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Abstract— During recent years, we have witnessed an explosion 

in the Internet of Thing (IoT) in terms of the number and types of 

physical devices. However, there are many limitations of these 

devices regarding their computing power, storage, and 

connection capabilities. They affect on-device processing of 

sensed data significantly. Centralized treatment of IoT data has 

proven challenging for many use cases demanding real time 

response. This paper aims at augmenting sensor data processing 

using the concept of virtual sensors. We propose a scalable 

virtual sensor framework that supports building a logical data-

flow (LDF) by visualizing either physical sensors or custom 

virtual sensors. The process produces high-level information 

from the sensed data that can be easily perceived by machines 

and humans. A web-based virtual sensor editor (VSE) is also 

implemented on the top of the framework to simplify creation 

and configuration of the LDF. The VSE supports cross-platform 

and real-time verification for composed LDF. The paper also 

presents a catalog of supported virtual sensor type along with 

preliminary performance study. 

Index Terms—Cloud Computing; Industrial Internet of 

Things; Logical Data Flow; Scalability; Virtual Sensor. 

I. INTRODUCTION

The Internet of Things (IoT) is expected to bring 

connectivity to every object in the physical world. From 

connected cars [20], buildings [21] and smart cities [22], the 

IoT creates many opportunities in various domains [1]. 

According to Wikibon report [2], by the end of 2020, 212 

billion IoT smart objects are expected to be deployed 

worldwide. Despite the rapid growth, the IoT is still facing 

some major challenges relating interoperation, performance, 

data reliability. On the contrary, the cloud computing 

environment offers a massive ability in term of computing and 

storage. Thus, integrating the IoT with Cloud technology is 

expected to provide scalable storage and sensing services 

enabling unlimited IoT device connecting to the Internet, which 

is called the CloudIoT paradigm [3]. 

However, there are critical challenges in deriving high-level 

information from raw data of the physical devices. With the 

exponential growth of IoT smart objects in term of power and 

functionality, certain situations cannot be handled at the device 

level. For instance - (i) a comprehensive query for checking the 

average of humidity in a region. This query may request all 

data of humidity sensor deployed in the corresponding area. (ii) 

Predicting missing data based on the historical data. To handle 

these situations, virtualization of the physical sensor in cloud 

environment, namely Virtual Sensor (VS), is considered as a 

practical approach. VS is a logical reflection of one or a set of 

physical sensors on the Cloud platform and is able to handle 

complex tasks which cannot be performed on physical sensors 

[4] [5]. The key aspect of VS is to facilitate and enrich the 

functionalities of physical sensors at the software level to adapt 

to different purposes and scenarios [6].  

In this paper, we present a scalable virtual sensor 

framework (sVSF). It simplifies creating and configuring VSs 

with the programmable operators (rule, formula or function). 

These VSs are linked together to be a logical data-flow that 

enables producing the high-level information from collected 

data. On the top of the framework, a Virtual Sensor Editor 

(VSE) is also implemented to facilitate building and 

configuring the LDF by offering the drag-drop actions on 

HTML5 web interface. In order to achieve scalability and 

performance, sVSF is implemented based on clustering 

architecture along with various strategies such as executing 

LDF following asynchronous model, using No-SQL database 

to store and query data. 

Our framework supports various types of virtual sensors at 

Infrastructures as a Service (IaaS) and Platform as a Service 

(PaaS) such as singular, accumulator, aggregator, selector, 

qualifier, context-qualifier, and simple predictor [7]. In the 

sVSF, VSs are treated as physical sensors. The output data of 

VS is stored in the database in the same way as physical. Thus, 

each VS carries the historical data which is valuable for further 

data analyzing. Furthermore, the proposed framework 

remarkably fits for Low Power Wide Area Networking 

(LPWAN) scenario where band width (12 bytes in SIGFOX 

and up to 250 bytes in LoRa), and data rate (typically 10 

kilobits per seconds) are limited [17]. These restrictions reduce 

the quantity of collected data that affects directly on further 

data analysis and context-awareness in term of accuracy and 

trustworthiness. 

On the top of the framework, sVSF offers a cross-platform 

development environment for the virtual sensor by enabling 

HTML5 technology. The lower layers take principal 

responsibility to process and generate high-level information 

based on the composed LDF. In order to enhance scalability 

and performance, the core framework is implemented 

following clustering architecture using Node.js language. Our 

paper has four highlighted contributions: 

• Identifying the limitations of current virtual sensor 

framework in term of VS functionality and usability. 

