
A content-delivery protocol, exploiting the privacy
benefits of coded caching

Felix Engelmann and Petros Elia

Abstract—Coded caching is a communications technique that
has elevated the preemptive use of memory (caching) into a pow-
erful ingredient in general communications networks, promising
to change the way networking and PHY-based communications
are conducted. At the same time though — because this approach
is heavily dependent on cooperation between the content provider
(CP), and a centralized powerful transmitter of information
(ISP), and because it is heavily dependent on users caching a
variety of content that is not their own — raises privacy concerns
which have the potential to compromise the applicability of coded
caching. What we are showing in this early work here, is that
in fact coded caching carries a distinct set of salient features
that in fact boost privacy. We present a step-by-step privacy-
aware content-delivery protocol that utilizes caching and which
— at a small cost in performance — can safeguard against
unauthorized matching of users to their requests, as well as
against unauthorized knowledge of the popularity statistics of
files; both crucial privacy issues in different scenarios such as
video on demand. These properties include multicasting-only
transmissions for continuous obfuscation of the true destination
of content, an almost seamless addition of phantom users that
can skew the true popularity distribution, popularity-agnostic
caches, cache-agnostic ISP, and an overall minimization of data
traffic between CP and ISP, and between ISP and users.

I. INTRODUCTION & SYSTEM MODEL

The efficient delivery of modern data over communication
networks, often requires that multiple parties cooperate. This
cooperation – in addition to any performance gains in terms
of speed and reliability – also inadvertently introduces the
phenomenon that each cooperating party can glean information
on the statistics, destination, and nature of the communicated
data. This naturally raises many security concerns relating to
secrecy and privacy.

In terms of data secrecy, the main goal is to guarantee that
only the entities which are authorised to view the content
are able to do so. In terms of privacy, there are two well
known concerns that we consider here. The first has to do
with individual privacy and the fact that the association of a
request for content to a specific user, automatically allows for
the unauthorized tracking of user behaviour. Hence, the goal
should be that only the entity authorising the request should
be allowed to know the associated user that made that request.
The second privacy concern relates to the unauthorized track-
ing of the statistics of the file requests themselves. Knowledge

The authors are with the Communication Systems Department at EURE-
COM, Sophia Antipolis, 06410, France (email: elia@eurecom.fr) and the
Institute of Distributed Systems, University of Ulm, 89081 Ulm, Germany
(email: felix.engelmann@uni-ulm.de). The work is supported by the European
Research Council under the European Unions Horizon 2020 research and
innovation program (Agreement no. 725929).

CP lib

ISP

Z1 Z2 Z3 ZK′· · ·

Fig. 1. Simple scenario where a content provider (CP) with an attached
library, employs a minimalistic service provider (ISP) to serve content to its
end users

of such global statistics (of the requested/transmitted files) can
be very profitable, and the goal is to effectively hide these file
popularity statistics from unauthorized entities.

Without any concern for performance, such secrecy and pri-
vacy concerns can be directly handled by utilizing https/TLS
techniques which apply data- and user-dependent keys to
completely counter any ability to draw conclusions on the
nature of content and about the requests of different users.
This though automatically counters gains from cooperation,
even of the most simple form like multicasting where — in the
presence of https — one could not take advantage of the fact
that two or more users end up requesting the same information.
Such secrecy, privacy and performance considerations become
crucial in various content distribution scenarios.

a) System model: In this context, we here consider a
setting where a content provider (CP) has a library of N files
(e.g., a library consisting of N popular movies) W ′1, . . . ,W

′
N ,

each of size |W ′n| = F bits, and where the CP is attached
to an internet service provider (ISP) to deliver the files to its
users (see Fig. 1). This cooperation introduces efficiency as the
ISP (transmitter) has storage to replicate the original library
closer to the users. The ISP serves K ′ users, where each user
k ∈ {1, 2, . . . ,K ′},[K ′] is equipped – again for purposes of
increasing communication efficiency – with a cache Zk, k ∈
[K ′] of size MF bits which can fit a fraction γ, M

N of the
library. Such efficiency gains can be achieved by having each
user k carefully cache – well before the delivery of content –
some fraction |Zk ∩W ′n|/|W ′n| of each library file W ′n.

