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ABSTRACT

We explore the identifiability conditions for blind and semi-blind
multiuser multichannel identification. Starting with the determin-
istic approach, we compare the identifiability conditions on the
channel and the sources of training sequence based channel iden-
tification, blind and semi-blind channel identification. Further on,
we use the stochastic approach with Gaussian priors for the source
symbols and do the same derivations. Comparison between the
two approaches lead to the conclusion that the latter yields less
restricting conditions and, moreover, that the conditions are suffi-
cient for any stochastic approach.

1. INTRODUCTION

Blind multichannel identification has received considerable inter-
est over the last decade. In particular, second-order methods have
raised a lot of attention, due to their ability to perform channel
identification with relatively short data bursts. A major drawback
of these methods is their inability to identify any channel. This mo-
tivates the development of various other methods to alleviate this
problem. Among these methods, the so-called semi-blind (where
some input symbols are known) approaches are very promising, as
well for their performance as for their ability to perform identifi-
cation for any channel, under certain conditions on the sources.

Two different data models have been proposed in thelitera-
ture, namely the deterministic model, where the input symbols are
considered deterministic and the stochastic model, where the in-
put symbols are considered stochastic. In this latter model [2] has
considered Gaussian priors for the symbols, which leads to very
good performance. In this paper, we study the identifiability con-
ditions for these models and show how semi-blind on one hand,
and the stochastic model on the other hand lead to less restrictive
identifiability conditions (if any) on the channel and the sources.

2. DATA MODEL AND NOTATIONS

Consider linear digital modulation over a linear channel with ad-
ditive Gaussian noise. Assume that we havep transmitters at a
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certain carrier frequency andm antennas receiving mixtures of the
signals. We shall assume thatm > p. The received signals can be
written in the baseband as

yi(t) =

pX
j=1

X
k

aj(k)hij(t� kT ) + vi(t); i = 1; � � � ;m (1)

where theaj(k) are the transmitted symbols from sourcej, T is
the common symbol period,hij(t) is the (overall) channel im-
pulse response from transmitter j to receiver antennai. Assuming
thefaj(k)g andfvi(t)g to be jointly (wide-sense) stationary, the
processesfyi(t)g are (wide-sense) cyclostationary with periodT .
If fyi(t)g is sampled with periodT , the sampled process is (wide-
sense) stationary.

We assume the channels to be FIR. In particular, after sam-
pling we assume the (vector) impulse response from sourcej to be
of lengthNj. Without loss of generality, we assume the firstnon-
zero vector impulse response sample to occur at discrete-time zero.
Let N =

Pp

j=1Nj and, w.l.o.g.,N1 � N2 � � � � � Np. The
discrete-time received signal can be represented in vector form as

y(k) =HAN (k) + v(k);H = [H1 � � �Hp] (2)
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Figure 1: Notations.

We consider additive temporally and spatially white Gaussian
circular noisev(k)with Rvv(k�i) = E

�
v(k)vH(i)

	
= �2vIm�ki.

Assume we receiveM samples :

YM (k) = TM (H) AN+p(M�1)(k) + VM (k) (3)

whereYM (k) =
�
Y H(k) � � �Y H(k �M + 1)

�H
andVM (k)

is defined similarly whereasTM (H) is the multichannel multiuser
convolution matrix ofH, with M block lines (TM (H)



= [TM (H1) : : :TM (Hp)], whereTM (Hj) is block Toeplitz).

Some notations
We will noteKi (Ui) the number of non trivial known (unknown)
symbols for theith source,K =

Pp

i=1
Ki(U =

Pp

i=1
Ui), oi

the number of independent excitation modes for theith source and
o =

Pp

i=1
oi the number of independent excitation modes for all

the sources (different sources are assumed to have different excita-
tion modes). For details about definition of excitation modes, see
[4] and references therein.

3. IDENTIFIABILITY DEFINITION

Parameters� are considered as identifiable when they are deter-
mined uniquely by the probability distribution of the data (i.e.8Y ,
f(Y j�) = f(Y j�0) ) � = �0). In the models we will con-
sider, data have a Gaussian distribution, so identifiability in this
case means identifiability from the mean and the covariance ofY .
Another indicator of identifiability is regularity of the Fisher Infor-
mation Matrix (FIM). This point of view is not equivalent however
[3]. In particular, discrete valued ambiguities cause unidentifiabil-
ity but don’t lead to singularity of the FIM.

