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Abstract—Individuals sharing data on today’s social computing systems
face privacy losses due to information disclosure that go much beyond the
data they directly share. Indeed, it was shown that it is possible to infer
additional information about a user from data shared by other users—
this type of information disclosure is called attribute disclosure. Such
studies, however, were limited to a single social computing system. In
reality, users have identities across several social computing systems and
reveal different aspects of their lives in each. This enlarges considerably
the scope of information disclosure, but also complicates its analysis.
Indeed, when considering multiple social computing systems, information
disclosure can be of two types: attribute disclosure or identity disclosure—
which relates to the risk of pinpointing, for a given identity in a social
computing system, the identity of the same individual in another social
computing system. This raises the key question: how do these two privacy
risks relate to each other?
In this paper, we perform the first combined study of attribute and
identity disclosure risks across multiple social computing systems. We first
propose a framework to quantify these risks. Our empirical evaluation
on a real-world dataset from Facebook and Twitter then shows that, in
some regime, there is a tradeoff between the two information disclosure
risks, that is, users with a lower identity disclosure risk suffer a higher
attribute disclosure risk. We investigate in depth the different parameters
that impact this tradeoff.

I . I N T R O D U C T I O N

Individuals publicly share large amounts of data about themselves on
social computing systems such as Facebook, Twitter, LinkedIn, Reddit,
IMDB, and Yelp. Although they receive great utility from those systems,
users are also concerned that such data sharing negatively affects their
privacy; but what exactly is the privacy loss is not always clear. To a
large extent, privacy losses relate to information disclosure, that is to
the information revealed about the user from the data shared. Privacy
advocates often argue that making users aware of information disclosure
risks could enable them to make better judgements on the data they
share.

In the past decade, a large body of research has shown that (hidden)
sensitive information about a user such as ethnicity or political affiliation
can be inferred by mining publicly available data within a single social
computing system [1]–[4]. This type of information disclosure is called
attribute disclosure: it consists in inferring the value of an attribute (e.g.,
ethnicity) that was hidden (i.e., not directly shared by the user). All these
studies use either friendship or user behavior data (or both) and exploit
homophily to make the inference (i.e., the fact that it is possible based
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on friendship, or user behavior data to construct groups of users sharing
similar attributes).

In parallel, many works appeared in recent years on matching identities
across multiple social computing systems [5]–[18], that is on building
algorithms to find, for a given identity in a social computing system, the
identity in a second social computing system that belongs to the same
individual (termed the matching identity). This type of information
disclosure is called identity disclosure. The proposed matching algorithms
typically use publicly available attributes (such as name and bio) and
leverage the fact that individuals share attributes across social computing
systems that might be unique enough to identify them. Indeed, the most
recent studies (see [19]) concluded that, in real-world social computing
systems, one can precisely pinpoint the matching identity for about 30%
of the users.

Surprisingly, few studies seem to have noticed that, in addition to
identity disclosure risks, considering multiple social computing systems
also introduces significant new attribute disclosure risks due to the
possibility of inferring a hidden attribute in a profile by looking at
another social computing system (either through homophily or by finding
the matching identity). Such attribute disclosure is powerful because
individuals reveal different pieces of information on different social
computing systems [20] (e.g., personal life on Facebook, profession on
LinkedIn, interests on Twitter).

Even more importantly, to the best of our knowledge, no study has
jointly analyzed identity and attribute disclosure risks. Doing this joint
analysis is particularly important because the research community recently
gained interest in building defenses against privacy attacks (such as
privacy advisors). Defenses were proposed separately in the context of
attribute disclosure [21] (warning users when their behavior put them at
risk of attribute disclosure, e.g., “liking this will reveal that about you”),
and in the context of identity disclosure (advising users to blend into the
crowd, that is to share information at a granularity that makes them less
uniquely identifiable [22]). However, it is not clear that, in the context of
multiple social computing systems where both risks are present, one type
of defense also helps against the other type of risk. Intuitively indeed,
while blending into the crowd might help against identity disclosure, it
might also offer more opportunities to learn attributes and hence increase
the attribute disclosure risk. This raises the key questions: what is the
link between the two disclosure risks? does a lower identity disclosure
risk always correspond to a lower attribute disclosure risk? do defenses
against identity disclosure risk also reduce the attribute disclosure risk?

In this paper, we perform the first combined empirical study of
identity and attribute disclosure across social computing systems and of
their relationship. We first propose a framework to quantify the two
aforementioned risks, as well as methods for attribute inference from
another social computing system in §III. We measure the two risks
on a real-world dataset from Facebook and Twitter in §V. Finally, we
then investigate in depth how attribute disclosure evolves with identity
disclosure using our real-world dataset in combination with an original
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semi-synthetic data generation process in §VI.
To the best of our knowledge, this is the first work studying

systematically attribute disclosure from another social computing system.
More importantly though, our key contribution lies in the analysis of
the relationship between attribute and identity disclosure risks. Indeed,
we show that, in some regimes, there is a tradeoff between attribute
and identity disclosure risks; that is users facing a higher identity
disclosure risk face a lower attribute disclosure risk and vice-versa (we
also investigate the different parameters that affect this tradeoff). Our
findings argue for providing two different risk assessments for users
wishing to protect themselves against cross-site linking attacks, and
that risk assessment tools and defenses recently proposed for identity
disclosure risks do not work well for attribute disclosure.

