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ABSTRACT

We present a new class of adaptive �ltering algorithms for
blind equalization of constant modulus signals. The algo-
rithms are �rst derived in a classical system identi�cation
context by minimizing at each iteration a deterministic cri-
terion and then their counterpart for blind equalization is
derived by modifying this criterion taking into account the
constant-modulus property of the transmitted signal. The
algorithms impose more constraints than the classical Con-
stant Modulus Algorithm (CMA) and as a result achieve
faster convergence. An asymptotic analysis has provided
useful parameter bounds that guarantee the algorithms' sta-
bility. A priori knowledge of these bounds helps the algo-
rithms escape from undesirable local minima of their cost
function thus giving them a potential advantage over the
classical CMA. An e�cient computational organization for
the derived algorithms is also proposed and their behaviour
has been tested by means of computer simulations.

1. INTRODUCTION

We consider the classical blind equalization problem de-
scribed in �gure 1 where a baseband representation of a
communication system is shown. The symbols fakg are con-
sidered to be an i.i.d. sequence belonging to a discrete al-
phabet of constant modulus and are transmitted through a
linear channel. The received sequence fxkg (corrupted also
by the additive noise f�kg) is passed through a linear (FIR)
equalizer that is updated by a blind equalization algorithm
in order to open the communication system's eye and result
in a correct retrieval of the transmitted sequence with the
help of the decision device. The equalizer's output at time
instant k is denoted by yk and may be written as XH

k Wk,

where Xk = [xk xk�1 � � �xk�N+1]
H, Wk is a column vector

containing the equalizer's setting at time instant k and H

denotes complex conjugate transposition. As the channel's
transfer function is possibly non-minimum phase, its output
statistics of order up to two contain only information about
its amplitude whereas information about its phase is con-
tained in higher-order statistics. This is why, on one hand,
equalization is impossible (at the symbol rate) when the
fakg have a Gaussian distribution and on the other hand
statistics of order higher than two are required in order to
identify the channel in a non-Gaussian case (which can be
introduced indirectly via nonlinearities, as in the CMA al-
gorithm).

The Constant Modulus Algorithm (CMA) [1][2] is one
of the best known blind equalization algorithms and is a
stochastic gradient algorithm for the cost function:

Jp(W ) =
1

2p
E(jyjp � 1)2 ; p 2 f1; 2; : : :g ; (1)
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Figure 1. A typical blind equalization scheme

where E denotes statistical expectation. The corresponding
stochastic gradient algorithm is given by:

Wk+1 = Wk � �Xkykjykj
p�2

(jykj
p � 1) : (2)

The well known CMA 2-2 algorithm is a special case of
(2) for p = 2 and has been shown to be able in general
to open the communication system's eye. In this paper we
will present a new class of algorithms based on the constant
modulus property that impose a more severe constraining
on the equalizer at each time instant.

2. MOTIVATION

In [3] we have derived a class of algorithms for blind equal-
ization that minimize at each iteration the following deter-
ministic criterion:

ksign(XH
k Wk)�X

H
k Wk+1k
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� 1)kWk+1 �Wkk
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;

(3)

where Xk = [Xk Xk�1 � � �Xk�L+1], kxk
2
S = x

H
Sx, Pk =

X
H
k Xk and the sign of a vector is de�ned as follows:

sign([a1 a2 � � �aM ]T ) = [
a1

ja1j

a2

ja2j
� � �

aM

jaM j
]T ; (4)

where T denotes the transpose of a vector or a matrix. The
corresponding algorithm (NSWCMA) is:

Wk+1 =Wk + ��XkP
�1
k (sign(XH

k Wk)�X
H
k Wk) ; (5)

and can be seen as a blind-equalization counterpart of the
A�ne Projection Algorithm (APA)[4][5][6][7]. The �rst
member of this class of algorithms (L = 1) actually co-
incides with the recently proposed [8] Normalized Constant
Modulus Algorithm (NCMA). However the APA su�ers
from a high steady-state error due to the in
uence of noise
when both the parameters L and �� are chosen to be large.
The main reason for this is the severe ill-conditioning at cer-
tain time instants of the sliding-window sample covariance
matrix Pk. Indeed the noise gets ampli�ed by P

�1
k . This



suggested some regularization of this sample covariance ma-
trix. We propose to use a sample covariance matrix with
an exponential instead of a rectangular window (in fact the
use of an exponential window in a classical adaptive �lter-
ing context was �rst suggested in [5]). Simulations have
shown that for a sample covariance matrix , the distribu-
tion of the condition number shows a mean that increases
as the e�ective window length decreases (for both rectan-
gular and exponential window). However this distribution
has a much more pronounced tail for a rectangular window,
compared to an exponential one (the rectangular window
sample covariance matrix gets extremely ill-conditioned at
certain time instants). We will show in the next section
that the modi�ed algorithm still results from a determinis-
tic criterion.