• Reviewing the concept of virtual sensor and its taxonomy. 

• Presenting a scalable virtual sensor framework to increase 

information quality from sensed data, and implementing 



clustering model along with various strategies to archive 

high scalability and performance.  

• A cross-platform development tool for virtual sensor, 

namely virtual sensor editor, is also offered to speed up 

designing logical data-flow. 

The remainder of this paper is constructed as follows: 

Section II reviews the related works and highlights their 

limitations. Our proposed framework is introduced in detail in 

Section III. Section IV focuses on experiment and performance 

evaluation. Finally, we summarize the paper and discuss future 

works in Section V. 

II. STATE-OF-THE-ART 

In this section, we review virtual sensor and current virtual 

sensor framework in the IoT. Their limitations are also 

identified. At the end of the section, we present our motivations 

to bridge the gaps by delivering a scalable IoT virtual sensor 

framework. 

As a definition in [15], a virtual sensor reflects a physical 

sensor that is able to obtain and represent data on cloud. 

Following [14], a virtual sensor is an emulation of a physical 

sensor which collects its data from underlying physical sensors. 

There are many ways to define and categorize virtual sensor. In 

[15], the authors categorize virtual sensors into two types: (i) 

Task level: represents the physical sensor as a virtual object 

that could be processed, calculated. (ii) Node level: represents 

a subset of physical sensor as a virtual topology.  In [14], 

virtual sensor is classified into four typical types: (i) One-to-

Many: One physical sensor is represented by many virtual 

sensors. (ii) Many-to-One: One and more physical sensor is 

presented by one virtual sensor. (iii) Many-to-Many: This is 

the combination of two under types. (iv) Derived: One virtual 

sensor can represent different physical sensor types. While in 

other types, the virtual sensor only represents the same physical 

device type. At the IaaS level, [16] categorizes virtual sensor 

based on their offering services. Therefore, in the IoT, the 

definition and taxonomy of the virtual sensor are chaos and 

heterogeneous.  

The authors of [8] propose a web-based virtual sensor 

editor tool to facilitate designing virtual sensor process. This 

tool visually aggregates either the physical sensors or 

customized virtual sensors. It also supports calculating and 

visualizing real-time sensor values on graphic charts. VSs are 

created by aggregating physical sensors. The graphic interface 

supports native HTML5 drag-drop and real-time virtual sensor 

evaluation. As a result of HTM5 characteristics and call-by-

need strategy, this tool enables cross-platform and scalability. 

Similarly, the authors of [9] present a web-based interactive 

framework to visualize and authorize sensors as well as 

actuators for indoor scenario. Each IoT Thing serves as a node, 

which is visualized within a 3D indoor scene. Thus, the end-

user can monitor, link and program sensors and actuators 

respectively. This framework works based on event handling 

model which treats incoming data as an event. In order to 

handle complex events, that must be processed on multiple 

sensors; the author proposes a hierarchical graph for visual 

summarizing sensors, actuators and their relations.  

In the IoT environment, physical sensors are distributed and 

affected by many adverse factors. Thus, sensed data need to be 

processed, filtered and transformed for precise measurement 

and providing high-level information. Many middleware 

platforms are designed to process the IoT data on either multi-

sensors or multi-stream [10] [11]. These works aim to improve 

the information quality of data coming from heterogeneous 

data sources. In the same scope, the authors of [12] present a 

virtual sensor environment that can handle real-time sensing 

data processing. This approach uses Complex Event Processing 

(CEP) as a virtual sensor engine. Their main contributions are 

to take the benefit from CEP and allow the user to define the 

custom analytic algorithm along with data analysis block on the 

incoming data. The authors of [13] address solving major 

challenges about implementing virtual sensor at Software as a 

service (SaaS) and Platform as a service (PaaS) level. They 

propose explicit sensor-cloud architecture with four separate 

modules to handle specific tasks such as sensing, processing, 

storing and communicating. Each module is equipped an API 

supporting the end-user building applications and sharing 

sensed data to either the IoT users or services. 

The limitations of state-of-the-art are given below. 