I I . B A C K G R O U N D A N D R E L AT E D W O R K S

Disclosure in social computing systems: Many previous works have
shown that one can exploit friendship graphs or the content users provide
in order to infer various kinds of information about users such as their
location, ethnicity, gender or political preferences [1]–[4], [23]–[34].
Essentially all of the aforementioned studies show that we can group
users together in various ways (based on their public attributes), and
then infer additional information about an individual user by studying
the properties of the user groups she belongs to. However, none of
the previous works analyzed attribute disclosure across different social
computing systems and its relationship to identity disclosure.

A number of recent studies proposed techniques that leverage different
attributes of public user data to match the identities users maintain across
different social computing systems [5]–[18]. These studies focus on
building algorithms that match identities accurately, but to our knowledge,
no study has investigated the resulting attribute disclosure.

Finally, to estimate attribute and identity disclosure and study their
relation, we need a framework with precise definition of both risks
adapted to the context of multiple social computing systems, which no
prior work provides. We propose a framework that extends traditional
definitions of disclosure risks in databases.

Privacy definitions in traditional databases: The database community
offers several measures to quantify identity and attribute disclosure risks
involved by publishing anonymized databases. First, k-anonymity [35]
estimates identity disclosure risks by measuring how identifiable a record
is in a database. A record is k-anonymous if it is indistinguishable from
at least k − 1 other records (its anonymity set), where two records are
said indistinguishable if they have the same quasi-identifiers. k-anonymity
guarantees that an adversary who knows the quasi-identifiers of a user
will not be able to precisely pinpoint the corresponding record. It is
well known that k-anonymity falls short of protecting against attribute
disclosure because even if the adversary is not able to exactly pinpoint
the targeted record, he can still learn statistical information by analyzing
the properties of the anonymity set of the targeted record. To quantify
such risks, previous work introduced two extra measures: l-diversity [36],
which measures the number of distinct values of an attribute in an
anonymity set; and t-closeness [37], which measures the distance between
the distribution of attribute values in the anonymity set and in the whole
database. Small l-diversity and high t-closeness mean that an adversary is
able to learn more precise statistical information about the targeted
record.

While the notions of k-anonymity, l-diversity and t-closeness offer
attractive concepts to measure attribute and identity disclosure, their
definitions in the closed setting of databases are not directly usable
in social computing systems such as Facebook and Twitter: in social
computing systems there are no such notions as quasi-identifiers and

Fig. 1: Identity and attribute disclosure in social computing systems
(note that IT need not be in the matching anonymity set).

sensitive attributes, and any attribute could be considered both a quasi-
identifier and sensitive attribute at the same time. As a consequence, no
two identities are exactly the same (e.g., even if two identities have the
same name and location, it is unlikely that they also have the same
likes). The few works that used these concepts in social computing
systems are limited to anonymity in the graph structure of a social
network (and ignore other information that can be associated with a
node such as name, location, interests) [38], [39]. As such, they are
still defined in a closed setting and are not directly applicable in open
settings such as social computing systems.

Privacy definitions based on k-anonymity (and mechanisms to enforce
them) are known to suffer from important limitations, in particular
sensitivity to background attacks: guarantees do not hold if the adversary
has extra information besides quasi-identifiers. To solve this issue, much
recent work used instead the notion of differential privacy [40] which
guarantee that, from outputs of queries computed on a database, an
attacker cannot infer whether a given user record participated in the
computation. The literature proposed mechanisms based on adding noise
to the query answer in an interactive setting, or to the data itself before
publishing it in a non-interactive setting to guarantee differential privacy
given a set of queries [41]. Hence, differential privacy could be a useful
tool for the data publisher (in our case the social computing systems)
in order to guarantee small disclosure risks (provided that one could
transport the definition from the closed database to the open social
computing system setting); but it is not directly usable in our study to
measure the disclosure risks from the given data which is out there. Here,
we view the privacy problem from user’s perspective and aim to provide
her with a framework that can sufficiently capture the disclosure risks
(and in particular the relation between attribute and identity disclosure
risks) that she faces given the way social computing systems operate
and how their data can be linked. To this end, we deem that using a
framework based on k-anonymity is appropriate and provides useful
intuition, despite the known weaknesses of k-anonymity.

I I I . F R A M E W O R K T O S T U D Y D I S C L O S U R E R I S K S

In this section, we propose measures of the identity and attribute
disclosure risks in the context of multiple social computing systems. Our
intention is not to introduce a framework to enforce privacy in social
computing systems, but to create a framework that allows us quantify,
and subsequently investigate, the tradeoff between attribute and identity
disclosure.

A. Concepts and definitions

Identity: An account IS created in a social computing system S and
managed by a user to access services offered by the system. An identity
is always associated with a social computing system and a user U . We
call the identities created by a user across various social computing
systems matching identities.
Attributes: We call all categories of information that can be associated
with an identity attributes. These attributes can be either public or hidden.
We denote the j-th attribute of a user by aj .