This scenario nicely captures the conflict between per-
formance and security. While the CP relies on the ISP to
efficiently deliver content as well as relies on the users to cache
some of this content, the performance gains of cooperation
(between the CP, ISP and users) must be reaped without
requiring any trust in the ISP nor any trust in the neighbouring
users, as these users could be colluding with the ISP.

b) Basic characteristics of coded caching: Given our
emphasis here on performance, we will naturally consider

coded-caching solutions [1] which provide a paradigm shift
in the way caches are utilized, and which render the use of
caches at the end-users, meaningful. Let us first give some
background on coded caching.

Coded caching was proposed by Maddah Ali and Niesen in
the seminal work [1] as a technique which — after carefully
caching content at the receivers, and properly coding across
different users’ requested data — provided increased effective
throughput and a reduced network load. The proposed solution
was motivated by the fact that wireless traffic is heavily video
on-demand (over 60%), which entails an ability to predict data
requests in advance (“the night before”). This approach was
based on caching content from an existing library of many
popular files. Each user would pre-store (without knowing the
next day’s requests) a carefully selected sequence of sub-files
from the library, specifically designed to speed up (next day’s)
communications. Essentially memory is used to disseminate
side-information, which can be best utilized by multicasting,
i.e., by transmitting signals that must be ‘heard’ by many.

Based on this insight, coded caching allowes to deliver
a scaling number of files with delay that increases only
marginally with the number of users, and which quickly
converges to a constant delay upper bound, irrespective of the
number of users. While we will see more of the details later
on, it is very important to note that our proposed solution,
which is based on adding extra users, does not impose a
substantial cost in the performance (capacity requirements, or
speed) of the system, and it never exceeds the above fixed
bound, irrespective of the number of (phantom) users that we
will add. Hence part of what this paper shows is how — using
coded caching — allows us to reap the privacy benefits of
having many users’ messages combined, with almost no cost
in performance. We believe that currently, no such solution
comes close to providing such a combination of privacy and
performance gains.

c) Related work on secrecy and caches: In current Con-
tent Distribution Networks (CDN) the caches must be trusted
by the users and can collect detailed statistics about the unicast
connections. Therefore they are managed by the CP, while
located at the ISP. This is a problematic situation, as physical
access by the ISP can circumvent any security measures. A
more evolved approach is Content Centric Networking (CCN)
where caches are natural nodes forwarding data to multiple
requesters. Unfortunately these nodes can trace content and
create statistics, undermining the privacy of the requests.
Similarely, Leguay et al. [2] propose encrypted objects in
caches at the edge of the network with bandwidth intensive
re-encryption operations to counter linkability of requests for
the same content.

d) Related work on coded caching: This work in [1] has
inspired a sequence of other works (cf. [3], [4], [5], [6], [7],
[8]) which explore the limits of coded caching under different
assumptions. Additional interesting works include [9], [10],
[11], [12], [13], [14], [15], [5], [16], [17] as well as other work
such as [18] on the cache-aided erasure broadcast channel, the
works in [19], [20] on the wireless interference channel with

transmitter-side caching, and our work in [21].
e) Related work on coded caching and secrecy: With

the understanding that coded caching has the potential to
offer much needed and unprecedented performance-gains in
modern content-distribution scenarios, recent work has sought
to explore different secrecy-related aspects of coded caching.
The first thing to note is that, as stated above, coded caching
manipulates data in order to convert a mainly-unicast set
of transmissions into a single-shot multicast transmission
that serves many users at a time, even if these users have
requested different content. This efficient utilization of coded
multicasting, automatically excludes the full use of https.

In terms of secrecy-related aspects of coded caching, the
work in [22] analyzes the secure caching problem and in-
troduces a scheme that guarantees secrecy (i.e., guarantees
inability to access unauthorized content) at a cost that becomes
negligible – in information theoretic terms – as the number of
users and files increases. This is accompanied by a proof that,
even for smaller (feasible) parameters, the delivery delay of the
proposed scheme comes within a constant multiplicative factor
from the information-theoretic optimal delay. Another inter-
esting related work can be found in [23] which provides an
information-theoretic approach for achieving perfect secrecy
between users with the help of a secret threshold sharing, that
guarantees that each user can decode their requested file only.

