rank-1 matrix �: (14)
and (15) will no longer yield the optimal ZF equalizer. Therefore
the problem of ill-convergence appears (under a di�erent form)

also in the bilinear method. In the case of a FIR channel (which
is a realistic one), one might think that the problem should not
arise since the impulse response of the channel is theoretically
of in�nite length and thus an equalizer long enough should be
able to approximate fairly well the ZF equalizer. However, as
in practice the channel's inverse impulse response will be very
close to zero out of a speci�c interval, if the equalizer's length is

bigger than the number of samples in this interval, the same over-
parameterizationproblemwill exist and the matrixE(XXH) will

be very ill-conditioned. This makes the choice of the equalizer
length N in this case a problem of critical importance, as, unlike
in conventional equalization, the longest possible length will not
necessarily yield the best possible equalizer! In the next section
we present a method to calculate the ZF equalizer from any so-

lution of the form (21) when L is given.

4. A subspace �tting approach for the calcu-
lation of a ZF equalizer

Our task is to try to extract a ZF equalizer from the matrix

� that corresponds to a vector � of the form in (21). As will be
shown, this will be possible due to the known speci�c structure
of �. The channel inverse is assummed to be of length N and
the equalizer of length M = N + L. Consider the eigenvalue
decomposition of the matrix �:

� =

MX
i=1

�iViV
H
i ; (22)

where the (real) eigenvalues �i are in descending order of mag-
nitude and Vi is the eigenvector corresponding to �i. When
M = N(L = 0), we saw that the ZF equalizer can be found
based on a rank-1 decomposition of �. When L > 0 we will try
to determine the ZF equalizer based on a rank-(L+1) decompo-
sition of � by the following subspace �tting approach: we �rst
construct an extended equalizer vector of M + L entries:

W
e = [w�L � � �w�1 w0 � � �wM�1]

T
; (23)

where w�L � � �w�1 and wN � � �wM�1 stand for the additional

coe�cients. If the length of the channel inverse is indeedN , then
ideallyW e = [0 � � � 0 w0 � � �wN�1 0 � � �0]

T .

We then create a Toeplitz matrixW as follows:

W =

2
6666664

w0 w�1 � � � w�L

w1 w0

. . .
.
..

.

.

.
.
.
.

. . . w0

..

.
..
.

. . .
..
.

wM�1 wM�2 � � � wM�1�L

3
7777775

: (24)

We will try to �t the matrix W to a subspace of the space RM

created by the �rst L eigenvectors of �. This �tting may be

accomplished by minimizing the following criterion:

min
Q;We

kW � VQk
2
F ; (25)

where k:kF denotes the Frobenius norm of a matrix (kAk2
F

=

tr(AHA)), Q 2 R
(L+1)�(L+1) and V is a matrix containing the

L+ 1 �rst eigenvectors of �:

V = [V1 � � �VL+1] : (26)

Minimization w.r.t. Q only, yields:

Q = (VHV)�1VHW : (27)

The problem (25) now becomes:

min
We

kP
?

V
Wk

2
F

s:t:kW
e
k
2
2 = 1

=
min
We

trfW
H
P
?

V
Wg

s:t:kW
e
k
2
2 = 1

: (28)

Noting that trfWH
P
?

V
Wg = tr(WH

W) � trfW
H
PVWg the

problem (28) can be approximated by the problem:

max
We

trfW
H
V(VHV)�1VHWg

= max
We

F (W ;V) = trfW
H
VV

H
Wg

: (29)

The quantity F (W;V) can be written as:

F (W;V) = W
eH

h
0L�(L+1)

V

ih
0L�(L+1)

V

iH
W

e+

+W eH

"
0L�1�(L+1)

V

01�(L+1)

#"
0L�1�(L+1)

V

01�(L+1)

#H
W

e + � � �+

+W eH

h
V

0L�(L+1)

ih
V

0L�(L+1)

iH
W

e
;

(30)
which gives the following expression for (29):

max
We

W
eH(

L+1X
i=1


i

H
i )W e

; (31)



where 
i = [0T
(L�i+1)�(L+1)

V
T 0T

(i�1)�(L+1)
]T . The solution

to (31) is:

W
e = max eigenvector of � =

L+1X
i=1


i

H
i : (32)

When L is known, (32) will give the optimal ZF equalizer (in the
absence of additive noise).