B. Identity disclosure risks

It is important to clarify both what are and how to measure identity
disclosure risks for users with identities across multiple social computing
systems. Many previous works have only focused on proposing methods
to increase the accuracy of linking identities belonging to the same
user across social computing systems without understanding how the
accuracy of a linkage scheme actually translates to an individual’s
identity disclosure risks. Thus, many questions remain unanswered.
For example, if a scheme achieves a certain precision and recall to
link identities between S and T , what does this say about the identity
disclosure risk of a given user U that owns IS and IT ? (some users will
likely be at higher risks than others). Also, is the identity disclosure risk
specific to a user U , or to an identity IS or IT ?. Finally, is the identity
disclosure risk of a user different when linking identities from S to T
than the reverse?.

To answer and clarify such questions, we draw inspiration from previous
works on database anonymization. Traditionally, identity disclosure has
been defined as the risk of an adversary that has some information λ
about a user to pinpoint the record corresponding to the user in an
anonymized database. Consequently, in the context of social computing
systems, identity disclosure should translate to the risk of an attacker
with some information about a particular user (that can be potentially
acquired from a social computing systems!) to find his identity IT in
a target social computing system T (see Fig. 1); more precisely, the
probability of an adversary knowing the attributes aj associated with IS
to find the matching IT .

Measures of identity disclosure risks: Traditionally, identity disclosure
risks have been quantified through k-anonymity. A recent study by
Backes et al. [22] proposed to adapt k-anonymity by considering two
identities as indistinguishable if they are similar enough (rather than
having the same quasi-identitifiers) – thus define k-anonymity in social
computing systems as the number of identities in T that are similar
enough with IT . There are, however, two problems with this measure: (1)
it is not clear after which threshold two identities are “similar enough”;
and (2) it does not give any guarantees on the probability of an attacker
to identify IT (given IS). Indeed, even if there are multiple identities in
T “similar enough” to IT , it is possible that these identities are not
“similar enough” with IS (transitivity does not necessarily hold in social
computing systems). Consequently, a large k-anonymity can give a
false sense of safety. Contrary, k-anonymity gave guarantees on how
easy an adversary can identify a record in a database (if the adversary
only knows the quasi-identifiers of a user): if a record has a particular
k-anonymity (k − 1 other users have the same quasi-identifiers), an
adversary has a probability of 1/k to pinpoint the targeted record. Based
on this reasoning, we define (θ, k)-matching anonymity, an adapted
version of k-anonymity for social computing systems that measures the
difficulty of an adversary to identify the matching identity:

Definition 1 ((θ, k)-matching anonymity): Given a user U and a
reference identity IS , we define the matching anonymity set of U with
respect to a target social computing system T as the set of identities in
T that have a probability pi of matching with IS higher than θ. An
identity has a (θ, k)-matching anonymity if its matching anonymity set
is of size k.

Observations:
(i) The (θ, k)-matching anonymity estimates the risks of an adversary to
pinpoint IT . Suppose that the adversary chooses a threshold θ to declare
two identities as matching. Then, if an identity has a (θ, k)-matching
anonymity, the adversary will be able to pinpoint the matching identity
with a probability of 1/k ∗ recall. Here, the recall accounts for the
probability of the matching identity to be above the threshold θ while k

accounts for the number of identities in T with a probability of matching
higher than θ.1

(ii) The (θ, k)-matching anonymity (see Fig. 1) can be seen as the
projection of IS on T . Thus, we can see that the (θ, k)-matching
anonymity measures the identity disclosure risk of IT with respect to IS
(which is different than the identity disclosure risk of IS with respect to
IT which would be the projection of IT into S).
(iii) IT need not be in the matching anonymity set. Whether or not it is
depends on how consistent IS and IT are.
(iv) The number of identities in the matching anonymity set depends
on the uniqueness of IS with respect to identities in T and not the
uniqueness of IT .
(v) The (θ, k)-matching anonymity makes few assumptions about the
adversary strategy. We assume that, given two identities, the adversary
computes the probability they belong to the same person, and links the
identities if the probability is high enough. The threshold adversary is a
very common strategy in the literature [19] and our model abstracts
the way of computing the probability that two identities belong to the
same person. However, our model does not give guarantees against all
attackers, e.g., for unreasonable attackers, that link identities at random.

Typical identity matching strategy: The typical approach to match
identities and compute pi is to build a binary classifiers that, given two
identities IS and IT , determines whether IS and IT are matching or
not [5], [7], [8], [10]–[12], [14], [19], [42]. The binary classifier takes as
input a feature vector f(IS , IT ) that captures the similarity between
each attribute of a pair of identities (IS , IT ); and then outputs the
probability pi of IS and IT to match. By selecting a cut-off threshold θ
for p the classifier returns 1 (i.e., matching identities) if pi is larger
than the threshold; and 0 otherwise. For the adversary to learn accurate
information the matching should be precise, thus the threshold must
ensure a small number of false matches.