4. DETERMINISTIC MODEL

In this approach, the transmitted symbolsA are considered de-
terministic, the stochastic part is considered to come only from
the additive Gaussian white noise whose variance can be identi-
fied from the covariance matrix (= �2v I). The channel and the
unknown symbols can be identified from the mean :

mY = Y = T (H) A = TU (H) AU + TK (H) AK (4)

whereY = YM (M � 1), AU andAK are the unknown and
known symbols resp. (4) is equivalent to identification from the
noiseless data (so identifiability in this approach is like in [4]). We
will denoteY asY in the rest of this section.

4.1. Training Sequence Based Identification

To draw complete comparisons of identifiability conditions, we
will first express the Training Sequence (TS) case. Here, we only
considery(k) containing known symbols only (A = AK). Iden-
tification is based on :YM = TM (H)A = AN+p(M�1)h
whereAN+p(M�1) =

�
AN1+M�1;1 � � �ANp+M�1;p

�
h =

�
h1(0)

H � � �h1(N1 � 1)H � � �hp(0)
H � � �hp(Np � 1)H

�H
,

andAK;i =

2
64

ai(K �Ni) � � � ai(K � 2Ni + 1)
...

.. .
...

ai(0) � � � ai(1 �Ni)

3
75
 Im:

Necessary and sufficient condition TS Them-channelH is
identifiable by Training Sequence iff

(i) M � N; (Ki � N +Ni � 1; i = 1 � � � p) ;

(ii) oi � Ni; i = 1 � � � p.

These conditions are deduced by imposing thatA be full col-
umn rank. Obviously, there are no conditions on the channel itself.

4.2. Blind Channel Identification

In this caseA = AU . Here, we simultaneously identify the chan-
nel and the source, so identifiability means that(H;A) are iden-
tifiable fromY , up to a factor which will be described here under.

Effective Number of Channels
In the subsequent developments, we will often consider ir-

reducible and column reduced channels, (i.e. such thatH(z) =
[h1(z) � � �hp(z)] is full-rank8z and[h1(N1�1) : : :hp(Np�1)]

is full-rank), which is equivalent to forcing the tall (i.e. more lines
than columns) matrixT (H) to be full column rank. Obviously,
if HN is not full rank,T (H) can not be full column rank under
the same matrix size conditions and one must consider a reduced
number of channels (equal to the rank ofHN ), which we will call
effective number of channels. From here on, irreducible channels
will mean irreducible channels withm being the effective number
of channels.

Basic indeterminacy
As in the single user case, where the channel can only be de-

termined up to a scalar gain, there is a basic indeterminacy for the
multi-user case. Indeed, letY(z) = H(z)A(z) =

H0(z)T(z)T�1(z)A0(z). ThenT(z) must be a unimodular matrix
(see [5]), i.e. a nonsingular polynomial matrix whose determinant
is not a function ofz. When the channel is irreducible and column
reduced, one can easily show thatT(z) = R(z) is of the form

R(z) =

2
6664

R11 0 � � � 0

R12(z) R22 � � � 0
...

...
.. .

...
R1l(z) R2l(z) � � � Rll

3
7775 (5)

with �r��s polynomial matricesRrs(z) of degreeLr�Ls; r < s

and constant non-singular matricesRrr. TheLr ; r = 1; : : : ; l

are the different values in the sequenceN1; : : : ;Np and the�r
are their multiplicities. Indeed, ifH0(z) is irreducible and column
reduced, thenH(z) = H0(z)T(z) has the same properties and
column ranks asH0(z) if T(z) is unimodular [5], which leads to
the structure shown here above.

Necessary and sufficient condition In the Deterministic model,
H andA are identifiable blindly up to unimodular triangular ma-
trix R(z) iff

(i) The channel is irreducible and column reduced;

(ii) M � L(p+ 1) +N

(iii) oi � Ni + L; i = 1; : : : ; p,

whereL =
�
N�p

m�p

�
(= 0 for 0

0 )

Proof: Sufficiency It has been shown in [6] that, if a channel is
irreducible and column reduced, a minimum parameterization of
the noise subspace of the data is given byPL of size(m� p) �

m(L + 1). The notationPL indicates that it can be obtained by
linear prediction. Using this parameterization, we may write

PLYM = PLTL+1(H)A = 0 (6)



whereYM is of sizem(L+ 1)�M � L and

YM =

2
64
y(L) � � � y(M � 1)

...
. . .

