
Multi-Objective Placement of Virtual Network

Function Chains in 5G

Osama Arouk

INRIA, Université Côte d’Azur

2004 Route des Lucioles,

06902 Sophia Antipolis Cedex, France

Email: osama.arouk@inria.fr

Navid Nikaein

Communications Systems Department

EURECOM, Biot, France

Email: navid.nikaein@eurecom.fr

Thierry Turletti

INRIA, Université Côte d’Azur

2004 Route des Lucioles,

06902 Sophia Antipolis Cedex, France

Email: thierry.turletti@inria.fr

Abstract—In this paper we propose a novel algorithm, namely
Multi-Objective Placement (MOP), for the efficient placement of
Virtualized Network Function (VNF) chains in future 5G systems.
Real datasets are used to evaluate the performance of MOP in
terms of acceptance ratio and embedding time when placing the
time critical radio access network (RAN) functions as a chain. In
addition, we rely on a realistic infrastructure topology to assess
the performance of MOP with two main objectives: maximizing
the number of base stations that could be embedded in the Cloud
and load balancing. The results reveal that the acceptance ratio of
embedding RAN functions is only 5% less than the one obtained
with the optimal solution for the majority of considered scenarios,
with a speedup factor of up to 2000 times.

Index Terms—5G; C-RAN; NFV; function split; function
placement

I. INTRODUCTION

T he evolution of cellular mobiles networks toward 5G is

driven by many issues, such as the explosive demand

of traffic and the arrival of a myriad of Internet of Things

(IoT) devices (e.g., 50 billion or even more), in addition to

other emerging technologies. An approach to support such

scenarios in 5G networks is by using dense, cooperative,

and heterogeneous wireless networks [1]. Unfortunately, this

approach is costly in terms of CAPEX and OPEX, especially

when deploying small cells [2]. In order to support the increas-

ing demand of traffic with a minimal cost, a Centralized (or

Cloud) Radio Access Network (C-RAN) architecture can be

adopted [3]. In this architecture, a subset of network functions,

after being virtualized, is moved from the cell sites to the

cloud, named as Base Band Unit (BBU), and the remaining

functions are placed at the cell site close to the radio frontend

and antennas, named as Remote Radio Unit (RRU). This is

called functional split and provides the required flexibility to

enable various use cases considered in 5G. In the recent 3GPP

standardization (Rel. 13 and 14), three elements have been

defined, RRU, Distribution Unit (DU) which hosts time-critical

L1/L2 functions and aggregates a subset of RRUs (equivalent

to BBU), and centralize unit (CU) for the remaining functions.

RRU and DU can be defined as a logical unit including a

subset of base station functions located at the cell edge, while

the other functions are located at the CU in the Cloud.

Despite its advantages, functional split comes with many

challenges, such as very high capacity requirement of the

fronthaul (FH) (i.e., transport network between RRU and

BBU). Since PHY and higher layers processing is moved

to the Cloud, strict latency requirements have to be met,

especially for certain functional split such as LTE (inverse)

Fast Fourier Transform (IFFT/FFT) and operations like LTE

Hybrid Automatic Repeat Request (HARQ) [3]. Relaxing

fronthaul requirements can be done in two ways: fronthaul

compression and functional split [4]. Although the fronthaul

compression is able to reduce the capacity requirements [5],

[6], it may increase the complexity, especially at the RRU side.

Moreover, this solution only solves the problem of capacity

requirement and to some extend the latency, while jitter issues

are still remaining. The other approach consists in shifting

some of the baseband processing functions from the BBU to

the cell site using functional split between BBU and RRU. Not

only the functional split relaxes the fronthaul requirements, but

it also adds flexibility in the deployment of various use-cases.

