A leading institution at the heart of the digital society

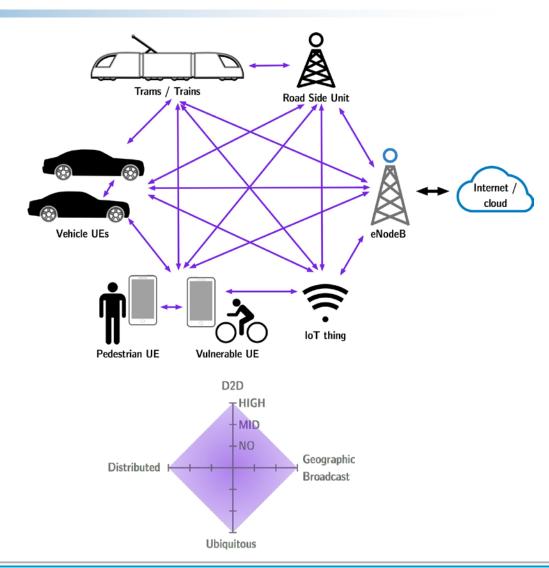
V2X Communications in Future 5G Automotive and Transportation

Prof. Dr. Jérôme HÄRRI, based on the PhD work of Dr. Laurent GALLO

FCA 5G Workshop, Turin July 5th 2017

Objective: Ubiquitous Communications

Today

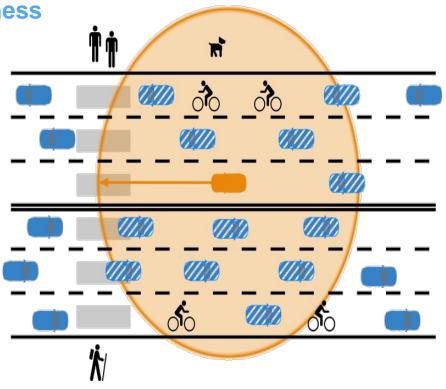

- **Entities connected** everywhere
- Four pillars:
 - **Device-to-Device**
 - Geographic **Broadcast**
 - Distributed channel access

5/30/17 -

Ubiquitous

NSTITUT NO

m & Société numérique



L. Gallo, J. Härri, V2X Communications in Future 5G Automotive and Transportation

FOCUS on: safety critical V2X

- Periodical position / speed / heading updates (CAM / BSM)
- Geographic broadcast: all of the road users in proximity are recipients
- Purpose: spread and acquire awareness
- Local broadcast
- Delay-sensitive information
- Building block for Cooperative Intelligent Transportation Systems (C-ITS)

5/30/17 -

L. Gallo, J. Härri, V2X Communications in Future 5G Automotive and Transportation - FCA 5G Workshop

State-of-Art in 2012

2004 - present

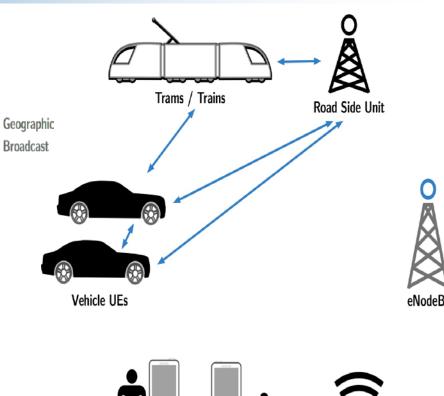
IEEE 802.11p ITS-G5 (EU) DSRC (USA)

Extension of WiFi:

- operates at 5.9 GHz
- out of the context of the BSS (full Ad-Hoc)

