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Abstract

We consider the problem of blind equalization of a constant modulus signal that is received in

the presence of Inter-Symbol-Interference (ISI) and additive noise. A well-known class of adaptive

algorithms for this problem is the so-called Godard family of blind equalizers[1], including among

others the CMA[2] and SATO[3] algorithms. These algorithms are known for their ability in general

to open the eye of a communications channel and for their low computational complexity. However,

a common disadvantage of all algorithms of this class is that they might exhibit ill-convergence if

not properly initialized, due to the non-convex form of their cost function. In this paper we present

a di�erent approach to the problem, namely, a bilinear approach in order to construct a convex

cost function with a unique minimum point. After presenting the formulation for this approach, we

show that in the case of an exactly invertible noiseless channel the optimal solution that completely

opens the communication channel's eye may always be attained, regardless of the initial equalizer's

setting. This implies that equalization may be also achieved for a noisy FIR channel, provided

that the equalizer is long enough to approximate adequately the channel's inverse impulse response.

Computer simulations are provided to show the validity of our theoretical arguments.

1 Introduction

Consider the problem of blind equalization of a constant modulus signal as depicted in �gure 1, where

a baseband representation of a communications system is shown. The samples of the emitted signal
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Figure 1: A typical blind equalization scheme

fakg (with constant modulus) are transmited through a linear noisy channel resulting in the received

sequence of samples fxkg that are both corrupted by Inter-Symbol-Interference (ISI) and additive noise.
The task of the blind equalizer is to match the inverse of the linear channel's impulse response in order

to cancel the ISI and result in a correct retrieval of the emitted symbols fakg based only on statistical

information about the emitted symbols. A very popular class of algorithms that try to cancel ISI by

exploiting the constant-modulus property of the constellation is the so-called Godard family of blind

equalizers, which includes among others the well known Constant Modulus Algorithm (CMA). This

algorithm minimizes the following cost function:

Jp(W ) =
1

2p
E(jyjp�Rp)

2
; p 2 1; 2; . . . ; (1)
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where E denotes statistical expectation and Rp is a constant scalar called dispersion constant and

de�ned as Rp =
Ejak j

2p

Ejakj
p . The corresponding stochastic gradient algorithm is given by:

Wk+1 = Wk � �Xkyk jykj
p�2(jykj

p � Rp) : (2)

In the above notation, Wk is a column vector containing the equalizer's setting at time instant k,

Xk = [xk xk�1 � � �xk�N+1]
H and yk denotes the equalizer's output at time instant k and may be

written as yk = X
H
k Wk (H denotes complex conjugate transposition). The well known CMA 2-2

algorithm is a special case of (2) for p = 2 and has been shown to be able in general to open the

communication system's eye. A main drawback however of all Godard equalizers is that they might

converge to undesired solutions if not properly initialized, due to the non-convex form of their cost

function which has a number of local minima apart from its global minimum point. For example, the

equilibria points for the algorithm (2) (p=2) are given by the following equation:

E((jykj
2 �R2)ykXk) = 0 : (3)

Equation (3) is a system of N nonlinear equations for the coe�cients of the equalizer �lter W . The

highly non-linear character of this system of equations results in a plenitude of solutions, some of which

are minima of the cost function J2(W ). This is why false minima possibilities exist for the CMA

algorithm. We will now propose a di�erent approach to the problem of �gure 1 in order to avoid the

problems arising from the non-convexity of the cost function in (1).

2 A bilinear approach

2.1 Formulation

We now suppose that the channel is a possibly non-minimum phase linear �lter with an inverse impulse

response of order N . We also assume that the emitted symbols fakg may equally likely take on the

binary values 1 and �1 (2-PAM modulation) (the complex(QAM) case may be handled equally well).

Consider now the following regression vector:

Xk = [x2k 2xkxk�1 � � � x2k�1 2xk�1xk�2 � � � x
2
k�N+1]

T
; (4)

that contains all possible product combinations (square terms and cross-terms) of the received samples

xk; � � � ; xk�N+1 with the convention that a multiplicative factor of 2 is used for products of di�erent

samples (cross-terms). This vector has
NX
i=1

i =
N�(N+1)

2
entries (which are actually the terms in the

expansion of the quantity (
N�1X

i=0

xk�i)
2). Consider also the following vector � with

N�(N+1)

2
entries:

� = [�(0) �
(1) � � � �(

N�(N+1)

2
�1)]T : (5)

This vector will denote the impulse response of a linear �lter through which passes the regression vector

Xk and its value at time instant k will be denoted by �k . The output of this �lter at time instant k will

be denoted by zk and may be expressed as zk = X T
k �k . Our aim will be to force this �lter's output to

the positive constant 1 by penalizing its deviations from this constant in a square-sense:

min
�
E(z � 1)2 : (6)

The philosophy behind this criterion is that, in a way, we take the \square" of the received signal and

then convolve it with a �lter in order to produce an output equal to the square of the emitted signal's

modulus. This must be seen in contrast to traditional equalizers, where the received signal is �rst passed

through an equalizer whose output's square is forced to match the emitted signal's squared modulus.