Placement of a network function chain in the Cloud is

another challenging issue facing the adoption of C-RAN type

architecture. While in the literature many works address the

problem of elastic network function placement [7], [8], there

exists few work considering the placement of time critical net-

work functions and the associated service chain. The authors

in [9] formulate an Integer Linear Programming (ILP) model

to maximize the number of cloudified BBUs with unlimited

resources. Another approach proposed for the problem of BBU

placement is the one presented in [10], where a graph-based

model is introduced to decide whether the BBU functions need

to be placed in the cloud or in the cell site. However, in

the previous works resources are considered to be unlimited

and the placement of network function inside the cloud is not

addressed.

In this paper, we propose the Multiple Objective Placement

(MOP) algorithm for the efficient placement of virtualized

network function chains in future 5G systems. The main

idea of MOP is to cluster the nodes into different distinct

regions (or classes) according to the latency requirements of

the VNFs. A VNF is then embedded on a node chosen from

its related region, without violating the requirement of the

VNF. The advantage of MOP is that it can be adapted to

many objectives by simply changing the conditions on which

nodes are selected to embed VNFs. However, maximizing

the number of cloudified BBUs and load balancing are the

considered objectives in the current paper. Our contributions

are as follows:

• we present the placement model for network service

chain and the problem formulation for Integer Linear

Programing (ILP) (Sections II and III, respectively),

• we propose our model MOP and show its relevance and

applicability in the context of 5G networks (Sections IV),

• using extensive simulations on realistic topology, we

show that significant performance improvements could be

achieved compared to current approaches (Sections V).

II. RELATED WORK

Once shifted to the Cloud, the VNFs must be efficiently

placed to optimize the resource utilization. Note that when

embedding a Service Function Chain (SFC), the latency re-

quirement of the whole chain has to be met, in addition to

the latency requirement of each VNF composing it. Moreover,

there may be some interactions between chains to accom-

plish certain tasks, e.g., when using Coordinated Multipoint

(CoMP), which imposes strict latency on certain functions.

In the literature, many works tackle the problem of BBU

placement. The authors in [10] propose a graph-based model

and formulate an optimization problem to minimize the com-

putational cost of the fronthaul. They use a Genetic Algo-

rithm (GA) to find a sub-optimal solution because a general

analytical solution for such a problem is difficult to obtain. As

minimizing the fronthaul cost and the computation cost follow

contradictory objectives, they analyze a trade-off between

the centralization and decentralization by tuning a trade-off

coefficient. Although the authors take into consideration that

the latency for the chain as a whole is constrained, they do

not account for the latency constraint of the functions in the

chain, which may be strict too. Moreover, they suppose that the

Cloud has ideal characteristics, with neither processing delay

nor computational cost (i.e., the cost of embedding a BBU

function) in the Cloud, which is not realistic. The authors

of [9] tackle the problem of BBU hoteling, i.e. finding the

best location for the BBU to be placed in the Central Office

(CO). Their model aims at minimizing both the number of the

deployed fibers and the number of locations where the BBUs

have to be placed, i.e. the degree of consolidation. However,

they do not consider the limited amount of resources available

in the CO. Furthermore, they tackle the problem of BBU

placement as a whole, without considering the constraints

on each BBU function. Moreover, placing a whole BBU

in a single location does not allow to use in an optimal

way the available resources, especially when the latter are

heterogeneous. Therefore, in the following, a novel algorithm

for the functional placement is introduced.

III. PLACEMENT MODEL AND PROBLEM FORMULATION

In this section, we list the VNF requirements considered

in the placement algorithm, and then we present an Integer

Linear Programming (ILP) formulation of the VNF placement

problem.

A given VNF can be characterized by the following param-

eters, considering the chain Γi with a length hi (see Table II):

1) Input rate of the VNF λΓi
(f): σr

Γi
(f − 1, f). All the

VNFs placed at the cell site are assigned to λΓi
(0),

where this VNF does not have input σr
Γi
(−1, 0) = 0,

and does not need any computation. Note that we tackle

the problem of VNF placement in the Cloud. Therefore,

all the VNFs placed at the cell site are not taken into

consideration.