We here place an additional focus on privacy, which can
be breached for a variety of reasons, ranging from having
more than one user requesting the same file (an event which
can be easily detected at the ISP, who could employ the use
of colluding users to identify the content requested by non-
colluding users), as well as reasons relating to the fact that data
is cached throughout various users’ caches. Generally privacy
issues arise as a result of the cooperation between the CP, the
ISP and the users, and these issues are critical because the
information about what users consume, has very high value in
video-on-demand applications.

II. PRIVACY DRAWBACKS OF CACHE-AIDED UNICAST, AND
PERFORMANCE DRAWBACKS OF HTTPS

The above-mentioned security issues in the absence of https,
are directly associated to, and aggravated by, the common
unicast method typically used by ISPs to communicate with
the users, as well as by the common methods typically used
to exploit caches at the receivers.

1) Unicast transmissions — where the ISP is asked to
send specific content to specific users — naturally disclose the
destination of content, thus automatically allowing association
of a data pseudo-label1 to the requesting user, which in turn
can reveal the true label of the request of that user. This last
step (from the pseudo-label to the real label of the requested
file of a specific user) can be achieved simply by having an
active set of (virtual) malicious users colluding with the ISP,
and requesting each file in the library just once, to get the

1Here we make the distinction between the ‘label’ of a file (e.g. the actual
file name, such as the name of a movie), and the ‘pseudo-label’ of a file which
is a secretly scrambled version of the label.

pseudo-label. The ISP, who already knows (due to the use of
unicast) which pseudo-label each user has requested, can now
deduce the requested labels for a number of users. Hence, in
the absence of perfect pseudo-label obfuscation, we will take
the worst-case approach and assume that finding a real file
name (true label) from the pseudo-label, is feasible.

2) The second problem, of allowing — in this case the ISP
— to gain unauthorized access to the file popularity statistics,
is further aggravated by the typical ‘data-push’ uses of caches
which must reflect the true popularity statistics of the pseudo-
labels and thus of files.

Such traditional methods — where the locally available
part of a request is directly retrieved from the cache of the
requesting user, while the rest is transmitted via unicast —
simply forward data closer to the users during off peak hours
in order to reduce the volume of transmission during peak
hours. Such methods though, yield local caching gains which
suffer severely if caching fails to properly account for, and
exploit, the popularity statistics2. Hence, in such cases, caches
must reflect the true popularity statistics which means that a
colluding user can — directly from their own cache — deduce
the histogram of the pseudo-labels and thus to a certain extent
the histogram (popularity statistics) of the labels themselves.

3) On the other hand, the third problem relates to perfor-
mance. Known TLS privacy-preserving solutions such as https,
currently place a very large burden on the communication
links, by limiting cooperation. For example, as we mentioned
before, https is not known to allow for efficient multicasting,
because the keys are both user- and data-dependent, which
means that the same content will be encrypted into entirely
different sequences of bits which cannot share a communica-
tions link. This limitation becomes even more damaging in
coded caching, which would loose almost all achieved gains
as it is entirely built around coded multicasting. In fact, https
does not allow efficient use of caches, even in the uncoded
case because it limits local caching gains by not exploiting
common requests, and because it places a very large burden on
the placement phase by having to distribute a total of KMF
bits across the caches, rather than the total of NF bits of the
library.

Furthermore, in the absence of https, attempts to contin-
uously scramble the file names (i.e., to continuously gener-
ate new pseudo-labels) require updating also the associated
content it self (updating the ISP library), which can place
some burden on the link from the CP to the ISP. In our case,
this burden becomes very substantial because we would have
to continuously update all the users’ caches as well, placing
additional burden on the ISP-to-users links.

2For example, using popularity-agnostic (local)-caching approaches that
employ caches that reflect a uniform distribution (rather than the true, often
geometric, distribution), would reduce the total duration for handling all K′

users’ requests, only by a factor of (1−γ), compared to unicast transmission
that would not use caches. This gain can be very small for typical values
of γ. For instance, when γ ≈ 0.01, such popularity-agnostic (local)-caching
approaches would result in a delay (or needed bandwidth) reduction of only
1%.