The choice of θ corresponds to the adversary’s choice of matching
accuracy, which entails the standard trade-off between precision and
recall.2 To account for different adversary strategies we will study
information disclosure for different θ.

C. Attribute disclosure risks

Attribute disclosure happens when an adversary is able to learn the value
of an attribute associated with a user. Given an identity IS , attribute
disclosure can happen either from S (extensively studied by previous
works) or T (mostly omitted by previous works), see Fig. 1. We detail
next the different ways attribute disclosure can happen from multiple
social computing system.

Attribute disclosure through identity matching: The simplest kind
of attribute disclosure happens when an adversary exploits the public
attributes aj associated with the identity IS to find its matching identity
IT . Then, to learn more information about IS , the adversary can search
whether the attributes that are hidden in IS are public in IT . We call
this type of disclosure attribute disclosure through precise matching. It
is limited by how well an adversary is able to precisely pinpoint the
matching identity of a user. As noticed in [19], it is possible to precisely
identify the matching identity for a sizable (but limited) number of users
in practice (only 30% when matching Twitter to Facebook).

1Note that the recall takes into account the fact that a user might not have a
matching identity in a social computing system (i.e., it accounts for the overlap
between two social computing systems).

2Precision quantifies how often the adversary is right when he labels a pair as
matching (true matches / predicted matches); and recall quantifies how many pairs
of matching identities the adversary is able to detect out of all (predicted matches
/ all matches).



The large literature on vulnerabilities of k-anonymity taught us that
attribute disclosure could however happen even if we cannot precisely
pinpoint the matching identity. Recall that l-diversity and t-closeness
were specifically defined for cases where it is not possible to find the
target record. Thus, similarly, we can exploit the set of identities in
T with the highest probabilities of matching with IS (the matching
anonymity set) for attribute inference. We call this attribute disclosure
through probabilistic matching.

Attribute disclosure through attribute correlation: In this category
we consider all previous works on attribute disclosure through homophily
(e.g., people that like X are likely students). However, attribute disclosure
through attribute correlation can happen from both the source as well
as the target social computing system. In the target site, to exploit
the correlation between different attributes (as was traditionally done)
we can, for example, build a classifier that given a pair of identities
outputs the probability of the two identities to have the same value
for an attribute (e.g, have the same country of origin). As for attribute
disclosure from probabilistic matching, we can infer the value of an
attribute from the group of users in T that have the highest probability to
have the same value for the attribute as IS . Note that, to infer attributes
from T we have fewer features than for inferring from S (only features
that are present in both S and T ). However, attribute disclosure form T
is powerful because individuals reveal different pieces of information
about themselves on different social computing systems.

Observation: Attribute disclosure through precise matching is easy to
control by adjusting the information a user provides in IT . Attribute
disclosure from probabilistic matching or correlation depends on what
others share, thus it is harder if not impossible to control.

Measures of attribute disclosure risks: When inferring attributes the
values inferred can be precise or probabilistic and can also be correct
or incorrect. As noted by Lambert [43], both correct and incorrect
inferences can harm the user, thus disclosure is only limited to the extent
to which an adversary is discouraged to make any inference at all. Since
we do not know the point where an adversary becomes discouraged,
we use multiple measures of attribute disclosure in both cases where
information is correct or not. Thus, we measure the l-diversity and
t-closeness of attribute values in the (θ, k)-matching anonymity set (i.e.
users with high probability to have the same attribute value) and the
frequency of the most frequent attribute value in the set.

I V. D ATA S E T

We study disclosure risks across two major social computing systems:
Facebook (as source S) and Twitter (as target T ). Besides their popularity,
this case study is of particular interests for a number of reasons: (1)
users tend to share different kinds of information in each (personal
life events on Facebook, interests on Twitter); (2) Facebook is taking
measures to limit personal information shared publicly while Twitter
doesn’t, so a scenario where an attacker leverages information in Twitter
to learn more about a Facebook identity is realistic; and (3) due to the
availability of the data in Twitter, an attacker can employ state of the art
methods to infer very sensitive information about a user ranging from his
political views [33], to his interests [44].

To measure information disclosure risks across social computing system
we first need ground truth of matching identities in Twitter and Facebook.
We obtained a sample of 2,000 pairs of matching Twitter-Facebook
identities with limited bias from [19].3 The authors of [19] collected
this data for a study aiming to evaluate the accuracy of matching
schemes in practice. Out of the 2,000 pairs of matching Twitter-Facebook

3The strategy is close to picking identities uniformly at random. Please
check [19] for more details.

identities, we only kept 1,333 for which we were able to infer the
location and the interests of the Twitter identity. We call the resulting
dataset the M AT C H I N G - DATA S E T. For each Facebook identity in the
M AT C H I N G - DATA S E T, we collected a candidate set of identities in
Twitter that have attributes similar with the Facebook identity: using the
Twitter query API, we collected all Twitter identities that have the same or
a similar real name, screen name and bio.4 In total, we collected 7,421,390
Twitter identities and we call them the C A N D I D AT E - DATA S E T. 80%
of Facebook identities have candidate sets higher than 1,000. A matching
scheme should pinpoint the Twitter matching identity out of the candidate
set of a Facebook account.