2) Output rate of the VNF, which is the input rate of the

following VNF in the chain: σr
Γi
(f, f+1). Alternatively,

the last VNF in the chain is considered without output.

3) CPU requirements: λc
Γi
(f).

4) Memory requirements: λm
Γi
(f).

5) Latency constraint for each function: λτ
Γi
(f).

TABLE I: Substrate Network Parameters

Notation Definition

 Substrate network graph. N is Nb. nodes

 Physical node

Substrate links

 Link between two nodes

 Total available CPU

 Total available memory

 Available rate of the link between the nodes and

 Cost of a CPU unit

 Cost of a memory unit

 Cost of a link rate unit for the link

 Link’s delay

 Processing time of the function if it is mapped on the node

 Minimal (propagation) delay among the different links between the cell

site and the node

 CPU resources that are already used on the node

 Memory resources that are already used on the node

Rate, which is already used, of the link between node on which

the function () is already mapped and on which the function

is expected to be mapped.

 Rate, which is already used, of the links connected to the node

 is Nb.

tion from the chain

Link rate requirements of the link between the functions

belonging to the

TABLE II: SFC parameters

Notation Definition

 Set of service function chains to be embedded. M is Nb.

chains

 Service function chain with a length

 function of the chain

 Set of virtual links for all the chains

 Set of virtual links for the chain

 CPU requirements of the function from the chain

 Memory requirements of the function from the chain

 Link rate requirements of the link between the functions

 and from the chain

 Latency requirements of the function belonging to the

chain

 Mapping the function on the physical node

The SFC embedding problem can be formulated as an ILP

with the objective to reduce the cost of VNF chain embedding

on a substrate network. This can be expressed as follows:

min

N
∑

n=1

M
∑

j=1

hj
∑

i=1

{

κc(n)λ
c
Γj
(i) + κm(n)λm

Γj
(i)

}

∆(i → n)

+
∑

l∈L

M
∑

j=1

hj
∑

i=1

{

κr(l)σ
r
Γj
(i− 1, i)

}

∆(σr
Γj
(i−1, i) → l) (1)

where ∆(x → y) is the unit function and is expressed as

follows:

∆(x → y) =

{

1 if the function x is mapped on node y

0 otherwise

In addition to the resource utilization cost (i.e., the

amount of resources that would be allocated for a VNF

or a chain) [11], the cost of CPU/memory/link unit, i.e.,

κc(p)/κc(p)/κc(p), by itself may vary from a location to

another one [10]. For example, the cost of resource unit could

vary according to the virtualization environment, cell site rent

or the electricity consumption of the site.

During the mapping phase and in order to make sure that the

requirements of the VNFs mapped on a node would not exceed

the available resources at the considered node, the following

conditions must be applied when solving Equation 1:

M
∑

j=1

hj
∑

i=1

{

κc(p)λ
c
Γj
(i)

}

∆(i → p) ≤ ϕc(p) ∀ϕ(p) ∈ Φ

M
∑

j=1

hj
∑

i=1

{

κm(p)λm
Γj
(i)

}

∆(i → p) ≤ ϕm(p) ∀ϕ(p) ∈ Φ

M
∑

j=1

hj
∑

i=1

{

κr(l)λ
r
Γj
(i− 1, i)

}

∆(i−1; i → l) ≤ ϕr(l) ∀l ∈ L

where these equations represent the conditions on CPU, mem-

ory, and links, respectively. Moreover, the latency requirements

of the VNFs must be satisfied too:

f
∑

g=1

(

N
∑

n=1

tλΓi
(g)→ϕ(p)∆(g → n)+

∑

l∈L

tl∆(σr
Γj
(g−1, g) → l))

; 1 ≤ j ≤ M, 1 ≤ g ≤ hj (2)

As solving an ILP problem is generally intractable [12], in

the following we introduce the MOP algorithm for efficient

embedding. Notice that, for the sake of simplicity, the cost

of functions embedding and of the corresponding links are

considered to be the same in the whole considered topology.

Thus, the values of κ∗ are set to one.