D2D

HIGH


MID

-NO

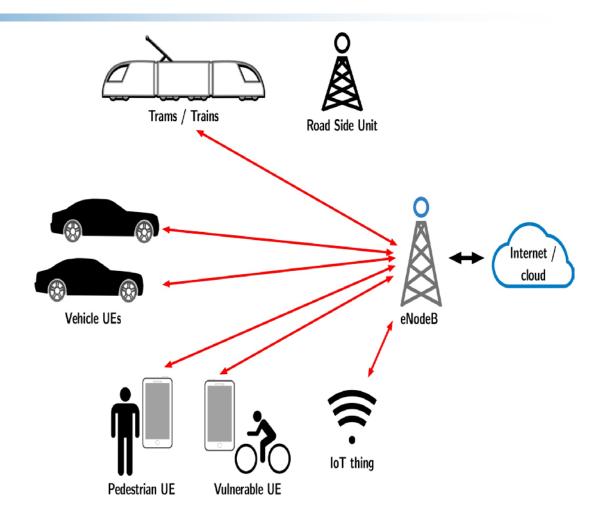
Ubiguitous

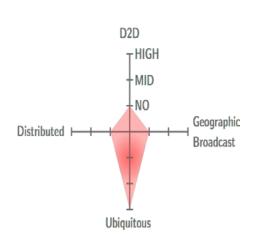
Distributed H

 designed for local D2D geographical broadcast

Vulnerable UE

IoT thing


5/30/17 -


L. Gallo, J. Härri, V2X Communications in Future 5G Automotive and Transportation - FCA 5G Workshop

Pedestrian UE

State-of-Art in 2012

LTE (Rel 8 / 10) Designed for network supervised communications

INSTITUT CARNOT

com & Société numérique

5/30/17 -

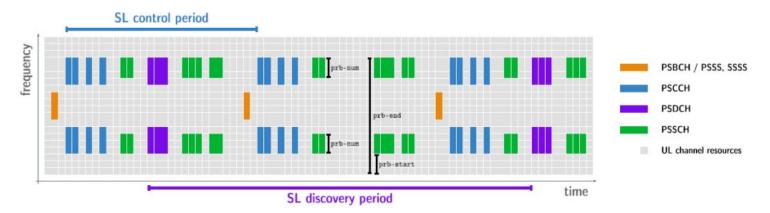
L. Gallo, J. Härri, V2X Communications in Future 5G Automotive and Transportation - FCA 5G Workshop

State-of-Art in 2014

D2D T HIGH **LTE Proximity** MID Services (Rel 12) - NO Geographic Distributed F Broadcast **Direct D2D data path** via the Sidelink Ubiguitous Trams / Trains Road Side Unit Mode 1: network supervised unicast transmissions. Mode2: unsupervised Vehicle UEs transmissions, unicast / broadcast exclusively Public Safety UEs

> Pedestrian UE Vulnerable UE

5/30/17 -


RNOI

m & Société numérique

L, Gallo, J, Härri, V2X Communications in Future 5G Automotive and Transportation - FCA 5G Workshop

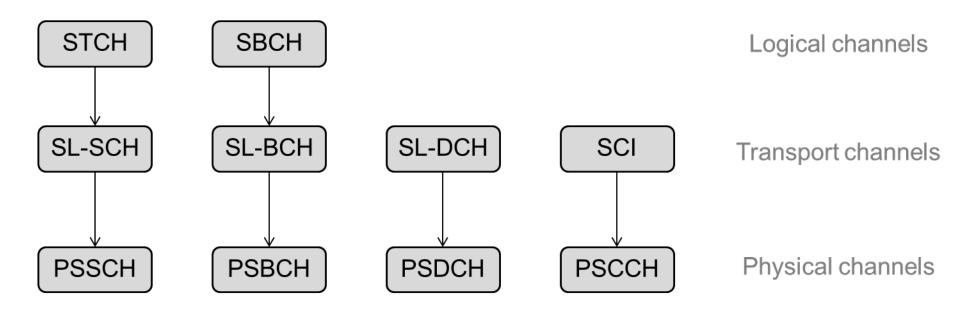
LTE V2X - LTE Rel. 14

4 new Sidelink Channels

Discovery: two modes (RBs pools indicated in SIB 19)

- ➢ Mode A: (I am here) UEs advertise their presence to monitoring UEs
- Mode B: (Who is here?) UEs query other UEs about ProSe Services
- Resource Allocation:

& Société numérique


- Mode 1: autonomous selection random selection on PSDCH
- Mode 2B: scheduled eNB schedules resources on PSDCH

Communication: two modes (RBs pools indicated in SIB 21)

- Mode 3: Scheduled (by eNB) eNB schedules resources on PSSCH
- Mode 4: Autonomous (Ad-Hoc) random selection on the PSSCH pool

LTE V2X - Sidelink Channels

- **PSCCH**: Physical Sidelink Control Channel **PSSCH**: Sidelink Physical Shared Channel **PSBCH:** Physical Sidelink Broadcast Channel **PSDCH**: Sidelink Discovery Physical Channel
- SL-SCH : Sidelink Shared Channel
- SL-BCH: Slidelink Broadcast Channel
- **SL-DCH:** Sidelink Discovery Channel
- SCI: Sidelink Control Information
- **STCH:** Sidelink Transport Channel
- **SBCH:** Sidelink Broadcast Channel

3GPP rel. 14 'dissection' on V2X

Channels and UE functions:

<u>TS36.101</u> Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception

PHY:

- > <u>TS 36 213</u> Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures
- TS 36 212 Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding
- TS 36 211 Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation

MAC:

<u>TS 36.321</u> Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification

RRL:

<u>TS 36.331</u> – Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification

Service:

TS 23.303 – Proximity-based services (ProSe); Stage 2

EPC

<u>TS 36.300</u> – Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2

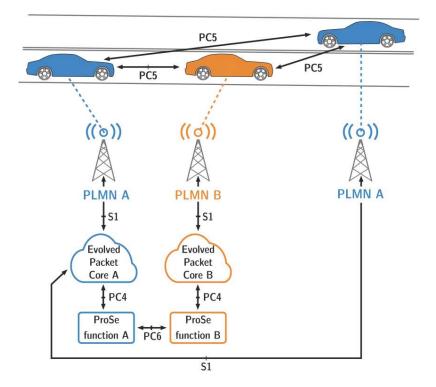
9

LTE V2X – Why Mode 4 for Safety V2X Communications?