For all Facebook identities in M AT C H I N G - DATA S E T, we crawled
their about page and extracted their real names, screen names, location,
profile photo, genders, year of birth and bio (the fields work, education,
skills, basic-info, bio and quote). Note that not all users provide all these
attributes as each user chooses what to make public.In our dataset there
are 50% of Facebook identities that provide their location, 4% their age,
75% their gender, and 88% their bio.

For all Twitter identities in M AT C H I N G - D ATA S E T and
C A N D I D AT E - DATA S E T we used the Twitter API to collect their real
name, screen name, location, profile photo, bio, who they follow, and their
tweets. As we already mentioned, on Twitter we can use state of the art
techniques to make additional inferences about Twitter identities [44]–[46].
For example, to infer the age of a Twitter identity we can use a method
that exploits the popularity of given names by decade [46]. Out of all the
Twitter identities in M AT C H I N G - D ATA S E T we inferred the age for
45% (the method only works for users in US). To infer the gender of a
Twitter identity we can use the genderize.io service. We were able to infer
the gender for 84% of Twitter identities in M AT C H I N G - D ATA S E T.
Finally to infer the interests of a Twitter identity we can use an algorithm
that was recently proposed in [44]. At a high level, the method exploits
who the user is following and returns a vector of values (a histogram)
for how much a user is interested in the following 19 broad interests
categories: arts and crafts, automotive, business and finance, career,
education and books, entertainment, environment, fashion and style, food
and drink, health and fitness, hobbies and tourism, media, paranormal,
politics and law, religion and spiritualism, science, society, sports and
technology. In our dataset, in median, users are interested in 8 topics.

In our evaluation we exploit the real name, screen name, bio and
profile photo to link identities between Facebook and Twitter and we
attempt to infer the country, state (for US users), age, gender and interests
of users.

Ethical concerns: For our evaluation, we only collected publicly available
data shared by users in Facebook and Twitter. The data used about
matching identities is covered by an IRB. The IRB does not allow
sharing the original data, but we can generate anonymized versions to
share for the purpose of checking individual results. In addition we
consulted a local privacy lawyer, who confirmed that our research is in
accordance with our institute ethics guidelines.

V. E VA L U AT I O N O F D I S C L O S U R E R I S K S

In this section we examine identity and attribute disclosure risks for
users with identities on Facebook and Twitter (where the adversary
knows the identity on Facebook) and how they are affected by θ.

A. Measuring identity disclosure risks

Building the matching scheme: For matching identities we follow
the method we described in §III-B. We represent a pair of identities

4We queried the Twitter API with each unigram and bigram extracted from the
bio of the Facebook identity.



Fig. 2: Precision-recall curve for identifying the Twitter matching
identities of Facebook identities in M AT C H I N G - D ATA S E T.

(a) (θ, k)-matching anonymity (b) 1
k
× recall

Fig. 3: (θ, k)-matching anonymity and probability of pinpointing the
matching identity ( 1

k
× recall) for different θ.

(IS , IT ) with four features, each corresponding to the similarity score
between IS and IT for a profile attribute. To compute the similarity
between real names and screen names we use the Jaro distance [47], for
bios we just count the number of common words between the bios of
the two profiles and finally, for profile photo we use the Phash [48] and
SIFT [49] algorithm to detect whether two photos are the same. We
chose SVM as binary classifier and we follow the exact steps proposed
in [19] to train the classifier.

Evaluation of identity disclosure risk:
For the evaluation, we aggregate the Twitter identities in M AT C H I N G -
DATA S E T (i.e., the true matches) and the identities in the C A N D I D AT E -
DATA S E T (i.e., the false matches), and we investigate the accuracy of
the matching scheme to correctly detect the matching Twitter identity out
of the aggregated set. Fig. 2 shows the corresponding precision-recall
curve (obtained by varying the threshold θ on the probability of two
identities to match computed by our SVM classifier). We can match 22%
of identities with a precision of 90%, but the precision drastically drops
afterwards (which is consistent with [19]).

To study how a specific accuracy (i.e., precision-recall) of a matching
schemes translates to an individual’s identity disclosure risks, and how
the risk varies with θ we pick three thresholds displayed on Fig. 2
corresponding to three main observable states: P1 corresponds to a point
with high precision; P2 corresponds to a point where the precision of the
matching drops significantly; and P3 corresponds to a point with high
recall, but the precision is very low. Fig. 3a shows the ECDFs of the size
of the matching anonymity sets for θ corresponding to P1, P2, P3 while
Fig. 3b shows the corresponding probability to pinpoint the matching
identity (i.e., 1

k
× recall). If we assume that identities with a k smaller

than 10 are at high risk, the figure shows that there are more identities at
high risk for larger θ (about 50% for a θ = 0.925 and θ = 0.625) than
lower θ (less than 20% for θ = 0.685). While counterintuitive, this is
happening because when matching identities in practice attackers are not
able to achieve high recalls when aiming for high precision [19].