IV. MULTI-OBJECTIVE PLACEMENT (MOP)

This section describes the MOP algorithm that aims to find

the best candidate node for embedding each VNF of a chain.

This algorithm consists of three steps:

1) for every VNF having distinct latency constraint in

the chain, determine the Eligible Regions (ER) corre-

sponding to the set of nodes that satisfy the latency

requirements of the VNF;

2) determine the Candidates Group (CG), which is com-

posed of the nodes from the ER that satisfy all the other

VNF requirements, e.g. CPU/memory and input/output

rate requirements;

3) select the best node among CG according to the consid-

ered objective.

In the first step, each node is mapped to a certain ER based

on the latency that it can support, where the number of ERs is

equal to the number of VNFs with distinct latencies, see Fig. 1.

If two VNFs have the same latency, then there will be only

one ER. The reason behind the classification of nodes based

on VNF latency requirements is to avoid a situation where all

)

)

)

223)

)

)

)

)

)

)

)

)

)

)

)

Fig. 1: Eligible Regions: nodes distribution based on the

latency requirements of the VNFs λτ
Γi
(f)

the chains are embedded to the edge of the network, i.e. as

close as possible to the cell site, when the network is lightly

loaded. Without caution, it may not be possible to embed new

chains when there is a surge in the traffic without violating

the latency constrains of the chains.

Algorithm 1 Select the best candidate node among the

available ones to embed function λΓj
(f) of chain Γi(f)

Determine ER() :
1: for n = 1:N do ⊲ physical nodes
2: for f = 1:hj do ⊲ functions

3: T = dn +
∑f

g=1 tλΓi
(g)→ϕ(n)

4: if f == 1 then
5: if T ≤ λτ

Γi(f)
then

6: add (n, ERf), and Break
7: end if
8: else
9: if λτ

Γi(f−1) < T ≤ λτ
Γi(f)

then
10: add (n, ERf), and Break
11: end if
12: end if
13: end for
14: end for

Determine CG node() :
1: for f = 1:hj do ⊲ functions
2: CG = φ; r = i+ 1
3: while (CG = φ)& (r > 0) do
4: r = r - 1
5: for j = 1 : SizeOf(ERr) do
6: If ERr(j) satisfies remaining requirements of f
7: add (ERr(j), CG)
8: end for
9: end while

10: if SizeOf(CG) = 0 then
11: skip(f) ⊲ f can not be embedded
12: else if SizeOf(CG) = 1 then
13: embed (f, CG(1))
14: else
15: if OBJ = MAX. EMBED CHAINS then
16: Apply AHP
17: else
18: Apply MSE
19: end if
20: end if
21: end for

After determining the eligible regions, the candidates group

is created. In this step, and for each VNF, the search task to

find possible candidates starts from its eligible region (i.e.,

the ER corresponding to the VNF latency requirement). If the

search task could not find any candidate in its eligible region,

it then goes to the inferior ER, i.e. the ER corresponding to

the VNF just before in the chain. The third step consists in

choosing the best node among the candidate ones based on the

considered objective. As shown later, the decision is taken to

achieve a specific objective like load balancing or maximizing

the number of BBUs that could be supported by the Cloud.

Fig. 1 shows the distribution of nodes when they are

organized in ERs according to the latency requirements of

the PHY-layer VNFs. In this example, it is assumed that there

are 8 nodes and 3 BBU VNFs. This figure is obtained using

the first part of Algorithm 1, i.e. determine ER().

In the second part of the algorithm, i.e.

determine CG node(), the objective of lines 1-10 is to

select, from the candidates group, the nodes that can support:

i) the required CPU/memory resources of the VNF, ii) the

VNF input and output rates requirements.