III. IDENTIFYING CATALYTIC INGREDIENTS FOR EFFICIENT
PRIVACY-AWARE CACHE-AIDED COMMUNICATIONS

The above privacy drawbacks, bring to the fore a set of in-
gredients/properties that facilitate privacy in high-performance
cache-aided communications.

Property 1. Multicast-only transmissions. Unlike unicast,
multicast can have the advantage that each transmission is
simultaneously meant for many users at a time. In the presence
of many such users, such multicasting can make it harder for
the ISP to associate content to users.

Property 2. Popularity-agnostic caches. The goal is to be
able to derive high caching gains that are robust, even to the
most severe deviation between the true statistics and those
observed in the caches, which would thus reveal little about
the true popularity statistics (of even the pseudo-labels).

Property 3. Cache-agnostic ISP. Furthermore, although a bit
premature at this point, an additional property that facilitates
privacy-aware cache-aided communications, is having the ISP
– who in fact places the content during the cache-placement
phase – be oblivious of the content in each user’s cache, and
also be unaware of the pseudo-labels in each user’s cache. This
will eventually guarantee, as we will see later on, that even
though the ISP knows the pseudo-labels of the transmitted
data during the delivery phase, it cannot associate users and
requests.

Property 4. Vanishing cost of additional user load. Addi-
tionally we seek a method that can conceivably handle an
increasing number of users, with only a minimal additional
delay (required bandwidth) cost. As we will see, this property
will allow us to give the CP the opportunity to use (virtual)
phantom users to defend against an attack for deriving the true
popularity statistics. The privacy usefulness of this property
will be clarified later on.

Property 5. Minimization of traffic between CP and ISP,
and of traffic between ISP and users. Finally — corresponding
to the third aforementioned problem — the above properties
should yield a method that minimizes the traffic load between
CP and ISP (backhaul) and minimizes the load between the
users and the ISP. This last requirement is important as it
reflects a high received throughput of the users, and it becomes
particularly crucial in wireless content delivery, where the
wireless link capacity is the main bottleneck.

Such a protocol which satisfies all four first properties,
which requires very small increases in the CP to ISP traffic
load, and which is approximately optimal (in information-
theoretic terms) over the last ISP-to-users link, will be pre-
sented here, and will employ the decentralised coded caching
method in [4].

IV. SECRECY-AND-PRIVACY-AWARE CODED-CACHING
PROTOCOL

We here describe the sequence of steps of the content-
delivery protocol, identifying how the aforementioned ingre-
dients/properties are exploited to achieve obfuscation of users’
requests and of popularity statistics.

1) The CP sends the library, encrypted, to the ISP. To
achieve secrecy in our setting, we use a basic encryption ap-
proach with keys that are file-based (rather than file- and user-
based). In our case, each file W ′n is symmetrically encrypted
with a key En to Wn = fEn(W

′
n) where f is the reversible

encryption function (e.g. AES/OFB) which does not reveal
any information on the plain-text with partial cipher-text. The
keys En are randomly initialised and securely stored on the
server. Key rotation can be performed by re-encrypting the
files under the new key and re-distribute the newly encrypted
files. Therefore the caches for this file must be invalidated. For
a general introduction to cryptographic schemes, see Schneier
[24].

2) Each user participating in the scheme must be authorized
by the CP. Authentication can be performed over a secured
channel by e.g. a token or credentials. Based on this channel,
a secret parameter Sk is exchanged between each user k and
the CP. This will be used as a seed for the pseudo-random
algorithm that will fill-up each user’s cache. The seed can be
changed as necessary, as long as the CP and the users known
which seed was used to cache a specific file.

3) The ISP broadcasts the encrypted library, and each user
(based on their seed Sk) caches a certain part of the encrypted
content. The pseudo-random nature of the cache-placement
algorithm — which can be a secure pseudo random number
generator whose output defines which users should cache a
sub-packet — keeps us in linewith the idea of distributed coded
caching [4]. Hence each cache Zk is filled with encrypted
content, and the contents (the pseudo labels, and thus the
labels) of the content in each Zk, is unknown to all except to
user k and the CP. On average the cache is equally occupied
by all the files, i.e., that

E(|Zk ∩Wn|/|Wn|) = γ, ∀n ∈ [N]. (1)

This satisfies our required Property 2.
4) The users send, over secure communications with the

CP, directly to the CP, their requests. Each individual request
is denoted as r′k so each user requests file Wr′k

. All requests
r′k are received at the CP, who combines and shuffles them
(using a secret permutation only known to the CP) to form r′.

