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ABSTRACT certain carrier frequency and antennas receiving mixtures of the
signals. We shall assume that>> p. The received signals can be

We explore the identifiability @nditions for blind and semi-blind written in the baseband as

multiuser multichannel identification. Starting with the determin-

istic approach, we compare the identifiabilitpraitions on the P

channel and the sources of training sequence based channel iden—yi(t) = Z Z aj(k)hi(t = kT) +vi(t), 1 =1,---,m (1)
tification, blind and semi-blind channel identification. Further on, =1k

we use the stochastic approach with Gaussian priors for the sourcg heare thea, (k) are the transmitted symbols from sougcel is
symbols and do the same derivations. Comparison between thgne common symbol periody;, (¢) is the (overall) channel im-
two approaches lead to the conclusion that the latter yields Iesspmse response from tranitter j to receiver antennia Assuming
restricting conditions and, moreover, that the conditions are suffi- the {a, (k)} and{v:(t)} to be jointly (wide-sense) stationary, the

cient for any stochastic approach. processes$y;(t)} are (wide-sense) cyclostationary with peribd
If {y:(¢)} is sampled with period’, the sampled process is (wide-
1. INTRODUCTION sense) stationary.

We assume the channels to be FIR. In particular, after sam-

Blind multichannel identification hagceived considerable inter- pling we assume the (vector) impulse response from sgucbe
est over the last decade. In particular, second-order methods haveg lengthN,. Without loss of genetity, we assume the firston-
raised a lot of attention, due to their ability to perform channel ey vector impulse response sample to occur at discrete-time zero.
identification with relatively short data bursts. A major drawback | ot v — Zp—l N; and, wl.o.g.Ny > Ny > --- > N,. The
of these methods is their inéity to identify any channel. Thismo-  giscrete-time received signal can be represented in vector form as
tivates the development of various other methods to alleviate this
problem. Among these methods, the so-called semi-blind (where y(k)=HAy(k)+v(k);H=[H, --H,] 2
some input symbols are known) approaches are very promising, as
well for their performance as for their ability to perform identifi- N
cation for any channel, under certain cdimhs on the sources. &{ (o)

Two different data models have been proposed inliteea-
ture, namely the deterministic model, where the input symbols are
considered deterministic and the stochastic model, where the in- 1,
put symbols are considered stochastic. In this latter model [2] has —#
considered Gaussian priors for the symbols, which leads to very |
good performance. In this paper, we study the ideniiftglzon- ! !
ditions for these models and show how semi-blind on one hand, 4,
and the stochastic model on the other hand lead to less restrictive
identifiability conditions (if any) on the channel and the sources. Figure 1: Notations.

hy(0)

2. DATA MODEL AND NOTATIONS We consider additive temporally and spatially white Gaussian
circular noisev (k) with Ry, (k—i) = E {v(k)v™ (i)} = 03 Lndx:.
Consider linear dlgltal modulation over a linear channel with ad- Assume we receivé/ samp|es .
ditive Gaussian noise. Assume that we havgansmitters at a

Yuk)=Tu(H) A _pik Vullk 3
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= [Ta(H1) ... Tar(Hp)), whereTy (H ;) is block Toeplitz).

Some notations

We will note K; (U;) the number of non trivial known (unknown)
symbols for thei!h source i = Y K(U =3 U)o

the number of independent excitation modes forifAsource and

o =y »  o:;the number of independent excitation modes for all

the sources (different sources are assumed to have different excitas

tion modes). For details about défion of excitation modes, see
[4] and references therein.

3. IDENTIFIABILITY DEFINITION

Parameter® are considered as identifiable when they are deter-

mined uniquely by the probability distribution of the data (V&
f(Y19) = f(Y]9') = 6 = 6). In the models we will con-

sider, data have a Gaussian distribution, so identifiability in this

case means identifiability from the mean and the covarian&eé. of
Another indicator of identifiability is regularity of the Fisher Infor-
mation Matrix (FIM). This point of view is not equivalent however

[3]. In particular, discrete valued ambiguities cause unidentifiabil-

ity but don't lead to singularity of the FIM.