After going through this procedure, if there is more than one

candidate (lines 11-18 of the second part of the algorithm),

the mechanism used to choose the node to embed the VNF

depends on the target objective. In this paper, two objectives

are considered: maximizing the number of BBUs to embed

in the Cloud, and load balancing. In the first case, we use

the Analytic Hierarchy Process (AHP) [13] to choose the best

candidate node, considering the three following criteria: CPU,

input rate and output rate requirements of the function. It

is worth noting that AHP is a well-known tool for decision

making, especially in presence of multiple conflicting criteria.

In the second case, i.e. load balancing objective, we use the

Mean Square Error (MSE) in the following way. Let us first

define the percentage of resources already used at node p:

αc
p = ωc(p)/ϕc(p). Then, let us assume that D candidate

nodes are found to place the VNF. When placing the VNF on

node d (from the set of D candidate nodes), the percentage of

CPU resources used for this node becomes:

αc
′

p =
λc
Γi
(f) + ωc(p)

ϕc(p)

To perform load balancing among nodes, we compute the MSE

as follows:

MSEd =
1

D

D
∑

v=1

(

αc
′

d − αc
v

)2

where MSEd is the MSE when placing the VNF on node d.

The final decision consists in placing the VNF on node (x)

for which the MSEx is the minimum among all the computed

MSE values. From the above discussion, it is clear that the only

change in the algorithm pertains to the lines 16-17, while the

rest of the algorithm is unchanged.

Regarding the complexity, it is easy to find that it can be

expressed by the following equation:

O (N(hTx + hRx)) +O (M(hTx + hRx)(L+ 2N))

where hTx/hRx are the length of Tx/Rx. From this equation,

it is clear that the complexity of MOP is linear with respect

to the number of BBUs to be embedded. Moreover, the

complexity of MOP increases linearly with the number N of

nodes in the topology. Notice that the effect of N is more

visible than that of M , since it affects the complexity of both

creating the eligible regions (the first part of Equation IV)

and the placement (the second part of Equation IV). Given

the linearity in its complexity, MoP is able to efficiently place

network service chain in heterogeneous infrastructure with

divers constraints in the context of disaggregated 5G networks.

V. PERFORMANCE EVALUATION

In the first part of this section, we provide a general

description of the topology and we present the different

simulation scenarios along with the performance metrics used

to evaluate the efficiency of MOP. Finally, we discuss the

results obtained for the two target objectives: maximizing the

number of cloudified BBUs and load balancing. Without loss

of generality, we focus on PHY-layer VNFs placement as they

have more stringent requirements.

Fig. 2 represents a realistic infrastructure topology of that is

used in the simulation, which consists of three main parts: the

distributed cell sites, the local Cloud which is the one closer

to the cell site represented by the nodes [N1, N6], and the

farther macro Cloud represented by the nodes [N7, N14]. We

assume the presence of low-latency fronthaul links like optical

fibers [14]. The parameters used in the simulation are summa-

rized in Table III [15], [16]. Regarding the PHY-layer VNFs,

the three most greedy resource PHY-layer VNFs for Tx/Rx

are considered: IFFT/FFT, Mod/Demod, and Encod/Decod,

see the analysis done in [2], [15]. Furthermore, we consider

the following VNF requirements: CPU and input/output rates.

Concerning the network configuration, we consider 20 MHz
bandwidth with peak traffic rate. Note that the requirements

of the three aforementioned functions are gathered from Ope-

nAirInterface [17].

Furthermore, we consider two cases to assess the per-

formance of MOP: 1) the Homogeneous case where the

capabilities of nodes in every level of the tree topology are the

same and 2) the non-Homogeneous case where the nodes in

the same level of the tree topology have different capabilities,

as shown in Table III. Note that the values of mesh levels 1,

2, and 3 for the mesh index are binary values set to 1 when

there is a mesh in that level and zero otherwise.