• In [8], we notice limited functionalities for the virtual 

sensor. These functions are only able to perform on 

incoming data. There is no discussion regarding virtual 

sensor types and which types are supported by their tool.  

• The authors of [9] have not shown how to configure the 

algorithm of CEP. They also do not offer a graphic 

interface to facilitate the configuration process of data 

analysis block for end-user. Likewise, the works of [10] 

[11] more focus on services and implementation than 

simplifying configuration process at the user level. 

• The work of [12] just focuses on the indoor scenario. 

There is no mention on the mechanism to create and 

configure a custom virtual sensor as well as an actuator.  

From all points above, there is not a comprehensive virtual 

sensor framework proposing an effective web-based interface 

along with a robust backend. Utilization of virtual sensor to 

present historical data is also not mentioned. Our framework is 

designed and implemented to mitigate their limitations. 

III. VIRTUAL SENSOR FRAMEWORK

In this section, we present the definition and taxonomy of 

the virtual sensor as well as our virtual sensor framework 

architecture, which is designed as a modularized layered 

application. Such framework operates over clustering 

architecture and asynchronous model to maximize scalability 

and performance. At the end of the section, we describe the 

workflow of the proposed framework in specific deployment 

scenarios to emphasize its benefit. 

A. Virtual Sensor 

We define the virtual sensor as a virtual object. Such object 

is equiped an operator to perform specific functionalites. In our 

framework, we support three type of operator including rule, 



formula and function. We also proposed a new taxonomy of the 

virtual sensor based on its operator. For instance, a virtual 

sensor is labelled an “Accumulator” type if its operator 

contains accumulated functions. The following is the list of 

supported virtual sensor type : 

• Singular: This type allows performing one-to-one 

mapping between the physical sensor and its reflected 

interface in cloud side. Through this virtual interface, the 

end-user can configure sensor configuration to obtain the 

data from a physical sensor. At the first stage, the sensor 

configuration is stored as a sensor driver that is selected by 

the user via VSE. 

• Accumulator: A virtual sensor could perform 

accumulation function on its sensing data within a 

particular duration. For example, a rainfall physical sensor 

uses the counter value to identify the rainwater volume. An 

accumulator VS is useful to present rainwater volume 

within 24 hours by accumulating on this counter value. 

• Selector: A virtual sensor enables to acquire sensing data 

from one or many physical sensors replied on defined 

criterions. For instance, a selector virtual sensor represents 

all temperature data that is higher than 10.

• Aggregator: A virtual sensor can perform basic statistics 

(averaging, maximum, minimum, etc.) on physical 

sensors. The functions of aggregator can mitigate the 

limitations of physical sensor regarding memory and 

computing. For example, in the case of humidity sensor 

deploying in various regions, an aggregator sensor can be 

implemented to calculate the average of humility for a 

particular area.

• Qualifier: The same with the singular type but virtual 

sensor only is activated if sensing value satisfies qualifier 

function. This VS type is configured by using “IF ELSE” 

statement. For example, one qualifier virtual sensor 

monitoring temperature can generate an alert when sensing 

value higher a defined threshold.

• Context-qualifier: The same with qualifier but the 

qualifier function performs on a bundle of sensor.

• Predictor: This  virtual sensor performs prediction next 

sensing value base on analyzing previous data. Such 

virtual sensor is necessary in case of occurring error of 

physical sensor.

• Compute: A virtual sensor is equipped a complex 

function, that analyzes sensing data from a set of the 

sensor to propose a higher-level information. For example, 

a Compute virtual sensor could offer the car state based on 

observed data (engine temperature, oil level, gas level) 

from car’s sensors.

We also present a novel component named “Logical Data-

Flow” which represents a chain of virtual sensors to perform a 

specific task.  For example, a logical data flow can be used to 

determine remains of liquid in a tank from ultrasonic sensor 

data. This LDF is probably a chain of one singular virtual 

sensor, one selector virtual sensor and one aggregator virtual 

sensor. 

B. Virtual Sensor Framework Architecture Overview 

The primary goal of our framework is to produce high-level 

of information from sensing data using logical data flow. This 

framework also simplifies creation and configuration logical 

data flow by offering an interactive virtual sensor editor and 

many types of productive operators such as rule, formula, and 

function. Fig. 1 depicts the framework architecture composing 

of three horizontal layers which are described below.  

