
On the Convergence of Normalized Constant
Modulus Algorithms for Blind Equalization

Constantinos B. Papadias e-mail: papadias@eurecom.fr

Dirk T. M. Slock e-mail: slock@eurecom.fr
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Abstract

One of the most known classes of algorithms for blind equalization is the so-called class of
Constant Modulus Algorithms (CMA's) [1], [2]. These adaptive algorithms use an instantaneous
gradient-search procedure similar to that of the LMS algorithm in order to minimize a stochastic
criterion that penalizes the deviations of the received signal's modulus with respect to the known
modulus of the emitted input signal. However, as has been recently reported [4], [5], [6], [7],
these algorithms might ill-converge if they are not properly initialized, due to false minima of
their corresponding cost function. This holds even in cases where the equalizer can match exactly
the inverse of the transmitting channel [6]. Recently, a variant of CMA algorithms, the so-called
Normalized CMA (NCMA) has been introduced in [8] and a more general class of normalized
CMA algorithms containing NCMA as its �rst member has been introduced in [11]. These al-
gorithms have a stable operation for any value of their stepsize in the (0,2) range, in contrast
to unnormalized algorithms for which the range of stable stepsize values depends on the input

signal's statistics and is very hard to determine. The choice of a big stepsize thus leads to a much
faster convergence of normalized algorithms as compared to their unnormalized counterparts. In
this paper we show that choosing a big stepsize may also help them circumvent the undesirable
local minima of the algorithm's cost function thus avoiding the problem of ill-convergence.

1 Introduction

The term blind deconvolution is used to denote an identi�cation procedure that estimates an unknown

system using the output signal produced by this system when excited by an unknown input for which

we have some information about its statistical properties. One of the most common applications of

blind deconvolution is the �eld of data communications. In this case, one wants to estimate the

impulse response of a linear transmitting �lter in order to remove the inter-symbol-interference often

present at the receiver end. This is usually done by implementing a tapped-delay-line (equalizer) at

the receiver whose taps are updated according to an adaptive algorithm. When no training signal

is used at the receiver, the procedure is called blind equalization. A simpli�ed diagram of a blind

equalization setup is shown in Figure 1.
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Figure 1: A typical blind equalization scheme

A very popular class of blind equalization algorithms based on the constant modulus property of

the input signal are the so-called Godard blind equalizers [1], [2]. These algorithms minimize by a

gradient-search procedure the following cost function:

Jp(W ) = E

�
1

2p
(jyjp �Rp)

2

�
; p 2 1; 2; . . . ; (1)
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where E denotes statistical expectation, y is the equalizer's output (which is complex in general)

and Rp is a constant scalar called dispersion constant and de�ned by

Rp =
Ejakj

2p

Ejakj
p

; (2)

where fakg is the emitted symbol sequence. The algorithm that minimizes the above cost function

wih respect to W is given by:

Wk+1 = Wk � �Xkyk jykj
p�2(jykj

p � Rp) ; (3)

whereWk is aN�1 vector containing the equalizer's coe�cients at time instant k, � is the algorithm's

stepsize, Xk = [xk xk�1 . . .xk�N+1]
H is a N � 1 vector containing the N most recent samples of the

received signal, H denotes complex conjugate transpose and the a priori output of the equalizer at

time instant k is denoted by yk and equals XH

k
Wk. The popular SATO and CMA 2-2 algorithms

are special cases of (3) when p = 1 or p = 2, respectively. The stationary points of the algorithm (3)

are given by a non-linear system of equations with respect to the equalizer taps. Due to this non-

linearity, its cost function has not only a global minimum but also a number of local minima. Thus,

some initializations of the algorithm might result in convergence to a non-desirable stationary point

of the algorithm (ill-convergence). In this paper we study this same problem of ill-convergence for

some recently proposed normalized constant modulus algorithms. The rest of the paper is organized

as follows. Section 2 contains a brief review of the ill-convergence of Constant Modulus Algorithms.

Normalized Constant Modulus Algorithms will be presented in section 3 and their ill-convergence

will be studied in section 4. Section 5 contains some simulations that verify the analysis of the

previous section. Finally, our conclusions are contained in section 6.