Safety-critical V2V Communication

- Need to reach any car at a given range
- Regardless of:
 - being in coverage or not
 - being in same cell or not
 - being in same operator or not

ENB supervision is possible:


- Inter-cell D2D:
 - Synch between eNBs
 - Tx 'borrows' other cells RBs
- Inter-operator D2D:
 - Synch between operators (PC6)
 - Tx 'borrows' other operator RBs

Yet...

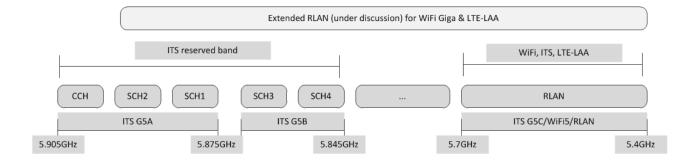
- Standardization not complete
- Delay not known

n & Société numérique

- Broadcast still difficult
- Not efficient from a spectrum & energy perspective

2016

5/30/17 -


LTE V2X – Why Mode 4 for Safety V2X Communications?

Supervised Deployment:

- > Any car need to be within a cell and eNB at any time
 - Large cells: not enough D2D frequency reuse (broacast)
 - Small Cells: expensive deployment

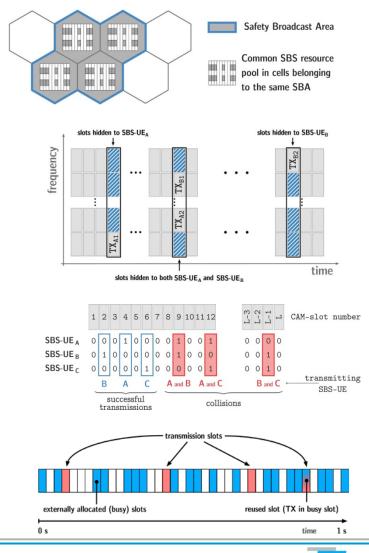
> Spectrum:

- Commercial band: does not make any sense
- ISM band: need to compete with WiFi and other LTE-U/LAA
- Dedicated band: better and common to a given 'service'
- Requires mutualization of infrastructure (MuLTEFire/Slicing??)

5/30/17 -

LTE V2X Mode 4 – Distributed RRM

Safety Broadcast Area

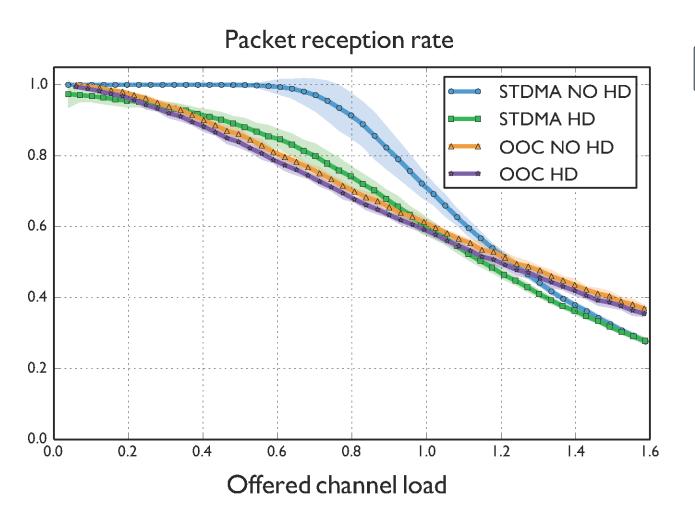

- Pan operator resource 'reservation'
- Dedicated spectrum (not commercial)
- RR coordinates 'known'
 - Hardcoded
 - or Shared as a ProSe service
 - or transmitted by SIB19 when under coverage

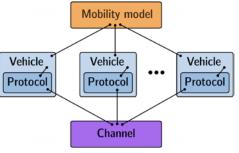
Radio Resource Allocation

- Mode 4: resource selected at random from a pool
 - How?