5) The CP introduces phantom users. While the number of
real users is K ′, the CP can decide to introduce L additional
phantom users, and encode as if there were more users K =
K ′+L, each with their own request. The CP introduces a set
of phantom requests r′K′+1, . . . , r

′
K , which now are appended

to the original (permuted) vector of requests r′, to create a
request vector r,[r′, r′K′ + 1, . . . , r′K], which is designed to
reflect a different file popularity distribution, and to obfuscate
the original popularity distribution. By appending the phantom
requests to the end of r′ they could be detected and removed.
Shuffling r again removes the possibility to decide if a request
is real or phantom.

The introduction of the phantom users will also help to
defend against attacks meant to associate real users to their
requests (i.e., to associate users to the pseudo-labels of the
files they requested) in cases where only a very small number

of real users request data (in which case, the obfuscation of
the requests could have been weak). As we describe further
down, this latter obfuscation (relating to associating users to
file pseudo-labels) will be achieved because increasing K will
automatically (as a result of the structure of coded caching)
increase the degree of multicasting, i.e., will increase the
number of users (Kγ+1) that are instantaneously served by a
single transmission. In the end, as we also show further down,
serving the phantom users will cause very modest additional
communication load, which in fact diminishes as K ′ and K
increase.

6) The CP sends transmission instructions to the ISP. These
instructions are meta-data that describe how to create each
linear combination (each XOR). For each XOR, this meta-data
simply describes the pseudo-labels of the sub-files that are to
be xored together. These labels are of substantially smaller
volume than the actual data (this applies toward satisfying
Property 5). The sequence of instructions (one instruction
per XOR), which we denote here by X ′, is calculated at
the CP using function ψsec which takes as input all the
r′k, k = 1, . . . ,K, and all the keys (Sk) which describe the
structure (not the data) of each Zk, and the structure of the
library. ψsec does not require any actual data, and it reflects
the coded caching algorithm in [4].

7) The ISP follows the instructions X ′ and applies it
to its copied library to create the actual XORs (the actual
data). This can be done without knowledge of the cache-
structure at the ISP (thus fulfilling Property 3). Then the ISP
proceeds to transmit the sequence of all such XORs (data),
which we denote as X . Each XOR is designed (as in [4])
to serve, on average, Kγ + 1 users at a time (Property 1).
As mentioned above, the addition of the phantom users (in
addition to skewing the statistics) increases the multicasting
degree from K ′γ+1 to Kγ+1, thus increasing the elements
(pseudo-labels) in each linear combination, which makes it
harder for the ISP to associate pseudo-labels to users3.

8) At this point, the ISP also broadcasts the meta data
X ′, which allows each user to know what is in the XOR
intended for them. This does not affect privacy or secrecy
as we designed X ′ so that it does not contain any useful
information. Looking at X ′, the users and the ISP will simply
be able to conclude the corresponding request-histogram (of
pseudo-labels) which though reflects (by design) the skewed
statistics which — by adding phantom users with specific
requests — deviate substantially from the true popularity
statistics. Furthermore X ′ does not reveal an association of
pseudo-labels to users; only in combination with the other
Sks, can anyone associate requests to users. As each user k
only knows their own Sk, they will only deduce their own r′k,
which they already know.

3This avoids attacks where, for example, all but one (or very few) of the
real users are colluding with the ISP, in which case the ISP could have de-
constructed the XOR (by taking out of the linear combination, the requests
of its own colluding users) thus associating a pseudo-label to the remaining
real user.