2 Ill-convergence of constant modulus algorithms

Consider the CMA 2-2 algorithm:

Wk+1 = Wk � �Xkyk(jykj
2 �R2) : (4)

This algorithm minimizes the cost function given by:

J2(W ) = E(
1

4
(jyj2 �R2)

2) ; p = 1; 2; . . . : (5)

In order to �nd the equilibria points of this algorithm, one should set the derivative with respect to

W of the cost function in (5) equal to zero. This gives: [see also [3]]

E((jykj
2 �R2)ykXk) = 0 : (6)

Equation (6) is actually a system of N nonlinear equations for the coe�cients of the equalizer �lter

W . The highly non-linear character of this system of equations results in a plenitude of solutions,

some of which are minima of the cost function J2(W ). This is why false minima possibilities exist

for the CMA algorithm. Figure 2(a) shows an example of the cost function (5) in a case where the

equalizer has two taps. The cost function is plotted with respect to the axes of the two coe�cients. As

can be seen, apart from the two desired global minima (which correspond to two opposite optimal

equalizer settings), there exists also another pair of symmetric minima that gives a non-optimal

equalizer setting. It is this existence of local minima that may lead a constant modulus algorithm

to ill-convergence.
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3 Normalized constant modulus algorithms

In [8] a Normalized Constant Modulus Algorithm (NCMA) has been derived by nulling the CMA's

a posteriori error at each iteration:

�k = jXH

k
Wk+1j

2 �R2 = 0; for all k = 1; 2; . . . : (7)

The thus derived NCMA has the following form:

Wk+1 = Wk �
1

kXkk2
Xkyk(1�

1

jykj
) ; (8)

where k:k denotes the 2-norm of a vector in the Euclidean space. As shown in [11], the NCMA may

also be derived by minimizing exactly at each iteration the following deterministic criterion (see also

[10]):

min
Wk+1

�
1

kXkk2
jXH

k
Wk+1 � sign(XH

k
Wk)j

2
+ (

1

��
� 1)kWk+1 �Wkk

2

�
; (9)

where the sign function of a complex number z is de�ned as sign(z) = sign(rej�) = ej�. The

algorithm that minimizes the above criterion is the following:

Wk+1 = Wk �
��

kXkk2
Xkyk(1�

1

jykj
) ; (10)

where �� is a stepsize controlling the algorithm's convergence speed. The algorithm is stable for all

values of �� 2 (0; 2) and has a maximum convergence speed when �� = 1. The relationship between

CMA and NCMA is in full analogy with the one between the LMS and NLMS algorithms [9]. This

means that NCMA provides a faster convergence speed as compared to the CMA and has a stable

operation for all values of �� 2 (0; 2), whereas CMA needs a careful choice (normally determined by

trial and error) of its stepsize parameter in order not to diverge.

In [11], a more general class of normalized algorithms called Normalized Sliding Window CMA's

(NSWCMA's) that provide a faster convergence speed has been introduced. The algorithms of this

class minimize exactly at each iteration a criterion similar to the one in (9), namely,

min
Wk+1

�
k(XH

k
Wk+1 � sign(XH

k
Wk))k

2
(XH

k
Xk)

�1 + (
1

��
� 1)kWk+1 �Wkk

2

�
; (11)

where kvk2
S
= vHSv , X

H

k
=

2
666664

XH

k

XH

k�1

:

:

XH

k�M

3
777775
=

2
666664

xk xk�1 . . . xk�N+1

xk�1 xk�2 . . . xk�N
: : . . . :

: : . . . :

xk�M xk�M�1 . . . xk�M�N+1

3
777775

is a (M + 1) � N matrix of input data and the sign of a vector is de�ned as a vector whose el-

ements are the signs of the respective elements of the vector. The thus obtained algorithm has the

following form:

Wk+1 = Wk � ��Xk(X
H

k
Xk)

�1
(XH

k
Wk � sign(XH

k
Wk)) : (12)

It is obvious that when M = 0 the above algorithm reduces to the NCMA. We will study in the

sequel the (ill) convergence of these normalized constant modulus algorithms.