...
y(0) � � � y(M � L� 1)

3
75,A =

2
64

A1

...
Ap

3
75,

Ai =

2
64

ai(L) � � � ai(M � 1)
...

.. .
...

ai(1 �Ni) � � � ai(M �Ni � L)

3
75.

Under condition(i), and if A is full row rank, (6) implies
PLTL+1(H) = 0 which implies that the correctPL (and hencebH) can be determined fromPLYM = 0. AsA is of size(Lp +

N)� (M � L), this leads to a minimum data burst length :M �

L(p + 1) +N , which is condition(ii) . Furthermore, theAi must
also be full row rank, which leads to condition(iii) . OnceH is
known,A can be determined from (4).
Necessity(i) If the channel is reducible and/or column reduced,
thanT (H) is never full column rank, hence,A0 fulfills (6), where
A0 = A+A00, andA00 is in the null space ofT (H) and indepen-
dent ofA andR(z), which shows that(i) is a necessary condition.
(ii–iii) If A is not full rank, then, asP is calculated from
PT (H)AAHT H(H) = 0, we can findP

0

6= P such that
P

0

Y = 0 butP
0

T (H) 6= 0 and hence anotherH 0 6= H such
thatP

0

T (H0) = 0 exists for whichY = T (H0)A, which shows
that(ii-iii) are necessary conditions.

Futhermore, ifH(z) is irreducible, but not necessarily column
reduced, one can always findH0(z) column reduced by multiply-
ing it by a unimodular matrix. This leads to :

Necessary and sufficient condition In the Deterministic model,
H andA are identifiable blindly up to unimodular matrixT(z) iff

(i) The channel is irreducible;

(ii) M � L(p + 1) +N

(iii) oi � Ni + L; i = 1; : : : ; p,

whereL =
�
N�p

m�p

�
(= 0 for 0

0 ) andN is the order of the equiva-
lent column reduced channelH0(z)

4.3. Semi-Blind Channel Identification

In this section, we suppose that the channel is blindly identified
up to a dynamic triangular matrix by a blind method, and that this
matrix is further identified by contiguous known symbols.

Sufficient conditions to identify R(z)
In this paragraph, we will investigate the number of known

symbols needed to identifyR(z), considering that the blind identi-
fication has already been performed. ConsiderY TS = T (H)AK

= T ( ~H)T (R)AK, we can always build~Y TS = T (R)AK to
which the TS conditions can be applied. Namely, parameterN in
TS is replaced byN 0 = �1 +

Pl

j=2
�j(Lj � Lj�1 + 1), hence

M � N 0 (which is equivalent toKi � N 0 + Lj(i) � Lj(i)�1).
When the different users have equal channel lengths (Ni � N1

and�1 = p, l = 1, N 0 = p), the mixing matrix is static and the
number of known symbols per user must beKi = p (i.e. deter-
mining a static mixing matrix of sizep� p).

Sufficient conditions to identify any channel
Consider a reducible channelH(z) and its irreducible partH(z),
then, resorting for example to Lemma 6.1 of [1], one can show that
H(z) = H(z)[r1(z) : : : rp(z)], whereri(z) arep�1 polynomials
of orderNi �N i, whereN i is the length ofHi(z) .

Hence, to identify any channel, sufficient conditions are given
by the necessary and sufficient conditions for the blind part, and
the TS conditions forR(z)R(z) with R(z) = [r1(z) : : : rp(z)].

5. GAUSSIAN MODEL

In this model, the input symbols are modeled as Gaussian. Hence,
the parameters to estimate are the channel and the noise variance.
Identifiability means identifiability from the mean and covariance:

Y = TK(H)AK; CY Y (�) = TU(H)T H
U (H)�2a + �2vI

Identifiability from the Gaussian model implies identifiability
from any stochastic model, since such a model can be described in
terms of the mean and the covariance plus higher-order moments.

5.1. Blind Channel Identification

One must identify� = [H �2v] from

CY Y (�) = TU(H)T H
U (H)�2a + �2vI (7)

One can show that the channel is identifiable up to a unitary
p� p mixing matrix.