We analyze next to which extent is the identity disclosure risk of a user
differ when linking identities from S to T than the reverse. The scatter
plot in Fig. 4 presents the relation between the (θ, k)-matching anonymity
of IT (when matching Facebook to Twitter) vs. the (θ′, k)-matching
anonymity of IS (when matching Twitter to Facebook), where θ and θ′

corresponds to a recall of 80%. While for 23% of the users the absolute

Fig. 4: (θ, k)-matching anonymity for IT (Facebook to Twitter) vs.
(θ′, k)-matching anonymity for IS (Twitter to Facebook).

(a) l-diversity for countries (b) l-diversity for states

(c) l-diversity for genders (d) l-diversity for birthyears

(e) t-closeness for θ = 0.625. (f) confidence for θ = 0.625.

Fig. 5: l-diversity, t-closeness and confidence for different attributes and
different θ corresponding to P1, P2, and P3.

difference between the two (θ, k)-matching anonymity values is ≤ 1, for
most users the risk varies greatly when changing the linkage direction.
This shows that one needs to take a twofold approach when attempting
to mitigate identity disclosure risks.

B. Measuring attribute disclosure risks

Since attribute disclosure from attribute correlation has been studied in
depth by previous works, we focus in this section on attribute disclosure
from probabilistic matching. While there is undeniably a risk of attribute
disclosure from probabilistic matching (as there is a risk of attribute
disclosure from k-anonymous databases), the interesting question is what
is the amplitude of the risk in practice?

Fig. 5 shows the ECDFs of l-diversity, t-closeness and confidence
for different attributes computed in the matching anonymity sets of all
identity-paris in M AT C H I N G - DATA S E T for different θ. We have the
highest attribute disclosure: (1) if l-diversity is 1 – all identities in the
matching anonymity set have the same value for an attribute; (2) if
t-closeness is 1 – happens when the distribution of attribute values in the
matching anonymity set is very different than the distribution of the
whole dataset; and (3) if confidence is 1 – the frequency of the most
frequent value in the matching anonymity set is 100% (i.e., everyone has
the same attribute value).5 From Fig. 5 we can again see that, overall,

5For cases where the k is zero, we count l-diversity as max (and t-closeness
and confidence as 0) as the value of the attribute cannot be inferred.



TABLE I: Precise vs. probabilistic matching (θ = 0.625).
birthyears countries genders states

Precise matching 0.15 0.24 0.19 0.11
Probabilistic matching 0.45 0.45 0.65 0.25

attribute disclosure is higher for lower θ values. For θ = 0.625 the
l-diversity is less or equal to 2 for 60% of identities for country, for
45% of identities for states, and for 70% of identities for age; and the
confidence is 1 for 40% to 60% of users depending on the attribute.
These results confirm our intuition that we can indeed learn additional
information about identities through probabilistic matching.

In terms of accuracy, Table II shows, for each attribute, how often the
true attribute value appears in the (θ, k)-matching anonymity set and
how often it is actually the most frequent one. For interests, the first row
represents the (mean) fraction of the true interests that appear in the
(θ, k)-matching anonymity set, and the second represents what (mean)
fraction of the interests appearing in the matching anonymity set are
actually true interests.6 In general we can see that for most attributes all
the fractions are really high (we make accurate inferences in more than
90% of cases) with the sole exception of states when θ is small. US
states differ because their values are not so concentrated as for other
attributes like countries, and when θ is low and the anonymity sets
become much bigger, their distribution is closer to uniform. However, for
the same reason it is really frequent for the anonymity sets to contain
the true value for US states when they are big.

Finally, Table I presents a comparison between precise and probabilistic
matching for different attributes. To quantify attribute disclosure through
precise matching we analyze for how many Facebook identities we can
find a matching Twitter identity with available country, gender, state, age
group and interests. To quantify attribute disclosure through probabilistic
matching we take a conservative approach: we only measure the fraction
of Facebook identities for which we have an l-diversity of 1 (this is a
lower bound on attribute disclosure). The figure shows that attribute
disclosure through probabilistic matching is significantly higher than
through precise matching. The reason behind this result is the fact in
practice one can only match a small fraction of identities with high
precision; if it would be possible to match all identities, there would not
be any interest for probabilistic matching.

V I . T H E I D E N T I T Y- AT T R I B U T E D I S C L O S U R E R I S K S

I N T E R P L AY

In this final section, we investigate how identity and attribute disclosure
risks relate to each other in order to answer the question: do users facing
a lower identity disclosure risk (i.e., blending into the crowd) also face
a lower attribute disclosure risk? Due to space constraints, we only
show results for countries and states because they cover all interesting
observations and other attributes do not bring more insights. For the
same reasons, we also focus on attribute disclosure through probabilistic
matching rather than correlation.

A. Evaluating the attribute vs. identity disclosure risks

Fig. 6 shows the evolution of t-closeness and confidence as a function
of (θ, k)-matching anonymity. For countries for both, t-closeness and
confidence, the attribute disclosure decreases as the anonymity increases,
however, for states, t-closeness and confidence first increase with (θ, k)-
matching anonymity and after a point they start decreasing. That means
that, in some cases, users which are more anonymous suffer a higher

6For interests the l-diversity, t-closeness and confidence do not portray well the
disclosure risk as users might be interested in multiple topics, thus, we only
present the accuracy of the inference.