9) Each user sees each transmission, which contains a
linear combination of different subfiles, as well as the meta
information that describes the pseudo-labels of the files that
were xored together. If a user sees a useful subfile inside
a received XOR, and has all other sub-packets that form
that XOR, the user can decode the packet; with knowledge
of metadata X ′, each user k can follow the exact decoding
procedure that characterizes decentralized coded caching, and
can combine X and Zk (under the instructions given in X ′,
and as a function of r′k) to decode and recover all missing
sub-files of their requested file Wr′k

.
Finally to get the plain-text W ′r′k , the user can decrypt the

file after retrieving the file key Er′n from the CP. The CP can
thereby control the access to the plaintext.

For increasing file sizes F , the fraction of the meta-data X ′

is very small compared to X , which implies that the delay
is dominated (more and more, as F increases) by the cost of
communicating data. In accordance to [4], we normalise T
so that T = 1 corresponds to the delay required to deliver a
single file to a single cache-free user, without interference. We
recall that in the presence of uncoded caching with uniform
cache placement, the delay indefinitely increases with K as
T = K(1−γ). In comparison, for coded caching, directly from
[4], we know that the entire transmission delay takes the form
Tcc = K(1−γ) 1−(1−γ)

K

Kγ which very quickly, as K increases,
converges to Tcc → 1−γ

γ . This shows — in alignment with
Property 4 — the robustness of the performance to the
introduction of the phantom users, especially when Kγ > 1, in
the sense that the addition of a user only increases the required
delay by a decreasing factor Tcc(K + 1) − Tcc(K) which
continuously decreases as K increases, and which eventually
vanishes to zero for all γ ∈ (0, 1).

V. PERFORMANCE EVALUATION: COST OF OBFUSCATING A
ZIPF POPULARITY DISTRIBUTION

Although in theory, the introduction of the phantom users
does not have a substantial effect on the performance of the
coded caching algorithm under ideal conditions, this increased
number of users results (due to increased subpacketization)
in an increase in the corresponding file size [15] which can
be a limiting factor. For this reason, it might be preferable
to split the library in two parts; the first part with the ñ
most popular files W1, . . . ,Wñ, and the second part consisting
of the remaining more rarely queried ones Wñ+1, . . . ,WN

corresponding to the tail of the popularity distribution. The
proposed solution here, would then apply coded caching only
to the popular part of the library, while the tail would always be
delivered by classical secure communications directly from the
CP. This would also be the solution of choice for K ′ < 1/γ,
in which case the gains of coded caching are limited.

Let us assume a Zipf popularity distribution with parameter
α ∈ (0, 1), and let us recall that the distribution’s normalisa-
tion factor is approximately

N∑
k=1

1

kα
≈
∫ N

k=1

1

kα
=
N1−α + 1

1− α
. (2)

20 40 60 80 100
0

20

40

60

80

100

real users K ′

ba
nd

w
id

th
[F

]

unicast (Tu)
direct caching (Tcc)

phantom caching (Tpcc) + tail

Fig. 2. Performance of our new scheme with γ = 3
100

, α = 0.8 and ñ = 30
out of N = 100.

Given that the number of real requests is K ′, the most
popular file will be (on average) requested p(1) = K ′ 1−α

N1−α+1
times. Also given that we cache only from the first ñ files,
and that the total number of requests served by coded caching,
including phanton requests, is K, we have that

K = p(1) · ñ = K ′
1− α

N1−α + 1
ñ. (3)

For the files in the tail, this average number of requests takes
the form K ′

(
1− ñ1−α+1

N1−α+1

)
hence the corresponding total

delay (required bandwidth) takes the form

Tpcc =K(1− γ)1− (1− γ)K

Kγ
+K ′

(
1− ñ1−α + 1

N1−α + 1

)
(4)

The delivery can always fall back to point-to-point unicast
transmissions with a local caching gain for the first ñ files
and achieve a total delay of

Tu = K ′
ñ1−α + 1

N1−α + 1
(1− γ) +K ′

(
1− ñ1−α + 1

N1−α + 1

)
(5)

As N ,M and γ are fixed, an optimal ñ can be calculated
to minimise the number of real users K̂ ′ in Tpcc = Tu from
which on our scheme outperforms end-to-end transmission.
This is shown in Figure 2, where we see that for the specific
example, end-to-end transmission is better for up to around 30
users and from there on our scheme provides a linear gain.