3. DERIVATION

We �rst limit ourselves to a classical adaptive �ltering con-
text. We denote by dk the desired response that has to be
matched by the �lter output at time instant k and by Dk a
vector of the L most recent desired responses:

Dk = [dk dk�1 � � �dk�L+1]
T

: (6)

Now consider the following deterministic criterion:

kDk �X
H
k Wk+1k

2

S
�1

k

+ kWk+1 �Wkk
2
; (7)

where Sk = �
�1
Rk � X

H
k Xk and Rk is an L � L matrix

updated as: Rk = �Rk�1 + XkX
H
k , where Xk is the �rst

column of XH
k . It can be shown that this criterion is ex-

actly minimized at each iteration by the following recursive
algorithm:

Rk = �Rk�1 +XkX
H
k

Wk+1 = Wk + �XkR
�1
k (Dk �X

H
k Wk) :

(8)

Eq. (8) describes a new parametric class of algorithms for
adaptive �ltering. There are three adjustable parameters:
L, � and �. L is the number of constraints (see �rst term
in (7)) imposed on the �lter setting Wk+1, � controls the
tracking and the conditioning of the L�L sample covariance
matrix Rk and � is a stepsize parameter that controls the
deviation of the \next" �lter Wk+1 w.r.t. to Wk . In order
to check the region of � that guarantees the stability of (8),
we use the following asymptotic approach: by de�nition,
Sk = �

�1
Rk � X

H
k Xk . Taking expectation of both sides

one obtains:

E(Sk) = R

�
�N +

1

�
�

1

1� �

�
; (9)

where R is the true L�L covariance matrix: R = EXkX
H
k .

Since the criterion (7) only makes sense for Sk positive de�-
nite, Sk should also be asymptotically positive de�nite, and
thus the following must hold according to (9) :

� <
1

N(1� �)
: (10)

Eq. (10) shows that the choice of � must be done jointly
with the choice of � for a given length N . In order to get
an idea of the convergence dynamics of (8), we examine the

eigenvalues of the matrix IN � �XkR
�1
k
X
H
k :

X
H
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H
k ) = (IL � �X

H
k XkR

�1
k )XH
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(11)

Eq. (11) shows that the eigenvalues 6= 1 of IN��XkR
�1
k
X
H
k

are also the eigenvalues of �SkR
�1
k

. The matrix �SkR
�1
k

is
asymptotically equal to:

�(ESk)(ERk)
�1 = � (1� �) [ 1

�(1��)
�N ]IL

= (1 � �N(1� �)) IL :
(12)

Eq. (12) shows that the speed of convergence of the algo-
rithm increases as the quantity �N(1 � �) increases, pro-
vided of course that (10) is veri�ed and therefore �N(1��)
plays the role of an e�ective stepsize. This gives us enough
degrees of freedom to choose the algorithm's parameters so
as to provide a high convergence speed.

For constant-modulus blind equalization, we have shown
in [3] that the optimization problem:

min kWk+1 �Wkk
2

subject to:jXH
k�iWk+1j = 1; i = 0; 1; : : : ; L� 1 ;

(13)

leads to a classical adaptive �ltering problem with desired
response:

Dk = sign(XH
k Wk) : (14)

This has allowed us to formulate the following separation
principle: generate a desired response by projecting the a
priori equalizer output on the unit circle and then run any
classical adaptive �ltering algorithm with that desired re-
sponse. So the proposed class of algorithms corresponds to
(7) and (8) with the desired response vector Dk chosen as
in (14). When kSkk ! 0, then the criterion (7) with Dk as
in (14) reduces to (13).

A Decision-Directed version

If one replaces in (7), (8), the vector Dk = sign(XH
k Wk)

by the vector bAk de�ned as:

bAk = [âk;0 âk;1 � � � âk;L�1]
T

; (15)

where âk;i = decision(XH
k�iWk), one obtains a decision-

directed (DD) version of (8). When used with constant-
modulus (CM) constellations, our simulations have shown
that this DD version converges as well and at about the
same speed as its CMA counterpart corresponding to ((8),
(14)). Furthermore, the DD version has a lower steady-state
error than its CMA counterpart. So the DD version appears
to be preferable for CM constellations. For non-constant-
modulus QAM constellations, however, the DD algorithm
does not seem to converge, similarly to what has been found
for PAM constellations in the 70's. However, a modi�ed
DD scheme can be proposed. We propose to classify the
equalizer's output at the decision device not by �nding its
closest symbol of the transmitted constellation but of a con-
stant modulus constellation obtained by projecting all the
transmitted constellation's symbols on a circle in such a
way so as to maintain each symbol's angle. The version
of (8) thus derived corresponds to a \DD" algorithm that
seems to work well under severe Inter-Symbol-Interference
(ISI) even for non-constant-modulus constellations! These
aspects are the subject of ongoing research.