A. Performance Metrics

Results obtained with ILP are used to benchmark the MOP

algorithm, since it gives the optimal solution. Due to lack of

space, only two parameters are considered for the comparison:

acceptance ratio and embedding time. The acceptance ratio

is computed based on the upper bound of the number of

BBUs (each one has two chains: Tx and Rx) that could be

supported with the set of available resources. Assuming that

enough capacity is remaining on the links, the upper bound is

calculated as follows:

N c
BBUs =

∑N
n=1 ϕ

c(n)
∑hulk−1

i1=1 λc
Γk−1

(i1) +
∑hdlk

i2=1 λ
c
Γk
(i2)

(3)

where hulk−1
= hk−1 and hdlk = hk stand for the length of

the uplink and downlink chains, respectively. The embedding

S
e

g
m

e
n

t
V

I-
II

S
e

g
m

e
n

t
V

I-
I

T
ra

n
s
p

o
rt

 N
e

tw
o

rk

N1N1
RRU1

RRUK

RRUj

N3N3

N4N4

N5N5

N6N6

N11N11

N12N12

N13N13

N14N14

N7N7

N8N8

N9N9

N10N10

S
e

g
m

e
n

I

S
e

g
m

e
n

t

II
I-

I
S

e
g

m
e
n

t

II
I-

II S
e

g
m

e
n

t

V
-I

II

S
e

g
m

e
n

t

V
-I

S
e

g
m

e
n

t

V
-I

I

S
e

g
m

e
n

t

V
-I

VN2N2

500 meters

30 km

S
e
g

m
e
n
t

IV
-I

I
S

e
g

m
e
n
t

IV
-I

S
e
g

m
e
n
t

IV
-I

Fig. 2: Network infrastructure topology

time corresponds to the amount of time required to solve the

ILP (with CPLEX) and the time required to run MOP (with

MATLAB).

B. Performance Evaluation

1) Maximize the number of embedded BBUs: Based on the

parameters considered in Table III, the upper bound of the

number of BBUs that can be cloudified is 70. Fig. 3a and 3b

illustrate the acceptance ratio for ILP and MOP, respectively.

As expected, ILP gives the best solution whatever the con-

sidered case, with an acceptance ratio equals to 98.6%, see

Fig. 3a. As the considered number of BBUs to be embedded

is upper bounded, it is not always possible to embed all the

chains corresponding to these BBUs.

Regarding MOP, it generally obtains a high acceptance ratio,

where the difference, compared to ILP, is less than 5 % in the

majority of the considered scenarios. However, this difference

increases for the tree topology (i.e., when there is no mesh

at any level), especially for the last homogeneous index. This

phenomenon could be explained by the fact that the resources

available in the topology are distributed in a way that it is not

always possible to use these nodes because this would violate

the latency requirements of some of the VNFs. Note that this

problem could be solved by relying on the multi-knapsack

problem.

Even though its acceptance ratio is slightly lower than that

for ILP, MOP outperforms ILP regarding the necessary time

to embed BBUs. The difference observed in embedding time

is illustrated in Fig. 4a and 4b for ILP and MOP, respectively.

We can note that the average time required to find an efficient

placement for one BBU (i.e., the chain of VNFs composing

a BBU) is less than 5 seconds, Fig. 4b. However, this time

could reach more than 2 hours for ILP (Fig. 4a), which is

not acceptable in practice, since the network should respond

quickly to network changes (e.g., service chain definition,

!"

!#

!

$"

%

&

$#

'

(""

) #
*)

*+
+

(
(,-.-/010234521607

#

809:5

(a) ILP

!"

#"

$

$"

#

%

!

&"

(""

)
'

*)
+ *

+(
(,-.-/010234521607

'
809:5

(b) MOP

Fig. 3: Acceptance Ratio

traffic load variability). Such a short embedding time makes

MOP a relevant candidate for placement algorithm within the

network service orchestration logic in future disaggregated 5G

networks.