4 Ill-convergence of normalized-constant modulus algorithms

We will focus on the constant modulus algorithms algorithms described by (12). These algorithms

can also be seen as stochastic gradient algorithms for the following cost function:

E
n
kXH

k
W � sign(XH

k
W ))k2

(XH
k
Xk)

�1

o
: (13)
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As CMA's cost function (5), the cost function in (13) also has local undesirable minima. An example

of such a cost function in a case of two equalizer parameters and an AR(1) noiseless transmitting

channel for NSWCMA (M=1) is shown in Figure 2(b). In the following analysis we consider the

Figure 2: (a) (b)

CMA and NSWCMA (M=1) cost functions in a case of two equalizer parameters
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communications channel to be modeled as an AR(N � 1) channel and the equalizer is FIR with N

coe�cients. Then the equalizer will be able to exactly match the channel's inverse and problems

arising from the under-parameterization of the equalizer will be avoided. Also for simplicity we

consider the case of a 2-PAM emitted constellation, i.e. the emitted symbol sequence is a white noise

that may take on the real values 1 or -1 with equal probability:

Pr(ak = 1) = Pr(ak = �1) =
1

2
k = 1; 2; . . . ; (14)

where Pr denotes the probability of an event. However the results of the analysis below are extendable

to other kinds of constellations such as QAM constellations [11]. The fact that the channel is

AR(N � 1) is described by the following equation:

XH

k
W o = ak ; k = 1; 2; . . . ; (15)

where W o is a column vector that contains the AR channel's coe�cients and ak is the symbol

transmitted at time instant k. According to (15) W o is the equalizer's optimal setting. The same

is true for the opposite-to-the-optimal equalizer setting W o which is also an acceptable point of

convergence since di�erential coding techniques can eliminate the �-phase ambiguity present in the

received signal. We will now show that these two optimal stationary points are the only ones where

the algorithm (in the ideal case of an AR noiseless channel) perfectly stops. Such a stationary point

should satisfy:

X
H

k
W = sign(XH

k
W ) k = 1; 2; . . . : (16)

If one writes eq. (15) at M + 1 successive time instants, one obtains:

X
H

k
W o = [ak ak�1 � � �ak�M ]T k = 1; 2; . . . : (17)

It is obvious from the above equation that the optimum equalizer settings �W o satisfy eq. (16)

since sign(ak�i) = ak�i. Therefore the algorithm will exactly stop if it attains one of its two optimal

settings. The question now is if it can exactly stop at another stationary point. Let us denote by

H the overall input-output linear �lter consisting of the cascade of the transmission channel and the

equalizer and let fhig be its impulse response. Then the output of the equalizer at time instant k is

given by:

yk =
+1X
i=�1

hiak�i : (18)

Consider now that the equalizer's setting corresponds to a stationary point that causes the algo-

rithm to stop exactly. Then the equalizer's output will equal yk = �1 and therefore, Ey2
k
= 1 )
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E
P

i;j
hihjak�iak�j = 1. But by de�nition Eak�iak�j = �ij where �ij denotes Kronecker's delta

funcion. Therefore:
+1X
i=�1

h2
i
= 1 : (19)

Also, as yk = �1, jykj = 1) j
P+1

i=�1 hiak�ij = 1. As this should be true for all possible sequences

faig, it should also be valid for the particular choice ak�i = sign(hi), which gives:

+1X
i=�1

jhij = 1 : (20)

Combining now (18) and (19) one gets:

hi = ��li for some integer l: (21)

This last equation means that a stationary point that causes the algorithm to stop exactly will always

match exactly the inverse of the transmitting channel's impulse response, except for an arbitrary time

shift. Therefore even in the case of an exactly invertible noiseless channel, the algorithm never stops

exactly at a local stationary point, but continues turning around it. It will only stop at a global

(optimal) minimum of the cost function. This property is also true for an unnormalized algorithm,

since the same steps in the above proof apply also for unnormalized CMA's.

What we just proved implies that maybe the choice of a big stepsize for a normalized algorithm

could help it \escape" from a local minimum since it could amplify the amplitude of the \movement"

around the false minimum and �nally succeed to override it, thus avoiding ill-convergence. The

simulations in the next section will show the validity of this argument.

5 Simulations

In order to provide evidence to the above claims, the following simulation was carried out: a 2-PAM

input sequence was transmitted through an AR(1) noiseless channel with two coe�cients c0 = 1 and

c1 = 0:25. The channel's output is passed through an FIR equalizer (with two coe�cients w0 and w1)

that is recursively updated at each iteration by a blind-equalization algorithm. In a �rst experiment

the CMA 2-2 algorithm is employed with a stepsize � = 0:05 which has been found by trial and

error to guarantee stability. Fig. 3a shows the algorithm's trajectories after 300 iterations for fourty

di�erent initializations on a circle of radius 2. In a second experiment, the NSWCMA with M=1 was

implemented, �rst for a stepsize �� = 0:05 and then for �� = 1 and the corresponding trajectories after
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FIGURE 3a: CMA
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FIGURE 3b: NSWCMA (M+1=N), small stepsize
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Figure 3: A comparison of CMA and NSWCMA (M=1) for an AR(1) channel