• Connection Layer – This layer takes responsibility to 

maintain the connection of sVSF and Sensor Data Service 

Platform (SDSP) where aggregates and pre-process 

collected data from physical sensors. There are three core 

components: (i) Sensor Data Connector: This connector is 

used to interact with SDSP through RESTful web services 

and MQTT. (ii) Sensor Configuration Synchronization: 

This component oversees synchronizing sensor 

configuration between sVSF and SDSP. In addition, after 

successful testing, the configuration of a singular VS will 

be applied to corresponding physical sensor managed by 

SDSP through calling a RESTful web service. (iii) Sensor 

Tracking: This component is used to track the new sensor, 

which is recently registered to SDSP. The sensor profile 

will be saved in the database and reused in VSE. 

• Processing Layer – This layer contains the database and a 

primary engine to execute the logical data-flow and virtual 

sensor functionalities. There are two databases: (i) Sensor 

Data Storage database is a permanent database to store 

sensor information, LDF. (ii) Temporary Data Storage 

database is used to store temporary values of virtual sensor 

as well as intermediate results of LDF. Such data will be 

removed after a certain time configured by the 

administrator. Processing layer also manages a “Sensor 

Composition” (CP) component to retain a record of 

configuration and relationship among virtual sensors at the 

presentation layer. When a new virtual sensor is created by 

dragging and dropping onto VSE, such changes will be 

caught and stored by CP. In addition, such CP ensures 

logical data-flow is executed following asynchronous 

model in the engine. The processing layer carries a user-

defined function library that contains the custom functions 

declared by end-user; this function can be called directly 

from CP. 

• Presentation layer – This layer oversees rendering an 

interactive HTML5 web interface, namely virtual sensor 

editor. The editor supports the end-user to effectively 

interact with virtual sensors to create a logical data-flow. 

Virtual sensors are visualized as linkable boxes which can 

be configured either functionality or appearance via setting 

panel. In addition, these boxes can link together to create 

logical data flow.  All such configurations are handled by 

“Sensor Composition” in under layer. Presentation layer 

also carries a “Data-flow Profile Selector” component 

supporting the end-user to select and reuse virtual sensor 

template as well as logical data flow from the database. 

• Administration layer – This layer takes the role in 

authorizing and supervising user access right on virtual 

sensors and logical data-flows. The end-users are only 



allowed to perform certain actions based on their roles. For 

instance, a standard user cannot delete a logical data flow. 

Administration layer is also used to manage general settings 

of the framework such as the time life of temporary data, 

sensor configuration synchronization interval. 

Fig. 1. The proposed architecture and its building blocks. 

C. Virtual Sensor Editor 

One of a key element of sVSF is an HTML5 web-based 

virtual sensor editor, which enables cross-platform 

development environment. The editor is a WYSIWYG (what 

you see is what you get) system. This allows the user to simply 

build a LDF by creating, configuring and connecting VSs 

together. VSE is implemented using native HTML5 and 

JointJS
1
 library to maximize portability and availability across 

various end-user platforms. There are four highlighted 

attributes of this editor: (i) Drag-drop interface: The end-user 

is able to simply create and link the virtual sensors by drag-

drop action, (ii) Real-time Evaluation: After creating, user-

defined LDF could be evaluated and receive result 

immediately, (iii) Reusability: VS configuration and LDF is 

stored and shared between the end-users. 

As shown in Fig. 2, a virtual sensor is represented as a box 

consisting of input, output ports and a VS operator. The 

number of these ports and sensor configuration depend on the 

type of virtual sensor. For example, a singular virtual sensor 

which serves as a physical sensor has one output and no input 

port. In Configuration panel on the left side, a drop box is 

added to allow the user to configure sensor driver. By default, 

we use the green and red color to identify virtual sensor type. 

But the end-user can change this attribute. Each output port can 

be assigned to one or more input of different boxes via data 

links. After data link is established, the later sensor enables to 

select the output of former sensor as an input parameter for its 

operator. The auto-complete feature is also equipped to speed 

up this selecting process.  

Our sVSF offers recursive composing for the virtual sensor. 

A defined virtual sensor can be used as an input to construct 

other virtual sensors. After logical data flow is completely 

established, the evaluation feature enables the user to execute 

the data flow on self-generated data and receive the result 

immediately. Thus, the user can evaluate or correct the 

configuration in case of error. At the final state, the complete 

logical data flow is saved in the database and reused for next 

time.  