Our Proposals:

- **Orthogonal Optical Codes**
 - Each UE draws a distribution of 1 and 0 from an orthogonal distribution
 - Tx=1, whille RX=0
- S-TDMA Schema
 - Bounded delay & quasi-deterministic transmission





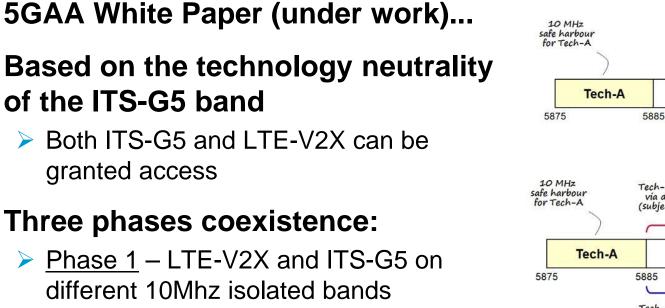
L, Gallo, J, Härri, V2X Communications in Future 5G Automotive and Transportation - FCA 5G Workshop

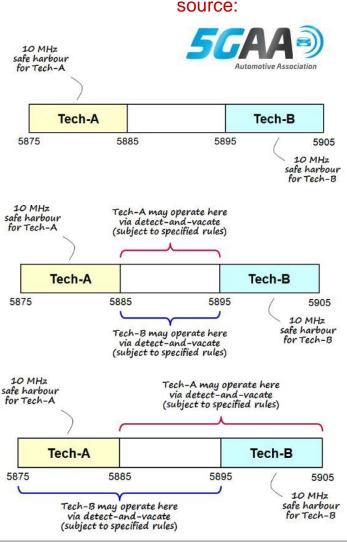
12

LTE V2X – Why Mode 4 for Safety V2X Communications?

5/30/17 -

L. Gallo, J. Härri, V2X Communications in Future 5G Automotive and Transportation - FCA 5G Workshop




of the ITS-G5 band

Both ITS-G5 and LTE-V2X can be granted access

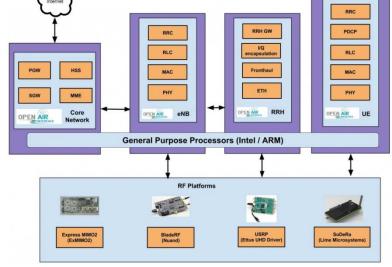
Three phases coexistence:

- Phase 1 LTE-V2X and ITS-G5 on different 10Mhz isolated bands
- Phase 2 LTE-V2X and ITS-G5 may coexist on additional shared band based on 'detect and avoid'
- Phase 3 LTE-V2X and ITS-G5 coexist on the full ITS-G5 band based on the detect and avoid mechanism

NSTITUT RNOT

om & Société numérique

On-Going Work – D2D/V2X Prototyping


- OpenAirInterface[™], Open5G Software Alliance democratising wireless innovation
 - <u>http://www.openairinterface.org/</u>

- Implementation of LTE-V2X (rel. 14) on OAI
 - Mode 3 and Mode 4
 - MAC/RRC and PHY
 - Prototype and Emulation

5/30/17 -

& Société numérique

Objective: first open LTE-V2X implementation/prototype

15

2017 +

Contributions

VENUE

IEEE VNC 2013 Vehicular Networking Conference

IEEE ICC DVC 2015 Dependable Communications Workshop

IEEE VTM 2017

Vehicular Technology Magazine Special Issue on Emerging Technologies, Applications, and Standardizations for Connecting Vehicles

Elsevier Vehicular Communications Journal

(currently under review)

Research Report RR 17-329 2017

TOPICS

eMBMS resource reservation Optical Orthogonal Codes

Analytical model STDMA

Sidelink-based LTE V2X

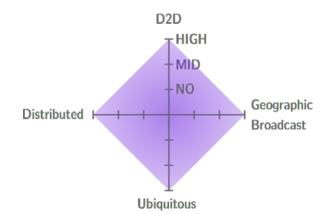
Distributed RRM OOC over LTE V2X Congestion control

STDMA over LTE V2X OSTDMA SH-STDMA

5/30/17 -

Conclusions

LTE-V2X at 5.9GHZ


- Wide area resource reservation
- **Distributed Scheduling**
- Ad-Hoc operation mode for Automotive Safety

Challenges ahead...

- synchronization, Timing
- decentralized congestion control (DCC)
- Tx power vs. half duplex
- deterministic MAC

& Société numérique

Coexistence on 5.9 GHz

Laurent Gallo, <u>gallo@eurecom.fr</u> Jérôme Härri, haerri@eurecom.fr

5/30/17 -

L, Gallo, J, Härri, V2X Communications in Future 5G Automotive and Transportation - FCA 5G Workshop