4. ALGORITHMIC ORGANIZATION

A low-complexity algorithmic organization for the A�ne
Projection Algorithm has been proposed in [9]. We will now
give a similar algorithmic organization for the algorithm (8).
We denote by Ek and by Ek�1 the algorithm's a priori and
a posteriori errors at time instants k and k�1, respectively:

Ek = Dk �X
H
k Wk

Ek�1 = Dk�1 �X
H
k�1Wk:

(16)



The fast algorithm derived in [9] for the APA is based
(among others) on the following simple relationship between
a priori and a posteriori errors:

Ek =

h
Ek;1

(1� �)Ek�1

i
; (17)

where Ek;i denotes the i
th element of the vector Ek and

Ek�1 denotes the (L� 1)� 1 vector of the L� 1 lower-most

elements of Ek�1 (same for Ek�1). This relation has allowed
in [9] for a very e�cient computation of Ek , which is needed
at each step of the algorithm. In the case of the algorithm
(8) however, the corresponding relationship is:

Ek =
h

Ek;1

Ek�1

i
=
h
Ek;1

0(L�1)�1

i
+Z(IL��Pk�1R

�1
k�1)Ek�1 ;

(18)
where Z is a L� L matrix with 1's on its �rst subdiagonal
and zeros elsewhere. Apart from the identities related to
the updating of Ek, the rest of the algorithmic organization
presented in [9] for the APA is still applicable to the al-
gorithm (8). Before presenting the resulting algorithm, we
�rst introduce some notation:

�k; �k; E�;k ; E�;k denote the forward and backward linear
predictors and the corresponding prediction error energies
of the sample covariance matrix Rk, respectively, and are
needed for the updating of R�1k by a FTF algorithm. Ck

denotes the direct Kalman gain vector of R�1k de�ned as

Ck = R
�1
k Xk and 
k the inverse of the so-called \likelihood

variable" (
k = 1

1�XH
k
Ck

). lk is the quantity R
�1
k Ek and

Fk is a L � 1 vector de�ned as:

Fk =

2
64

Ek;1

Ek;2 +Ek�1;1

...
Ek;L + Ek�1;L�1 + � � �+Ek�L+1;1

3
75 ; (19)

and is an essential quantity for the algorithm's updating.cWk+1 is an intermediate quantity that can be updated
with a gradient proportional to only one input data vec-
tor (see(21)) and is de�ned as:

cWk+1 =Wk+1 � �XkFk ; (20)

where Xk denotes the N � (L � 1) submatrix of Xk that
consists of its L � 1 left-most columns. We also denote byeXk the vector of the L � 1 lower-most elements of Xk and
by F k the vector of the L � 1 upper-most elements of Fk.
The key recursive formula of the algorithm is the following
identity: cWk+1 =cWk + �Xk�L+1Fk;L : (21)

Finally the quantity �k is de�ned as �k = X
H
k Xk�1, where

Xk�1 contains the L�1 right-most columns of Xk. We now
give the equations of the resulting e�cient algorithm that
realizes (8):

0. Initialization: �0 = [1 0(L�1)�1]
T ,�0 = [0(L�1)�1 1]T ,

E�;0 = E�;0 = � (a small positive number).

1. Use a (prewindowed) Stabilized Fast Transversal Filter
algorithm [10] (prediction part) to update E�;k ; E�;k ; �k,
�k, Ck and 
k.

2. �k = �k�1 + xk
eXH
k � xk�N

eXH
k�N

3. bEk;1 = dk �X
H
k
cWk

4. Ek;1 = bEk;1 � ��kF k�1

5. 
k = �R
�1
k�1Ek�1

6. Ek =

h
Ek;1

0(L�1)�1

i
+ Z(Ek�1 � Pk�1
k)

7. R�1k = 1
�
R
�1
k�1 � 
kCkC

H
k

8. Pk = Pk�1 �Xk�NXH
k�N + XkXH

k

9. lk = R
�1
k
Ek

10. Fk =
h

0

F k�1

i
+ lk

11. cWk+1 =cWk + �Xk�L+1Fk;L

If a prewindowed Stabilized FTF is used in step 1, this will
take 6L multiplications. The corresponding computational
complexity for the other steps in terms of multiplications is:
L for each of steps 2 and 4, N for each of steps 3 and 11, L2

for each of steps 6,8,9, 2L2+L for step 5 and L2+L for step
7. This gives an overall complexity of 2N + 6L2 + 10L for
an algorithm that corresponds exactly to the criterion (8).