30 iterations are shown in �gures 3b and 3c, respectively. As can be seen, CMA is trapped by the local

minima on the w1 axis for some initializations, and so is NSWCMA (M=1) for �� = 0:05. However,
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in the case �� = 1, the latter algorithm escapes from these local minima and all its trajectories

converge to the global minima W = [w0 w1]
T = �[1 0:25]T , thus avoiding ill-convergence. Another

important remark about these �gures is that for both algorithms the trajectories that arrive at the

global minima perfectly stop there, whereas the trajectories that arrive at false minima continue on

moving around them. This veri�es our previous theoretical proof.

6 Conclusions

The issue of ill-convergence of normalized constant modulus algorithms has been addressed in this

paper. The existence of local undesirable stationary points of these algorithms has been shown. A

proof that even in a noiseless-channel case all constant modulus algorithms never actually stop at

a false minimum of their cost function, but continue on turning around it, has been given. This

suggested that augmenting the algorithm's stepsize would result in amplifying this motion around

the undesirable stationary point and �nally lead the algorithm to escape from it and converge to

its optimum equalizer setting. A veri�cation of this claim has been given via computer simulations

that show that a big stepsize can help normalized algorithms to avoid ill-convergence. This gives

an advantage to normalized algorithms with respect to their unnormalized counterparts, since the

range of �� for stability is known a priori and hence the choice of a big stepsize can be safely done

without causing the algorithm to diverge.

REFERENCES

[1] D. N. Godard, \Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data

Communications Systems," IEEE Trans. Commun., vol. COM-28, pp. 1867-1875, Nov. 1980.

[2] J. R. Treichler and B. G. Agee, \A new Approach to Multipath Correction of Constant Modulus

Signals," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-31, pp. 459-472, Apr. 1983.

[3] O. Macchi and E. Eweda, \Convergence analysis of self-adaptive equalizers," IEEE Trans. In-

form. Theory, vol. IT-30, pp. 162-176, Mar. 1984.

[4] C. R. Johnson, Jr., S. Dasgupta and W.A.Sethares, \Averaging Analysis of Local Stability of a

Real Constant Modulus Algorithm Adaptive Filter," IEEE Trans. Acoust., Speech, Signal Process-

ing, vol. 36, pp. 900-910, June 1988.

[5] Z. Ding, R. A. Kennedy, B. D. O. Anderson, C. R. Johnson, Jr., \Ill-Convergence of Godard Blind

Equalizers in Data Communication Systems," IEEE Trans. Commun., vol. 39, pp. 1313-1327, Sept.

1991.

[6] C. R. Johnson, Jr. and J. P. LeBlanc, \Toward Operational Guidelines for Memoryless-Error-

Function-Style Blind Equalizers," 2nd COST 229 Workshop on Adaptive Algorithms in Communi-

cations, Bordeaux, France, Oct. 1992.

[7] Z. Ding, C. R. Johnson, Jr. and R. A. Kennedy, \On the (Non) Existence of Undesirable Equi-

libria of Godard Blind Equalizers," IEEE Trans. Acoust., Speech, Signal Processing, vol. 40, pp.

2425-2432, Oct. 1992.

[8] K. Hilal and P. Duhamel, \A Convergence study of the Constant Modulus Algorithm Leading

to a Normalized-CMA and a Block-Normalized-CMA," Proc. EUSIPCO 92, VIth European Signal

Processing Conference, pages 135-138, Brussels, Belgium, Aug. 24-27, 1992.

[9] D. T. M. Slock, \On the Convergence Behaviour of the LMS and the NLMS Algorithms," To

appear, IEEE Trans. Acoust., Speech, Signal Processing, submitted May 1990, revised May 1991.

[10] D. T. M. Slock, \The Block Underdetermined Covariance (BUC) Fast Transversal Filter (FTF)

Algorithm for Adaptive Filtering," Asilomar Conference on Signals, Systems and Computers, Paci�c

Grove, CA, Oct. 26-28, 1992.

[11] C. B. Papadias and D. T. M. Slock, \A Normalized Sliding Window Constant Modulus Algo-

rithm for Blind Equalization," 14th GRETSI Symposium on Signal and Image Processing, Juan les

Pins, France, Sept. 13-16, 1993.

6