4. DETERMINISTIC MODEL

In this approach, the transmitted symbelsare considered de-

terministic, the stochastic part is considered to come only from
the additive Gaussian white noise whose variance can be identi-

fied from the covariance matrix<( o2 I). The channel and the
unknown symbols can be identified from the mean :

my =Y =T(H)A=Tv (H) Av+Tx (H) Ax  (4)

whereY = Yy (M — 1), Ay and Ax are the unknown and

4.2. Blind Channel Identification

In this cased = Ay. Here, we simultaneously identify the chan-
nel and the source, so identifiability means thik, A) are iden-
tifiable fromY’, up to a factor which will be described here under.

Effective Number of Channels

In the subsequent developments, we will often consider ir-
reducible and column reduced channels, (i.e. suchHita) =
[hi(2) - - - hp(2)]is full-rankVz and[f1 (N1 — 1) ... hp(Np —1)]
is full-rank), which is equivalent to forcing the tall (i.e. more lines
than columns) matri¥/ (H) to be full column rank. Obviously,
if H y is not full rank,7 (H) can not be full column rank under
the same matrix size conditions and one must consider a reduced
number of channels (equal to the rankfdfy), which we will call
effective number of channels. From here on, irreducible channels
will mean irreducible channels witlh being the effective number
of channels.

Basic indeterminacy

As in the single user case, where the channel can only be de-
termined up to a scalar gain, there is a basic indeterminacy for the
multi-user case. Indeed, ¥{(z) = H(z)A(z) =
H'(2)T(z)T~" (2)A’(2). ThenT (=) must be a unimodular matrix
(see [5]), i.e. a nonsingular polynomial matrix whose determinant
is not a function ot. When the channelis irreducible and column
reduced, one can easily show tidt) = R(z) is of the form

Ri; 0 e 0
Ri2(2) R o 0
R(z) = . . (5)

Rll.(z) Rzll(Z) ]%.ll

with v, x v, polynomial matrices?.(z) of degreel, — L., r < s
and constant non-singular matric&,. ThelL,,r = 1,...,1

known symbols resp. (4) is equivalent to identification from the are the different values in the sequente, ..., N, and thew:,

noiseless data (so identifiability in this approach is like in [4]). We
will denoteY asY in the rest of this section.

4.1. Training Sequence Based Identification

To draw complete comparisons of identifiabilitpraitions, we

are their multiplicities. Indeed, i’ (z) is irreducible and column
reduced, the(z) = H’(z)T(z) has the same properties and
column ranks a$1’(z) if T(z) is unimodular [5], which leads to
the structure shown here above.

Necessary and sufficient condition In the Deterministic model,

will first express the Training Sequence (TS) case. Here, we only H and A are identifiable blindly up to unimodular triangular ma-

considery (k) containing known symbols onlyA = Ax). Iden-
tification is based onYas = Tar (H)A = Anypu—1)h
whereA y -1y = [AN1+M—1,1 ~~~AN,,+M—1,p]
h=[R1(0)7 - By (N1 = )T - hp(0)7 - (N, — 1)F]7,
a,'([( — N,) a,'([( —2N; + 1)
af1d/\](J = : E R Im.
a;(0) - Ni)
Necessary and sufficient condition TS The m-channelH is
identifiable by Training Sequence iff
(i) M >N, (Ki>N4+N,—1,i=1--
@iy o> Niyi=1---p.
These conditions are deduced by imposing thae full col-

ai(l

p);

umn rank. Obviously, there are no conditions on the channelitself.

trix R(z) iff
(i) The channelis irreducible and column reduced,;
@) M>Lp+1)+N

(i) o0i> Ni+L,

1=1,...,p,

whereL = [Z=2] (= 0for })

Proof: Sufficiency It has been shown in [6] that, if a channel is
irreducible and column reduced, a minimum parameterization of
the noise subspace of the data is givenTbA/ of size(m — p) x
m(L + 1). The notationP,, indicates that it can be obtained by
linear prediction. Using this parameterization, we may write