Considering the complex case, the number of real scalars to
identify is2Nm forH, +1 for�2v from which one must substract
thep(p + 1)=2 for the unitary static mixture factor. The number
of equations involved (corresponding to the first block of (7)) is
(2M � 1)m2, which leads to the necessary condition :

Necessary condition M � N
m

+ 1
2 + 2�p(p+1)

4m2

Sufficient condition In the Gaussian model, them-channelH
is identifiable blindly up to a unitary static mixture factor if

(i) The channel is irreducible and column reduced.

(ii) M � L+ 1

If TU (H) is tall, (which leads to(ii)), we can identify�2v =

�min(CY Y ). H can then be identified from the denoisedCY Y (�)�

�2vI by linear prediction [6], provided that condition(i) is fulfilled.
The unitary static mixture is in fact block diagonal of the form of
R(z) in (5). Indeed an arbitrary unitary mixture can be undone by
forcing the proper channel lengths for the different users.

Sufficient condition Any minimum-phase channel (i.e.H(z) =

H(z)R(z) with H(z) irreducible and column reduced, andR(z)
minimum-phase) can be identified up to a static mixture for a larger
M . Indeed, linear prediction derived methods [6] allow to identify
H(z). The correlation sequence ofR(z) [6, 7] from whichR(z)

can be identified up to a unitary mixture by spectral factorization.



5.2. Semi-Blind Channel Identification – Blind+TS method

In this section, we suppose that the channel is blindly identified up
to a unitary mixing matrix by a blind method, and that this matrix
is further identified by known symbols.

Blind part

Consider an irreducible and column reduced channel. Then,
as long asY contains a block of at leastL+ 1 samplesy(k) that
contain only unknown symbols, the channel can be identified up
to a unitary instantaneous mixture.

Training Sequence part : identifying the mixing matrix

Assume that at a time instantk1 user one contains a known
symbol. Then fromY L+1(k1) = TL+1(H)AK we can obtain�ehH(0)eh(0)��1 ehH(0)PLY L+1(k1) = Qa(k1) wherePL is

the linear prediction filter andQ is the unitary mixing matrix(h(0) =eh(0)Q). Assume now that similarly useri has one known symbol
at timeki and that all theki are different. Then we can determine
Q from :

Q =
�ehH(0)eh(0)��1 ehH(0)PL

�
Y L+1(k1) : : :Y L+1(kp)

�
[a(k1) � � �a(kp)]

�1 :

Hence :

Sufficient condition In the Gaussian model; them-channelH
is identifiable if

(i) The channel is irreducible and column reduced ;

(ii) each user has one known symbol, appearing at different times
for the different users.

5.3. Semi-Blind Channel Identification for any channel

In what follows, parameters can be identified byY only.

Sufficient condition In the Gaussian Model, the m-channelH is
identifiable if

(i) M � N

(ii) each user has one known symbol and these symbols are spaced
at leastNi samples apart for the different usersand the edges
of the burst.

Note that theANi+M�1;i automatically have full column rank.
Indeed, in this caseY contains all the samples of the channel

impulse responses, multiplied by known symbols.
Another approach consists of assuming that all users have a

contiguous block of known symbols that are synchronized, as in
the TS case. The difference with the TS case is that in the iden-
tification ofH from Y = T (H)AK , theNi � 1 zeros before
and after the block of known symbols also serve as training se-
quence symbols. Hence we get the following sufficient condition
as a modification of the TS sufficient condition.

Sufficient condition In the Gaussian Model, the m-channelH is
identifiable if

(i) M � N

(ii) each user hasKi � N �Ni + 1 known symbols, where the
bursts are synchronized. The burst of known symbols is at
least atN1;p symbols from the edges of the burst.

6. CONCLUSIONS

We have derived necessary and sufficient conditions for blind mul-
tiuser multichannel identification for the deterministic and the Gaus-
sian model. Moreover, we have derived sufficient conditions for
semi-blind channel identification for both models, on the one hand
for removing the indeterminacies due to the blind approaches, on
the other hand for identifying any channel. The results lead to two
major conclusions

� Semi-blind approaches are able to remove indeterminacies
or identify all channels with little additional information
(known symbols).

� Stochastic approaches lead to far less restrictive conditions
on the sources.

Moreover, as the Gaussian approach can be viewed as a particular
case of any stochastic model resorting to first and second-order
statistics only, the conditions derived here for the Gaussian model
are sufficient for all stochastic approaches.
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[1] Alexei Gorokhov.“Séparation autodidacte des m´elanges con-
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