As will be shown, this \interchange" of non-linearity and equalizer still allows for an identi�cation of
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the channel's inverse impulse response. Moreover, it will provide a unique solution thus avoiding the

problem of false-minima.

The criterion in (6) corresponds to a quadratic cost function and has the following unique solution:

�
�= fE(XX T) g�1E(X ) ; (7)

provided that the inverse of the \covariance" matrix E(XX T ) exists. On the other hand, one solution

to the problem (5) is the following:

�� = [w2
0 w0w1 � � �w2

1 w1w2 � � � � � � w2
N�1]

T
; (8)

where
�
W= [w0 w1 � � �wN�1]

T represents the impulse response of the true inverse of the transmission

channel. This happens because at each time instant, X T
k
�� = (XT

kW )2 = a
2
k = 1 (in the absence of noise

or approximation error) and thus with � = �� the cost function E(z� 1)2 achieves its minimum value 0:

E(X T �� � 1)2 = 0 : (9)

The above considerations lead to the following lemma:

Lemma: When the impulse response of the inverse of the transmission channel is of length N , no

additive noise is present and the matrix E(XX T) is invertible, then the problem (6) has the unique

solution (8).

The calculation of this solution automatically implies the identi�cation of the channel's inverse impulse

response, since information about both the magnitude and the sign of the elements of
�
W is contained in

��. This means that, from an identi�cation point of view, the non-minimum phase transmission channel

may be determined (under some idealized conditions with perfect accuracy) by (7). Intuitively, this is

not an astonishing result, since the quantity E(XX T )
�1
E(X ) contains statistics of orders higher than

2 (HOS) that are necessary, as is known, for the identi�cation of a non-minimum phase system.

The above lemma implies also that, in the case of a FIR linear channel, an equalizer long enough to

adequately approximate the channel's inverse will still converge to an acceptable setting that opens the

eye of the system.

We will in the sequel examine how the solution in (7) may be calculated and then how one determines

from this solution the impulse response
�
W .

2.2 Determination of the channel's inverse impulse response

One may now distinguish between two di�erent general methodologies in order to estimate the channel's

inverse: either use an adaptive algorithm to recursively compute at each step an update for �k and then

determine the corresponding channel setting for this step, or use some kind of estimator to calculate

the quantity E(XX T)
�1
E(X ) and then determine the corresponding channel based on this estimation

only once (batch processing).

An adaptive equalization setup based on the above principle is depicted in �gure 2. In this �gure, the
N�(N�1)

2
entries of the equalizer � are \distributed" in N linear equalizers of respective lengths N; . . . ; 1,

i.e. a multichannel structure is used (however this structure is equivalent to using only one equalizer �

with
N�(N�1)

2
entries). The ith equalizer has as input the stream xkxk�i+1. The entries of the regression

vector in (4) are calculated by using a tapped-delay line and some multiplication operators. The output

of the bank of N equalizers at time instant k, zk, is then substracted from the constant 1 thus creating

the error �k which feeds the adaptive algorithm that tries to minimize the squared error by adapting the

equalizers' setting. This can be done by any classical adaptive �ltering algorithm, like e.g. an LMS or

an RLS algorithm or any other more sophisticated adaptive �ltering algorithm. For example, an RLS
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Figure 2: A bilinear blind equalization setup

algorithm to recursively compute the solution in (7) would essentially perform the following operations

at each time instant:

�k = 1� X T
k �k

R
�1
k = �

�1
R
�1
k�1 � �

�1
R
�1
k�1Xk(1 + X T

k �
�1
R
�1
k�1Xk)

�1X T
k �

�1
R
�1
k�1

�k+1 = �k + R
�1
k Xk�k :

(10)

In the same way, an LMS algorithm would be as follows:

�k = 1�X T
k �k

�k+1 = �k + �Xk�k :
(11)

Independently of our choice of algorithm, it will converge after a number of operations to its unique

minimum point given in (7). It is then our task to determine
�
W from

�
� (of course this can also be done

at each iteration in order to gradually open the system's eye). A way to do this is the following: we

collect all the
N�(N+1)

2
elements of vector � into a symmetric N �N matrix � as following:

� =

2
6666664

�
(0)

�
(1) � � � �

(N)

�
(1)

�
(N+1) � � � �

(2N�1)

: : � � � :

: : � � � :

�
(N)

�
(2N�1) � � � �

(
N�(N+1)

2
�1)

3
7777775

: (12)

If � has attained exactly its optimal value predicted in (8), the above matrix � will be as follows:

�� =

2
666664

w
2
0 w0w1 � � � w0wN�1

w0w1 w
2
1 � � � w1wN�1

: : � � � :

: : � � � :

w0wN�1 w1wN�1 � � � w
2
N�1

3
777775

; (13)

which is a rank-1 matrix (�� =
�
W

�
W

T

). Then
�
W , the optimal equalizer setting, may be directly computed

as:
�
W=

p
�max Vmax ; (14)

where �max and Vmax denote the largest eigenvalue and the corresponding eigenvector of matrix ��,

respectively (all other eigenvalues should ideally equal zero). Therefore, we may directly determine

from � the impulse response of the channel's inverse by �rst forming the matrix � and then computing

its largest eigenvalue and the corresponding eigenvector.