Yy =PLTo41(H)A=0

(6)



whereYyy is of sizem(L + 1) x M — L and

y(L) y(M —1) Ay
Y = : VA= S
y(©) - y(M—L-1) A,
a;(L) ai(M —1)
A= z
a,‘(l—N,‘) a,‘(M—N,‘—L)

Under condition(i), and if A is full row rank, (6) implies
P, Tp+1(H) = 0 which implies that the corred®,, (and hence
H) can be determined from, Vi = 0. As A is of size(Lp +
N) x (M — L), this leads to a minimum data burst length/: >
L(p + 1) + N, which is conditior(jii). Furthermore, thel; must
also be full row rank, which leads to conditidii). OnceH is
known, A can be determined from (4).

Necessity(:) If the channel is reducible and/or column reduced,
than7 (H) is never full column rank, hencgl, fulfills (6), where

A" = A+ A", andA"” is in the null space of (H) and indepen-
dent of.4 andR(z), which shows thaf) is a necessary condition.

PT(H)AA"TH(H) = 0, we can findP' # P such that
P'Y = 0butP'T(H) # 0 and hence anothel’ # H such
thatP' T (H') = 0 exists for whichy” = T(H') A, which shows

Futhermore, iH(z) is irreducible, but not necessarily column
reduced, one can always filt{ (=) column reduced by multiply-
ing it by a unimodular matrix. This leads to :

Necessary and sufficient condition In the Deterministic model,
H and A are identifiable blindly up to unimodular matrix( =) iff

(i) The channelis irreducible;

@) M>Lp+1)+N
(i) o; > Ni+ L, 1=1,...,p,
whereL = [ 2=2] (= 0 for §) and N is the order of the equiva-
lent column reduced channidl (=)

4.3. Semi-Blind Channel Identification

Sufficient conditions to identify any channel
Consider a reducible chanrté(z) and its irreducible patt(z),
then, resorting for example to Lemma 6.1 of [1], one can show that
H(z) = H(2)[r1(2) ... rp(2)], wherer;(z) arep x 1 polynomials
of orderN; — N, wherelN, is the length oH, (2) .

Hence, to identify any channel, sufficient conditions are given
by the necessary and sufficient conditions for the blind part, and
the TS conditions foR(z) R(z) with R(z) = [r1(z) ... rp(2)].

5. GAUSSIAN MODEL

In this model, the input symbols are modeled as Gaussian. Hence,
the parameters to estimate are the channel and the noise variance.
Identifiability means identifiability from the mean and covariance:

Y = Tw(H)Ax, Cyy(8) = Tu(H)TF (H)oo + ool
Identifiability from the Gaussian model implies identifiability

from any stochastic model, since such a model can be described in
terms of the mean and the covariance plus higher-order moments.

5.1. Blind Channel Identification

One must identify = [H 2] from

Cyy(0) = To(H)Ty (H)oq + 041 @

One can show that the channel is identifiable up to a unitary
p X p mixing matrix.

Considering the complex case, the number of real scalars to
identify is2Nm for H, +1 for o2 from which one must substract
thep(p + 1)/2 for the unitary static mixture factor. The number
of equations involved (corresponding to the first block of (7)) is
(2M — 1)m?, which leads to the necessary condition :

2—p(p+1)
4m2

Necessaryconditon ~ M > £ 4 1 4

Sufficient condition In the Gaussian model, the-channelH
is identifiable blindly up to a unitary static mixture factor if

In this section, we suppose that the channel is blindly identified (i) The channelis irreducible and column reduced.

up to a dynamic triangular matrix by a blind method, and that this

matrix is further identified by contiguous known symbols.

Sufficient conditions to identify R(z)

In this paragraph, we will investigate the number of known
symbols needed to identifg(z), considering that the blind identi-
fication has already been performed. Consket; = 7 (H)Ax
= T(H)T(R)Ax, we can always build” s = T(R)Ax to
which the TS conditions can be applied. Namely, paramgter
TS is replaced bV’ = vy + 2222 v;(L; — L;—1 + 1), hence
M > N' (which is equivalent tds; > N’ + Ljqy — Ljqy—1).
When the different users have equal channel lengths£ N;
anduv; = p, 1 = 1, N' = p), the mixing matrix is static and the
number of known symbols per user mustie = p (i.e. deter-
mining a static mixing matrix of sizg x p).