Mesh index
2

Homogeneity index

T
im

e
 (

s
)

100

8

102

7 5

104

6
45

34
3

2 1
1

(a) ILP

Mesh index

Homogeneity index

T
im

e
 (

s
)

100

8

102

7 5

104

6
45

34
23

2 1
1

(b) MOP

Fig. 4: Embedding time

2) Load Balancing: Fig. 5 illustrates the average resource

utilization for every node in the considered topology. From

these figures, it can be seen that the proposed algorithm for

load balancing generally achieves a good balance. However,

few fluctuations can be observed for certain nodes (e.g., the

nodes 8 and 12) for the two considered homogeneous indexes,

respectively, when embedding 20 BBUs. Such fluctuations

could be explained when placing functions with very heteroge-

neous requirements. Note that the fluctuations are lower when

placing 30 BBUs. This could be explained by the fact that

the number of VNFs whose requirements are much higher

than the others increases. In this case, load balancing performs

better since the VNFs are distributed over more nodes. Another

important issue that could affect load balancing is related to

latency constraints. Sometimes, a VNF should be placed on

a particular node to achieve better load balancing. However,

such a placement is not always possible due to latency issues,

i.e. the latency requirement of this VNF will be violated if it

is placed on the considered node. An important observation

from these figures is that non homogeneous topologies (e.g.,

for Homogeneous index 5) achieve better load balancing

compared to homogeneous topologies (i.e., for Homogeneous

index 1). Moreover, it is found that the majority of IFFT/FFT

VNFs are located at the local cloud closer to RRU. However,

this result is not surprising as latency and rate constraints of

these VNFs are directly related to the fronthaul constraints.

TABLE III: Configuration parameters related to topology

Nodes

CPU: @core 8 8 4 4 4 4 2 2 2 2 2 2 2 2

Homogeneity index

In
d

ex

1

2 !

3

4

5

Links parameters:

Capacity: Gbps

Length: meter

Level 0 -> Level 1 Mesh level 1 Level 1 -> Level 2 Mesh level 2 Level 2 -> Level 3 Mesh Level 3

 Mesh Index

index 1 2 3 4 5 6 7 8

Segment I II III-I, III-II IV-I IV-II V-I, V-II V-III, V-IV VI-I VI-II Mesh level 1 0 1 0 1 0 1 0 1

Capacity 80 20 20 20 20 10 10 20 20 Mesh level 2 0 0 1 1 0 0 1 1

Length 15000 100 500 25 100 30000 30000 25 25 Mesh level 3 0 0 0 0 1 1 1 1

Concerning the other VNFs like Encod/Decod, they are located

in both local and macro Clouds. The reason is that, for the

considered parameters, the available resources in the macro

Cloud are not sufficient to support all of them.