                                                           
1
 http://resources.jointjs.com 

Fig. 2. Virtual Sensor Editor Interface. 



  
Fig. 3. The framework operation diagram. 

D. Virtual Sensor Framework Workflow 

The overall blueprint of our sVSF workflow is shown in 

Fig. 3. Physical sensors register their resource descriptions 

under CoRE Link Format [18] with our backend. Once 

registered successfully, such sensors and resources are 

discovered through simple search queries. For instance, a query 

to search all the temperature sensor can be GET /rd-

lookup/ep?rt=temperature. All sensing data from registered 

sensors will be forwarded to sVSF via SDSP.  

In sVSF, VS function supports three types of the operator: 

rule, formula, and function. At the first state, the incoming data 

is received by connection layer. After that, this data is 

conveyed to Sensor Composition which handles and processes 

the VS operators and relationships in the logical data flow. This 

component also takes responsibility to convert VS operators to 

the proper mathematical operations and ensures it is executed 

in correct order in the processing engine. The conversions of 

VS operator into mathematical operation goes through two 

phases: First, the logical data flow content and sensor 

information are loaded into CP. More detail, as shown in Fig. 

4, a logical data flow comprises four VS operators, and sensor 

metadata are inserted in CP. Second, the particular variables of 

the operator are extracted and calculated by calling the 

corresponding functions in Function Lib Component (FL). 

These variables are reserved to simplify particular operations. 

For example, as shown in Fig.  4,  

$device.tank_level_change.data[24] represents all sensing data 

of “tank_level_change” sensor within 24 hours. After 

calculating, the values of special variables are added into 

virtual sensor operator before storing in temporary data storage 

in order to be reused in another stage. The lifetime of this 

temporary data can be set up by the sVSF administrators In the 

case of the virtual sensor has an input from another virtual 

sensor. This input value is also considered as a special variable 

and directly access via sensor name. For instance, sensor 

named “tank_volume” can use the output value of “tank_level” 

sensor via declaring a speacial variable named “tank_level”. 

Furthermore, to maximize performance, Sensor Composition 

take responsibility for organizing the working schedule based 

on the asynchronous model. The un-relational virtual sensors, 

which are not linked together, will be arranged into the same 

thread and executed in parallel in processing engine. For 

example, in Fig. 2, all green virtual sensors will be performed 

in parallel.  

The most important component in processing layer is 

processing engine, where VS operators are executed. These 

executions are performed in parallel by a JavaScript library, 

namely MathJS
2
. Finally, the output of processing engine will 

be stored in the database to be reused before responding final 

result to SDSP. 

Fig. 4. The generating high-level information process. 

IV. PROTOTYPE AND EVALUATION

In this section, we describe the utilization of our framework 

in a practical use-case. We also discuss how to archive high 

performance, scalability in our framework. Finally, an 

evaluation of our strategies is proposed. 

Our first work has been applied to an industrial project for 

tank monitoring. The primary goal of this project is to manage 

the chemical volume via a level sensor which is plugged at the 

top of a tank.  The raw data of this sensor is the distance from 

the top of the tank to the chemical surface. Fig. 4 illustrates the 

whole process of generating high-level information such as 

remaining of the chemical level (Tank_level), remains of 

chemical volume (Tank_volume), change of chemical level 

(Tank_level_change), average on this change within 24h 

(Avg_tank_level_change). Firstly, the raw data contains sensor 

information and sensed data is sent to sVSF. This data is 

handled by Sensor Composition where corresponding logical 

data-flow and sensor metadata is loaded from the database. In 

this case, the metadata is the tank information such as the 

height of tank (Tank_high) and the total volume of tank 

(Tank_total_volume). At this component, special variables 

such as last value of such sensor (Tank_leve.lastValue) or 

historical sensing data within 24h (Tank_leve_change.data[24]) 

are calculated by calling the corresponding functions in 

Function Lib component. All obtained information (special 

variable value, raw data value, sensor metadata) is injected into 

logical data low. Before transferring and executing at 

Processing Engine, logical data flow is converted to the 

                                                           
2
 http://mathjs.org 



mathematical operations. The final result is responded to SDSP 

via Connection Layer 

SVSF is developed by integrating MathJS library into 

NodeJS Express framework
3
 which uses event-driven 

architecture. Nodejs also leverages a non-blocking I/O model 

that allows request being processed asynchronously. In order to 

enhance the framework scalability, we use clustering 

architecture. A cluster comprises a set of servers running 

simultaneously. Each server is called node. The cluster is 

elastic to adapt to the unexpected change in term of the number 

of concurrent user by dynamically add or remove a node to the 

cluster. There are two types of nodes: master node and worker 

node. The master node is used to manage the worker node in 

the cluster. It plays a role to distribute requests among different 

nodes in the cluster. Other strategies are proposed to increase 

the performance: 