(i) M>L+1

If 7o (H) is tall, (which leads tdi:)), we can identifyo?
Amin(Cyy). H canthen be identified from the denoisgédy (6)—
o21 by linear prediction [6], provided that conditi¢f) is fulfilled.

The unitary static mixture is in fact block diagonal of the form of
R(z) in (5). Indeed an arbitrary unitary mixture can be undone by
forcing the proper channel lengths for the different users.

Sufficient condition Any minimum-phase channel (i#(z) =
H(z)R(=) with H(#) irreducible and column reduced, arfé{ =)
minimum-phase) can be identified up to a static mixture for a larger
M. Indeed, linear prediction derived methods [6] allow to identify
H(z). The correlation sequence &f =) [6, 7] from which R(z)

can be identified up to a unitary mixture by spectral factorization.



5.2. Semi-Blind Channel Identification — Blind+TS method

In this section, we suppose that the channel s blindly identified up
to a unitary mixing matrix by a blind method, and that this matrix
is further identified by known symbols.

Blind part

Consider an irreducible and column reduced channel. Then,
as long ag” contains a block of at leagt 4+ 1 sampleg (k) that
contain only unknown symbols, the channel can be identified up
to a unitary instantaneous mixture.

Training Sequence part : identifying the mixing matrix

Assume that at a time instakt user one contains a known
symbol. Then fromY 41 (k1) = Tr+1(H)Ax we can obtain

~ ~ -1 . _
(hH(O)h(O)) B (0)PLY 111 (k1) = Qa(k) where P, is
the linear prediction filter an@ is the unitary mixing matrix#(0) =

ﬁ(O)Q). Assume now that similarly usehas one known symbol
at timek; and that all theé:; are different. Then we can determine

Q from :

-1 .5

R(0)PL [Yisr(k)... Y igi(ky)]
[a(ky) - a(ky)] ™"

Hence :

Sufficient condition
is identifiable if

In the Gaussian model; the-channelH

(i) The channelis irreducible and column reduced ;
(ii) eachuserhasone knownsymbol, appearing at differenttimes

for the different users.
5.3. Semi-Blind Channel Identification for any channel

In what follows, parameters can be identified¥5yonly.

Sufficient condition In the Gaussian Model, the m-chandélis
identifiable if

() M>N

(ii) eachuserhasone known symbol and these symbols are spaced

atleastN; samples apart for the different usersand the edges
of the burst.

Note that theA i, + as—1,; automatically have full column rank.
Indeed, in this cas¥ contains all the samples of the channel
impulse responses, ritiplied by known symbols.

Another approach consists of assuming that all users have a

contiguous block of known symbols that are synchronized, as in
the TS case. The difference with the TS case is that in the iden-
tification of H fromY = T(H)Afx, the N; — 1 zeros before
and after the block of known symbols also serve as training se-
guence symbols. Hence we get the following sufficient condition
as a modification of the TS sufficient condition.

Sufficient condition In the Gaussian Model, the m-chanddlis
identifiable if
(i) M>N
(i) eachuserhad(; > N — N; + 1 known symbols, where the
bursts are synchronized. The burst of known symbols is at
least atNV; , symbols from the edges of the burst.

6. CONCLUSIONS

We have derived necessary and sufficient conditions for blind mul-
tiuser multichannelidentification for the deterministic and the Gaus-
sian model. Moreover, we have derived sufficient conditions for
semi-blind channel identification for both models, on the one hand
for removing the indeterminacies due to the blind approaches, on
the other hand for identifying any channel. The results lead to two
major conclusions

e Semi-blind approaches are able to remove indeterminacies
or identify all channels with little additional information
(known symbols).

e Stochastic approaches lead to far less restrictive conditions
on the sources.

Moreover, as the Gaussian approach can be viewed as a patrticular
case of any stochastic model resorting to first and second-order
statistics only, the conditions derived here for the Gaussian model
are sufficient for all stochastic approaches.
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