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Deep Gaussian Processes

- Deep probabilistic models

- Composition of functions
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Deep Gaussian Processes

- Inference requires calculating the marginal likelihood:

P 6) = [ p (VP 60))
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- Very challenging!
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Related Work

- Variational DGP (pamianou and Lawrence, 2013)

- Sequential Inference for DGPs (wang et al, 2016)

- DGP with Expectation Propagation (Bui et al, 2016)

- Variational Auto-Encoded DGP (pai et al, 2017)

- Dropout as a Bayesian Approximation (Gal and Gahramani, 2016)

- Structured and Efficient Variational Deep Learning with Matrix
Gaussian Posteriors (Louizos and Welling, 2016)
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Can we develop better DGP models using their connection to DNNs?

1. Faster learning without compromising performance
2. Scalable to very large datasets

3. Extendable to a moderate number of layers
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DGP Architecture



DGPs with Random Features

- GPs are single-layered Neural Nets with an infinite number of
hidden units

- Weight-space view of a GP
F=oW
- The priors over the weights are

p (W) =N (0,I)
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Random Feature Expansion of Kernels

- The RBF kernel

- The first order Arc-Cosine kernel
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Random Feature Expansion of Kernels

- The RBF kernel can be approximated using trigonometric functions

brer = UN—M[COS(FQ),sin(FQ)] with  p (©2,|0) =N (0,A7")

allowing for scaling factors o* and A = diag(/%,. .., [2)
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Random Feature Expansion of Kernels

- The first order Arc-Cosine kernel can be approximated using
Rectified Linear Units (ReLU)

¢ARC:,/ﬁwmax(o,FQ) with  p(2,]0) =A (0,47
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Random Feature Expansion of Kernels

- The RBF kernel can be approximated using trigonometric functions

drer = N—RF[COS(FQ),sin(FQ)] with  p (Q;]0) =N (0,A7T)

allowing for scaling factors o* and A = diag(%,.. ., 2)

- The first order Arc-Cosine kernel can be approximated using
Rectified Linear Units (ReLU)

Papc = A / EIRF max (0, FQ) with p (Q]{ ) =N (0, 7W)
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DGPs with RFs become DNNs

716



Approximating the Marginal
Likelihood




DGPs with RFs - Stochastic Variational Inference

. Define W = (QO, ..., Q0 W©), . wv)
- Evidence lower bound
log [P(Y16)] = Eqqu) (l0g[p (Y1W)]) — D [a(W)[lp (¥|6)]
where g(W) approximates p(V|Y, &)

- Dk, computable analytically if g and p are Gaussian!
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DGPs with RFs - Stochastic variational inference

- Assume factorized likelihood:

D(Y|X,W, ):Hp(yk|xkvw7 )

k

- Stochastic unbiased estimate of the expectation term
- Mini-batch

Eqquy (log [p(Y]X, ¥, 0)]) ~ — ZE (og[p Vidlxie, W, )])

kEIm

- Monte Carlo

Nmc

1 .
Eq(w) (log [p(vilxk, V, )])%*NMC ) ~ loglp(vlxi, ¥, 0)]
r=1

with U, ~ g(V)
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DGPs with RFs - Stochastic variational inference

- Factorized approximate posterior

aw) =TTa (o) ITa ()
ijl

il
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DGPs with RFs - Stochastic variational inference

- Factorized approximate posterior
_ () (0
9(v)=]]q (Qu‘ ) I1a (Wu' )
ijl il

where

a(9) =N (1) @) and q (W) =N (. ();)

- Reparameterization trick

) 0 ( [
(Wr >ij = (Sz)u GEU) + m:(j)

0~ N(0,7)

with Gt
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Optimization Strategies for Q

- Random features can be fixed
- PRIOR-FIXED
or treated variationally

- VAR-FIXED (with fixed randomness)
- VAR-RESAMPLED (resampled at each iteration)

RMSE MNLL
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Evaluation




Model Comparison - Binary Classification

EEG Dataset
(n =14979, d = 14)

Error rate
:
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- Consistently outperforms competing techniques both in terms of
speed and predictive performance
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Model Comparison - Multiclass Classification

MNIST Dataset
(n = 60000, d = 784)

Error rate MNLL
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- Model performance remains resilient compared to other techniques
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Scalability to Large Datasets

- Over 99% accuracy on variant of MNIST with 81 million images!

Dataset Accuracy MNLL

RBF ARC RBF ARC
MNIST8M 99.14%  99.04% 0.0454 0.0465
AIRLINE 78.55%  72.76% 0.4583 0.5335
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Performance of Deeper Models - Airline Dataset

Error rate MNLL s NELBO
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- Model converges to an optimal state for every configuration
- NELBO confirmed to be a suitable criteria for model selection

- Includes feed-forward of inputs to each layer
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Conclusions




Conclusions

- Contributions

- A complete evaluation of DGPs inspired by DNNs

— Scalable and practical DGP inference without requiring Cholesky
- A study of various options for optimizing random features
Distributed implementation using Parameter-Server framework
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Conclusions

- Contributions

- A complete evaluation of DGPs inspired by DNNs

— Scalable and practical DGP inference without requiring Cholesky
- A study of various options for optimizing random features

- Distributed implementation using Parameter-Server framework

- Ongoing work
- Fastfood kernel and orthogonal random features

- Convolutional GP layers for complex image datasets
- Hybrid synchronous/asynchronous distributed approach
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Code in TensorFlow:

github.com/mauriziofilippone/deep_gp_random_features
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