2 4 6 8 10 12 14

Nodes index

10

20

30

40

50

60

70

80

90

100

%

Mesh index = 1

Mesh index = 2

Mesh index = 3

Mesh index = 4

Mesh index = 5

Mesh index = 6

Mesh index = 7

Mesh index = 8

(a) Nb. BBUs = 20

2 4 6 8 10 12 14

Nodes index

10

20

30

40

50

60

70

80

90

100

%

Mesh index = 1

Mesh index = 2

Mesh index = 3

Mesh index = 4

Mesh index = 5

Mesh index = 6

Mesh index = 7

Mesh index = 8

(b) Nb. BBUs = 20

2 4 6 8 10 12 14

Nodes index

10

20

30

40

50

60

70

80

90

100

%

Mesh index = 1

Mesh index = 2

Mesh index = 3

Mesh index = 4

Mesh index = 5

Mesh index = 6

Mesh index = 7

Mesh index = 8

(c) Nb. BBUs = 30

2 4 6 8 10 12 14

Nodes index

10

20

30

40

50

60

70

80

90

100

%

Mesh index = 1

Mesh index = 2

Mesh index = 3

Mesh index = 4

Mesh index = 5

Mesh index = 6

Mesh index = 7

Mesh index = 8

(d) Nb. BBUs = 30

Fig. 5: Resource utilization for every node; Homogeneous

index = 1 and 5 for 5a, 5c, and 5b, 5d, respectively

VI. CONCLUSION

In this paper we propose a low-complexity multi-objective

placement algorithm to efficiently embed BBU chains of VNFs

in the context of three tier cloud RAN architecture. Two

objectives are considered: maximizing the number of BBUs

that could be embedded in the Cloud and distributing the

load evenly across the set of computing nodes. Simulation

results, carried out on a realistic infrastructure topology with

real datasets of RAN functions requirements, show that MOP

can achieve a high percentage of acceptance ratio (less than

5% for non-homogeneous topologies compared to the optimal

solution), with less than 5 seconds to embed an entire BBU

chain. Moreover, the proposed algorithm offers load balancing

in most of scenarios. As future work, we plan to consider the

placement of the whole set of RAN functions with dynamic

splits as well as the cost minimization when embedding the

RAN chains.

ACKNOWLEDGMENTS

Research and development leading to these results have

received funding from the French Government (National Re-

search Agency, ANR) through the Investments for the Future

Program reference ANR-11-LABX-0031-01 and the Euro-

pean Framework Program under H2020 grant agreement No.

762058 for the 5GPicture project.

REFERENCES

[1] S. Zhou et al., “CHORUS: a framework for scalable collaboration
in heterogeneous networks with cognitive synergy,” IEEE Wireless

Communications, vol. 20, no. 4, pp. 133–139, August 2013.
[2] N. Nikaein, “Processing radio access network functions in the Cloud:

Critical issues and modeling,” in MCS 2015, 6th International Workshop

on Mobile Cloud Computing and Services, 2015.
[3] C. Mobile, “C-RAN: the road towards green RAN,” White Paper, ver,

vol. 2, 2011.
[4] N. Alliance, “Suggestions on Potential Solutions to C-RAN,” 2013.
[5] B. Guo et al., “LTE/LTE-A signal compression on the CPRI interface,”

Bell Labs Technical Journal, vol. 18, no. 2, pp. 117–133, Sept 2013.
[6] C.-Y. Chang et al., “FlexCRAN: A flexible functional split framework

over ethernet fronthaul in Cloud-RAN,” in ICC 2017, IEEE International

Conference on Communication, May 21-25, 2017, Paris, France, 2017.
[7] Y. Xie et al., “Service Function Chaining Resource Allocation:

A Survey,” CoRR, vol. abs/1608.00095, 2016. [Online]. Available:
http://arxiv.org/abs/1608.00095

[8] D. Bhamare et al., “A survey on service function chaining,” Journal of

Network and Computer Applications, vol. 75, pp. 138 – 155, 2016.
[9] F. Musumeci et al., “Optimal BBU Placement for 5G C-RAN De-

ployment Over WDM Aggregation Networks,” Journal of Lightwave

Technology, vol. 34, no. 8, pp. 1963–1970, April 2016.
[10] J. Liu et al., “Graph-based framework for flexible baseband function

splitting and placement in C-RAN,” in 2015 IEEE International Con-

ference on Communications (ICC), June 2015, pp. 1958–1963.
[11] X. Cheng et al., “Virtual Network Embedding Through Topology-aware

Node Ranking,” SIGCOMM Comput. Commun. Rev., vol. 41, no. 2, pp.
38–47, Apr. 2011.

[12] A. Schrijver, Theory of Linear and Integer Programming. New York,
NY, USA: John Wiley & Sons, Inc., 1986.

[13] T. L. Saaty, What is the Analytic Hierarchy Process? Berlin, Heidelberg:
Springer Berlin Heidelberg, 1988, pp. 109–121.

[14] J. Bartelt et al., “Fronthaul and backhaul requirements of flexibly
centralized radio access networks,” IEEE Wireless Communications.

[15] “Small cell virtualization: Functional splits and use cases,” Small Cell
Forum, Tech. Rep., January 2016.

[16] “Technical Specification Group Radio Access Network; Radio Fre-
quency (RF) system scenarios,” 3GPP, Tech. Rep., January 2016.

[17] “OpenAirInterface: 5G software alliance for democratising wireless
innovation,” http://www.openairinterface.org/.