(a) t-closeness (b) confidence
Fig. 6: Mean t-closeness and confidence area w.r.t. (θ, k)-matching
anonymity (θ = 0.625).

(a) When the matching identity is in
the sets.

(b) When the matching identity is
removed from the sets.

Fig. 7: Attribute availability in the matching anonymity set as a function
of (θ, k)-matching anonymity (θ = 0.625).

attribute disclosure which indicates that there is indeed a tradeoff between
the two types of privacy risks.

In some sense, this tradeoff is natural: if a user blends into a larger
crowd, that gives more opportunities for attribute inference; but then why
is the tradeoff not observed for countries? Besides, after reaching a
maximum (which we call the knee), the attribute disclosure for states
then decreases; why does it start to decrease at this particular point? The
rest of the paper investigates the reasons behind the existence or not of
the tradeoff (and the knee) and parameters impacting it. Understanding
these parameters will allow us to understand to which contexts this
tradeoff generalizes.7

B. Factors that determine the tradeoff

We identified three factors that might explain the attribute disclosure:
availability, uniformity, and correlation.8

Availability (in the matching set): At extreme, no information can be
learned if no identity in the matching anonymity set provides a particular
attribute. However, the question is whether and how availability varies
with the (θ, k)-matching set, and what the resulting effect is.

Fig. 7a shows the probability that an identity of the matching anonymity
set has the country or state available as a function of the (θ, k)-matching
anonymity. We observe that, for countries, the availability decreases
sharply, while for states, the decrease is less sharp. The decrease of
availability with (θ, k)-matching anonymity is explained (at least partly)
by the fact that in our dataset we have selected identity-pairs for which
the matching identity has available location. To confirm this, Fig. 7b
presents the attribute availability after removing the matching identity
from the matching anonymity sets. Indeed, we observe a flat availability
which confirms that the higher availability for smaller matching sets
previously observed is due to a higher than normal attribute availability
of the matching identity.9 Second, we observe from the figures that states

7The same observations hold for higher θ, but, due to smaller values of k, we
do not always observe the decreasing part of the knee.

8There might be other factors that play a role, but our results show that they
are enough to explain the most interesting properties of the tradeoff.

9We verified the availability of countries/states for all identity pairs in the initial
dataset –before filtering (see §IV)– and the availability for matching identities
is sightly higher than for non-matching identities. Therefore, in practice, the
availability will decrease with the (θ, k)-matching anonymity but with a very
small slope.



TABLE II: Accuracy of attribute disclosure with probabilistic matching.
Countries US states Genders Birthyears Interests

θ 0.985 0.925 0.625 0.985 0.925 0.625 0.985 0.925 0.625 0.985 0.925 0.625 0.985 0.925 0.625
True value in anonymity set 0.99 0.95 0.95 0.98 0.87 0.89 1 1 0.99 1 1 1 0.99 0.84 0.71

True value majority 0.99 0.89 0.84 0.98 0.75 0.58 1 1 0.97 1 0.98 0.93 0.99 0.88 0.83

has a globally lower availability than countries.

Uniformity (of the global distribution – the distribution of attribute
values of a random set of identities in a social computing system): For
t-closeness, if the global distribution is very far from uniform, there is less
to infer since a lot of information is disclosed a priori. The confidence
on the other hand does not account for a-priori information, thus, the
confidence will be always high for attributes with very non-uniform
global distributions. In our dataset, for countries, most users come from
the US – 43%, while the median of all countries is 0.02% – which
translates to a very non-uniform global distribution, while for states the
global distribution is much more uniform. Specifically, the three most
frequent states in the global distribution appear 18%, 9%, 8% while the
respective median value is 1.2%

Correlation (between the attribute to infer and the attributes used for
matching): We expect a higher attribute disclosure from probabilistic
matching when the attributes used for matching and the attributes to
infer are correlated. Our intuition is that names or bios (i.e., attributes
used for matching) correlate with countries but less with states.

In order to understand the effect of these parameters on the identity-
attribute disclosure tradeoff, we proceed by creating controlled artificial
datasets that vary the three parameters.

C. Artificial datasets to study the tradeoff

Fixing availability: We create controlled artificial datasets using sampling
with replacement from appropriately constructed distributions to maintain
all parameters but availability identical to the original dataset. Specifically,
for each Facebook identity with a given location and a given value k of
(θ, k)-matching anonymity, we generate an artificial matching anonymity
set as follows: (i) For each of the k identities in the matching anonymity
set, we draw a Bernoulli random variable with probability equal to the
expected availability we want to impose; and (ii) We draw the available
locations as follows. For the matching identity (if relevant), we put the
location of the Facebook identity. For the others, we draw the locations
with replacement from the union of all matching anonymity sets of
Facebook identities with the same location in the original dataset.