4



3 Over-parameterized equalizer: a special case

A case that merits a special consideration is the case of an over-parameterized equalizer w.r.t. the

channel's impulse response (even though this case is not a very realistic one). Such a situation may

arise, e.g. when the channel is a AR(N � 1) �lter and the equalizer � has
M�(M+1)

2 elements (M > N),

i.e. more than the strictly needed (
N�(N+1)

2
) in order to perfectly match the channel's inverse impulse

response. In this case, there exist more than one solution that perfectly identify the channel's inverse,

corresponding to shifted versions of the ideal setting. For example, suppose an AR(1) channel C = [c0 c1]

and a MA equalizer of 6 entries (instead of 3): � = [�(0) �(1) �(2) �(3) �(4) �(5)]T . It is obvious that both

settings �1 = [0 0 0 c20 c0c1 c
2
1]
T and �

2 = [c20 c0c1 0 c
2
1 0 0]

T perfectly open the system's eye, since they

correspond to the respective settings W a = [0 c0 c1]
T and W

b = [c0 c1 0]
T . In fact, any vector � of the

form � = ��
1 + ��

2 with �+ � = 1 satis�es the following equation:

E(XX T)� = E(X ) ; (15)

since E(X T
�
i) � 1 ; i = 1; 2: This means that, except for the cases [� �] = [1 0] and [� �] = [0 1], the

solution for � found by the algorithm will not directly correspond to the true channel setting but to a

weighted sum of two shifted versions of it. This generalizes for any value of M > N to a weighted sum

of M �N shifted versions of the true channel setting. We now present a method to face this problem.

Consider the eigenvalue decomposition of matrix � as follows:

� =
NX
i=1

�iViV
T
i ; (16)

where the eigenvectors Vi are considered to be in a descending order according to the absolute values

of their eigenvalues. Consider also the following Toeplitz matrix :

W =

2
666666664

w0 w�1 � � � w�n

w1 w0
. . .

...
...

...
. . . w0

...
...

. . .
...

wN�1 wN�2 � � � wN�1�n

3
777777775

; (17)

where the elements w�1; � � � ; w�n; play the role of some additional coe�cients in the impulse response

of the channel's inverse and n is a small integer (n < N and ideally n =M �N). We now consider the

following problem:
min

Q;fw�n;���;wN�1g
kW � VQk2F ; (18)

where k:kF denotes the Frobenius norm (kAk2F = tr(AT
A)), Q 2 R(n+1)�(n+1) and V is a matrix

containing the n+ 1 �rst eigenvectors of �: V = [V1 � � �Vn+1]. It can be shown that the solution to the

above problem (18) (a vector of n+N entries) is the eigenvector corresponding to the largest eigenvalue

of the following matrix:

� =
n+1X
i=1


i

T
i ; 
i = [0T(n�i+1)�(n+1) VT 0T(i�1)�(n+1)]

T
: (19)

This method has been proven to work perfectly in over-determined cases that we examined via computer

simulations.

4 Simulations

The methods we proposed above have been tested via computer simulations that have veri�ed the

validity of our arguments. In all noiseless cases of AR channels and MA equalizers exactly parameterized,

perfect identi�cation has been observed, as expected, independently of the algorithms' initializations.

Such an example may be seen in �gure (3a), which refers to an AR(1) noiseless channel and an equalizer

W = [w0 w1]
T corresponding to � = [�(0) �(1) �(2)]T . The employed algorithm is (11) and the starting
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and ending points of 40 di�erent initializations on a circle of radius 2 are shown. One may see the global

convergence property of the algorithm. The same experiment has been carried out with CMA and the

result is shown in �gure (3b) which shows the existence of local minima. A more realistic simulation is

shown in �gures (3c) and (3d) where one may see the evolution of the closed-eye measure of a linear

noisy (SNR=30 dB) communications system using the algorithm in (10) (� = 1) and CMA, respectively.

The channel's impulse response is [1 0:6 0:36] and an equalizer W of 8 taps is used (28 taps for �). One

may see how the opening of the system's eye may be achieved for 2 di�erent initializations by using a

bilinear algorithm, while CMA gets trapped by a local minimum for one of these initializations.
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Figure 3: Computer simulations results

5 Conclusions

We have proposed a new approach to the problem of blind equalization of a constant modulus signal that

is corrupted by Inter-Symbol-Interference and additive noise. This approach introduces a regression

vector that contains bilinear terms of the received distorted sequence and uses this vector in order

to identify the channel's inverse impulse response, hence the term bilinear. The channel's inverse

impulse response is found in two steps: �rst a linear �lter through which the bilinear regressor passes is

computed so as to produce a constant output and then this setting is used in order to �nd the desired

impulse response. This approach leads to globally convergent algorithms, since it minimizes a convex

(quadratic) cost function with a unique minimum point. Algorithmic aspects such as complexity, speed

and robustness of di�erent schemes are the object of current work.
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