The O(L2) term represents the price paid for implement-
ing exactly an algorithm that uses a regularized covariance
matrix, without any approximation. On the contrary, the
FAP in [9] has a complexity of 2N + 20L (numerically sta-
ble version) but corresponds to an algorithm with a non-

regularized sample covariance matrix Rk = X
H
k Xk and is

only approximative when some sort of regularization is in-
troduced (it is similarly possible however to achieve a lower
complexity for (8) if approximations are introduced). How-
ever, as usually L is chosen to be signi�cantly smaller than
N (especially in acoustic echo cancellation problems), our
algorithm's complexity is still comparable to that of FAP.
For example, in a blind equalization case with N = 30 and
L = 5, our algorithm will have a complexity of 260 multi-
plications/iteration whereas FAP has a complexity of 160
multiplications/iteration.

The algorithmic organization proposed above for the gen-
eral adaptive-�ltering case is still applicable in the blind-
equalization context, but in this case the desired signal vec-
tor Dk should rather be de�ned as follows:

Dk = [sign(XH
k Wk) � � � sign(X

H
k�L+1Wk�L+1)]

T
; (22)

instead of Dk = sign(XH
k Wk), in order to have (18) satis-

�ed. However this approximation has been found in com-
puter simulations not to have a considerable impact on per-
formance.

5. COMPUTER SIMULATIONS

In a �rst blind-equalization experiment a 2-PAM random
signal is transmitted through a MA(2) channel with impulse
response hc = [1 2 0:6] and a white Gaussian noise �k is
added to the received signal resulting to an SNR of 20 dB.
An adaptive blind algorithm as shown in �gure 1 is used to
update the equalizer. As a measure of performance we use
the system's closed-eye measure de�ned as:

� =

P
i
jsij �maxijsij

maxijsij
; (23)

where s represents the overall communication system's im-
pulse response. The eye is said to be open when � < 1
and closed otherwise. Figure (2a) shows the evolution of
� averaged over 100 Monte-Carlo simulations for four dif-
ferent blind equalization algorithms. The CMA 2-2 is em-
ployed with a stepsize � = 0:04, the NCMA (NSWCMA



with (L = 1)) with �� = 0:3, the algorithm proposed in [11]
(that we call RLS-CMA) with a forgetting factor � = 0:94
and our proposed algorithm ((8),(14)) with L = 6, � = 0:5
and � = 0:01. The equalizer's length is equal to 6 and all
algorithms are initialized with W0 = 10�4 � [1 1 1 1 1 1]T .
It can be seen that our proposed algorithm has an increased
convergence speed and opens the channel's eye faster than
the other algorithms. It is also noted that it behaves well
in steady-state, despite the small value for the forgetting
factor it uses. This means that even such a small value reg-
ularizes adequately the received signal's sample covariance
matrix. The algorithm has been found to have a similar
behaviour when it was tried on 4-QAM and 16-QAM con-
stellations.

Figure (2b) shows a case where the problem of false min-
ima is encountered. The transmission channel's impulse re-
sponse is now hc = [1 0:6 0:36] and a 3-tap equalizer is used,

initialized at [0 0 1]T . This is a typical example where the
CMA's get trapped by a local minimum of their cost func-
tion, being unable to open the system's eye. The RLS-CMA
of [11] is used with a forgetting factor � = 0:95 and then our
algorithm ((8),(14)) with L = 3, � = 0:95 and � = 1. It can
be seen how the �rst algorithm is indeed trapped by a local
minimum and does not open the eye, whereas the second
one is able of converging to a setting that opens the eye.
This fact re
ects the potential advantage of the algorithms
of the proposed class that permit the use of a big e�ective
stepsize that guarantees stability on one hand but also pro-
vides a large enough movement around false minima that
helps escaping from them (a discussion about this potential
ability of normalized CMA's can be found in [12]).

6. CONCLUSIONS

We have proposed a new class of adaptive �ltering algo-
rithms for blind equalization of constant modulus signals.
Our motivation has been the high steady-state MSE some-
times present in algorithms of the NSWCMA class (5) when
big values for �� and for L are used and the proposed rem-
edy has been to use a more regularized sample-covariance
matrix using exponential forgetting as shown in (8). The
algorithms have been derived by minimizing exactly at
each iteration a deterministic criterion, both in the blind-
equalization and in the classical-adaptive-�ltering context
and an asymptotic analysis has revealed the role of an ef-
fective stepsize and has provided parameter bounds that
guarantee stability. A decision-directed version was also
proposed. Based on an algorithm given in [9] we propose
an algorithmic organization of complexity 2N + 6L2 + 10L
multiplications/iteration. The algorithms' behaviour has
been tested via computer simulations that show their in-
creased convergence speed w.r.t. other constant-modulus
algorithms as well as their ability to escape from false min-
ima of their cost function.
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