We generate using this procedure 1000 Facebook identities per
(θ, k)-matching anonymity bin, with the same location distribution as in
the original Facebook dataset. By construction, each artificial datasets
maintains the probability that a Facebook identity contains its matching
Twitter identity in its (θ, k)-matching anonymity set and maintains the
global attribute distribution; but they allow to control the availability
(either keeping it as in the original dataset or setting it to a new, constant,
value).

Fixing uniformity: To investigate the effect of uniformity on the tradeoff
we do not need to generate a separate artificial dataset as we can
opportunistically investigate the differences in attribute disclosure as
measured by t-closeness and confidence. Indeed, t-closeness measures
the EMD distance between the global distribution and the observed
distribution of attribute values in a set, thus, eliminating the influence of
the global distribution in the measure.

Fixing correlation: Fixing correlation without introducing unwanted
biases, is a very challenging task. Instead, we compare attribute disclosure
from countries (high correlation) and states (low correlation).

D. Analysis of parameter’s impact on the tradeoff

Fig. 8 presents the identity-attribute disclosure tradeoff curve for different
imposed availabilities (0.3, 0.5 and 0.8) for countries and states and
measured using t-closeness or confidence. To understand the tradeoff we
focus on understanding the position of the knee on the XY-axes (i.e.,
what is the (θ, k) matching anonymity where the maximum attribute
disclosure happens); and the slopes of the knee (i.e., how steep are
the ascending and descending slopes). From the figures we make the
following observations:
(i) The first result we clearly see is that, with constant availability, except
for high values, we always have an identity-attribute disclosure tradeoff
(i.e., a knee) for both countries and states as well as t-closeness and
confidence. This was not evident in Fig. 7 for countries, because attribute
availability decreased with increasing (θ, k)-matching sets (in part due
to our biased way of sampling identity-pairs).
(ii) The position (in terms of x-axis – (θ, k)-matching anonymity) of the
knee is strongly impacted by availability: the lower the availability, the
further away the knee (see Fig. 8a, 8b, 8c, 8d). Secondly, the position of
the knee when comparing t-closeness with confidence is slightly shifted
away for t-closeness.
(iii) For the position in terms of the y-axis, for both t-closeness and
confidence, the maximum attribute disclosure decreases with availability
(see Fig. 8a, 8b, 8c, 8d). For confidence, the maximum attribute disclosure
is higher for countries than for states, while for t-closeness the reverse
holds. This is just a consequence of the fact that t-closeness takes into
account a-priori information and it removes the effect of uniformity of
the global distribution.
(iv) Regarding the descending slope, for confidence (see Fig. 8c, 8d), we
observe the indirect consequence of the uniformity, namely the fact that
for countries most users come from US, thus the confidence remains
relatively high for high values of (θ, k)-matching anonymity whereas it
drops faster for states. The correlation affects the curve in the same
direction, for t-closeness (see Fig. 8a, 8b) (where the effect of uniformity
is removed).
(v) Finally, for the ascending slope, the confidence for a (θ, k)-matching
anonymity of one is equal to the availability which is natural since
there is only one identity in the matching anonymity set which has
location available with a probability equal to the availability. The attribute
disclosure increases afterwards because of the increased inference
opportunity with a larger matching anonymity set.

We conclude that the effect of uniformity and correlation are second
order compared to the effect of availability. The availability imposes
the existence of the knee, as well as its position. The uniformity and
correlation mostly impact the slope of the descending part of the curve.
Results not displayed in the paper due to space constraints show that
these conclusions generalize to attribute inference through correlation.
Finally, given that the trade-off is mostly imposed by availability, our
results will generalize to any other dataset and attribute with availability
less than 1. Thus, it is crucial for privacy advisors that aim at limiting
privacy risks to take into account attribute availability and its impact on
identity and attribute disclosure risks.

V I I . C O N C L U D I N G R E M A R K S

In this paper we highlight the existence of different information
disclosure risks when reasoning across multiple social computing



(a) t-closeness - countries (b) t-closeness - states

(c) Confidence - countries (d) Confidence - states
Fig. 8: Mean t-closeness/confidence w.r.t. (θ, k)-matching anonymity
with artificial datasets of various availability (θ = 0.625).

systems. Specifically, we expose the existence of a tradeoff between
identity disclosure and attribute disclosure and bring attention to the fact
that preventing identity linkage by blending into the crowd is not enough
to limit information disclosure and can even make the attribute disclosure
risk worse. Additionally, a small (θ, k)-matching anonymity set might be
preferable over a large one in some cases as users can have control over
the information disclosed trough precise matching whereas they have no
control over the information disclosed trough probabilistic matching.

We performed our study on attribute disclosure from the target network
only, and using a small set of features available across social computing
systems. In future work, we will tackle two interesting generalizations.
First, we will investigate the case where the attacker complements
attribute inference with inference in the source social computing system.
We expect to find similar results because the set of identities to learn
from in the source and target social computing system should be of
similar size. Second, we will investigate disclosure based on the graph
structure of a social computing system, that is when attribute disclosure
is done from friends and identity disclosure from graph de-anonymization.
Finally, we plan to build a privacy advisor based on our results that will
inform users on the possible identity and attribute disclosure risks when
creating an account or sharing information on a social computing system.
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