• The first strategy is to store the output of the virtual sensor 

in a temporary database. Such value could be re-used as 

the input of other VS sensor instead of re-calculation. 

• The second strategy is to use an in-memory database
4
 to 

speed up data querying process. Our framework uses a 

NoSQL database named Apache CouchDB
5
. Comparing 

with a relational database, CouchDB stores the data in an 

independent document and its self-contained schema. As 

the result, it provides a massive scalability and powerful 

full-text search 

• The final strategy is to apply the asynchronous model to 

execute logical data-flow, meaning that all independent 

virtual sensor or virtual sensor in the same stage is 

executed in parallel. 

To evaluate the effectiveness of proposed strategies, we 

have to consider two scenarios: (i) Significantly increasing the 

number of simultaneous physical sensor in SDSP. (ii) 

Increasing the complexity of logical data flow regarding the 

number of VS. All evaluations are performed on a computer 

with following configuration: Intel(R) Core(TM) i5-6200U 

CPU @ 2.30GHz, 2401 MHz, 2 Core(s), 4 Logical 

Processor(s), 8GB of RAM and the operating system is 64-bit 

Windows 10. The clustering model is set up and deployed 

using native Clustering Module
6
 provided by NodeJS .The data 

rate of the physical sensor is one message per second. For the 

first scenario, we have conducted an experiment with different 

scale of sensor network, which increases from 100 to 450 

concurrent physical sensors. The logical data flow comprises 

50 virtual sensors. Fig. 5 illustrates the performance changes 

after adopting our enhancements. As shown in the figure, our 

enhancement is remarkably effective. Without clustering model 

and enhancement strategies, the response time is significant 

increase when expanding the scale of sensor network. After 

applying clustering model using 4 or 8 clusters, the response 

time is highly stable under 1 second regardless the size of 

sensor network. With 450 concurrent physical sensors, the 

                                                           
3
 http://expressjs.com/fr 

4
 https://en.wikipedia.org/wiki/In-memory_database 

5
 http://couchdb.apache.org 

6
 http://nodejs.org/api/cluster.html 

normal response time is over 6 seconds comparing with 875 

milliseconds and 650 milliseconds of the model using 4 and 8 

clusters respectively.  

Fig. 5. The effect of our enhancement in scalability and performance 

In the second scenario, the simulations are performed with 

different logical data flows size, which contains from 1 to 100 

virtual sensors. Each logical data-flow is evaluated by various 

sensor network scale in SDSP. As shown in Fig. 6, when 

increasing the number of concurrent physical sensor, the 

response time lightly increases regardless logical data flow 

size. In case the scale of the logical data flow is moderate 

(comprising fewer than 50 virtual sensors), our system is able 

to serve a data message under 800ms even when 50 concurrent 

physical sensors are running. In the case of scaling up to 100 

concurrent physical sensors, the response time is still under  1 

second.  

Fig. 6. The framework’s performance. 

V. CONCLUSION AND FUTURE WORK

In this paper, we review a concept of the virtual sensor and 

propose a new virtual sensor taxonomy based on its 

functionality. The limitations of the existing virtual sensor 

frameworks are also considered in term of virtual sensor 

functionality and usability. Motivating to bridge the gaps, we 

proposed a scalable virtual sensor framework that allows 

producing high-level information from sensed data, by creating 

a logical data flow over a collection of the virtual sensor. A 

web-based virtual sensor editor is also offered to accelerate 

creating and configuring logical data-flow. In evaluation 

section, a serial of strategies to enhance the performance and 



scalability are discussed and evaluated. Regarding future 

works, we are currently working on integrating our platform 

into the oneM2M based framework [19] and FIWARE
7

architecture for ensuring interoperability. 
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