5. The in
uence of additive noise

When additive noise is present in the received signal, it will cor-
rupt both the quantities E(XXH) and E(X ) and therefore the
solution (11) will be biased and no longer correspond to a ZF
equalizer (even in the absence of order mismatch). We will study
the in
uence of additive white zero-mean Gaussian noise nk in
the real case (ak, xk, yk are all real):

xk = x
0

k + nk ; (33)

where x0
k
is the noiseless channel output. The fourth order mo-

ments involved in E(XXH) are:

E(x4
k�i

) = m4;x0 (0;0;0) + 3�4n + 6m2;x0 (0)�
2
n

E(x3
k�i

xk�j) = m4;x0 (0;0; ji� jj) + 3m2;x0 (ji� jj)�2n
E(x2

k�i
x
2
k�j

) = m4;x0 (0; ji� jj; ji� jj) + 2m2;x0 (0)�
2
n + �

4
n

E(x2
k�i

xk�jxk�l) = m4;x0 (0; ji� jj; ji� lj) +m2;x0 (ji� jj)�2n
E(xk�ixk�jxk�lxk�m) = m4;x0 (ji� jj; ji� lj; ji�mj) ;

(34)
If the noise variance �2n is known, then the noise-free fourth order
moments can be calculated as follows:

E((x2
k�i

� 3�2n)
2)� 6�4n) = m4;x0 (0;0; 0)

E((x2
k�i

� 3�2n)xk�ixk�j) = m4;x0 (0;0; ji� jj)

E((x2
k�i

� �
2
n)(x

2
k�j

� �
2
n)) = m4;x0 (0; ji� jj; ji� jj)

E((x2
k�i

� �
2
n)xk�jxk�l) = m4;x0 (0; ji� jj; ji� lj)

E(xk�ixk�jxk�lxk�m) = m4;x0 (ji� jj; ji� lj; ji�mj) ;

(35)

The second order noise-free moments can also be obtained as:

E(x2
k�i

)� �
2
n = m2;x0 (0)

E(xk�ixk�j) = m2;x0 (ji� jj) ;
(36)

(in the above expressions m4;x(i; j; l) = E(x(k)x(k + i)x(k +
j)x(k+ l)) and m2;x(i) = E(x(k)x(k+ i))). Therefore, the in
u-
ence of additive noise can be theoretically completely eliminated,
given knowledge of its variance. Similar results can be obtained

in the complex case.

6. Experimental results

We have tested the bilinear method by means of computer sim-

ulations. In the case of all-pole noiseless channels of the same
order as the equalizer, as expected, the optimal (ZF) equalizer
was obtained with the help of (15) in all cases (irrepsective of
initialization) by using either an adaptive (16), (17) or a batch
technique (11), whereas the CMA converged as well to other
equalizer settings for some initializations (ill-convergence). This
veri�es the fact that the problem of ill convergence is avoided

by the bilinear method in this case. In the case of noise-
less AP(N � 1) channels and an over-parameterized equalizer

FIR(M � 1), M = N + L > N , the optimal (ZF) equalizer was
also obtained with the help of (32) instead of (15). This of course
implies knowledge of L. In the case of FIR channels, the method
is sensible to the choice of the equalizer length, as already ex-
plained. However, for a given length, one can still use (32) for

di�erent values of L ranging from 0 to M � 2, and then choose
the best among the M � 1 derived equalizers by evaluating for

each the constant modulus criterion and choosing the one that
best satis�es it. In our simulations, there was always one among
the equalizers that su�ciently opens the system's eye, provided
of course that the equalizer's length is long enough to be able

to approximate well the channel's inverse. It was also observed
that the in
uence of additive white Gaussian noise resulting in
an SNR up to 20dB did not in general cause serious damage to
the obtained solution. For some simulation results, see also [5].

7. Further discussion

We have also adapted this bilinear approach to the framework
of blind fractionally-spaced equalization (BFSE) [6]. The moti-
vation was that in this case, ZF equalization of FIR channels is
possible with FIR equalizers (!) and therefore the issue of in-
verting the channel exactly with an FIR equalizer does not pose

a problem. However, in BFSE, multiple ZF equalizers exist not
only in the over-parameterized case but even in perfect parame-
terization and the bilinear method will again be insensitive to a
convex combinationof these ZF equalizers. Moreover, the various
ZF equalizers are not simply shifted versions of one another in
the blind fractionally spaced setup of [6], but their dependence
is more complicated and depends on the unknown channel pa-

rameters. So the same problem of singularity of E(XXH) that
arises in the over-parameterized symbol-rate case, appears in the

exactly parameterized fractionally spaced case as well. A rem-
edy to this problem would be to choose a number of equalizer
parameters slightly less (1 less for example) than exactly needed
for ZF equalization. Then a unique solution is found, but is sub-
optimal. Further investigation of these aspects is the object of

ongoing research.
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