VI. CONCLUSIONS

This work is motivated by the fact that the distribution
of large amounts of modern content over communication
networks, must adhere to strict privacy requirements, while
maintaining a reduced traffic between the participating parties.
Towards this, we here leverage decentralised coded caching in
a way that preserves much reduced communication cost while
guaranteeing privacy and secrecy. The solution here does not
require any additional cache updates at the ISP or the receivers,
and does not require any need for substantial additional data
exchange between the CP and the ISP.

It is to note that the introduction of the phantom users
increases the computational complexity for computing X ′ to
be in the order of O(K · 2K). These benefits relate to the
multicasting nature of coded caching, and its coding structure.
Multicasting allows us to obfuscate the true destination of
content, while coding allows for an almost seamless addition
of phantom users that can skew the true popularity distribution,
eventually protecting the information on each user’s behavior
as well as on global popularity statistics – all despite the fact
that the majority of data is stored and processed close to the
user, inside an untrusted network provider.

This contribution comes at a time when coded caching
is elevating the preemptive use of memory (caching) into
a powerful ingredient in general communications networks,
promising to change the way networking and PHY-based
communications are conducted. At the same time though —
because this approach is heavily dependent on cooperation
between the content provider, and a centralized powerful
transmitter of information (ISP), and because it is heavily
dependent on users caching a variety of content that is not
their own — this approach raises privacy concerns which have
the potential to compromise the gains of coded caching. What
we are showing in this early work here, is that in fact coded
caching carries a distinct set of salient features that boost
privacy. The here presented utilization of coded caching (in
the form of a privacy-aware communication protocol) shows
that — at a small and decreasing cost in performance —
we can safeguard against unauthorized matching of users to
their requests, as well as against unauthorized knowledge of
the popularity statistics of files; both crucial privacy issues in
different scenarios such as video on demand.

A. Future directions

A possible direction of future research is to test the system
for robustness against a variety of attacks, such as for example
an attack where the ISP maliciously misassembles XORs to
test reactions which are bound to come only from real users.
This of course brings to the fore the interesting question
of how much QoS the ISP is willing (and can afford) to
sacrifice, to possibly gain partial and sporadic insight on
the real popularity distribution. This direction also brings to
the fore the need for possible modifications of the proposed
protocol here, including message authentication of X ′, that
defend against this attack.

Another direction relates to cooperation between users. In
our current model, the CP is responsible for keeping the r′k
secret and for combining them to a scrambled r′. An inter-
esting research topic could be the design of a cryptographic
method where the users cooperatively decide (in a distributed
manner) on r′ without disclosing their own request.

Another research direction is to explore how coded caching
maintains these privacy benefits, in settings where coded
caching is fused with modern, feedback-aided interference
management schemes that are heavily dependent on signal sep-
aration which, in some sense, is the opposite of multicasting
which was identified here as a beneficial ingredient for privacy.

REFERENCES

[1] M. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[2] J. Leguay, G. S. Paschos, E. Quaglia, and B. Smyth, “Cryptocache: Net-
work caching with confidentiality,” May 2017, IEEE ICC 2017, available
at: http://jeremie.leguay.free.fr/files/CryptoCache-ICC2017.pdf.

[3] S. Wang, W. Li, X. Tian, and H. Liu, “Fundamental limits of
heterogenous cache,” CoRR, vol. abs/1504.01123, 2015. [Online].
Available: http://arxiv.org/abs/1504.01123

[4] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching at-
tains order-optimal memory-rate tradeoff,” IEEE/ACM Transactions on
Networking, vol. 23, no. 4, pp. 1029–1040, Aug 2015.

[5] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order optimal coded
delivery and caching: Multiple groupcast index coding,” CoRR, vol.
abs/1402.4572, 2014. [Online]. Available: http://arxiv.org/abs/1402.4572

[6] H. Ghasemi and A. Ramamoorthy, “Improved lower bounds for coded
caching,” in Proc. IEEE Int. Symp. Information Theory (ISIT), June
2015, pp. 1696–1700.

[7] C. Wang, S. H. Lim, and M. Gastpar, “Information-theoretic caching:
Sequential coding for computing,” IEEE Trans. Inf. Theory, vol. 62,
no. 11, pp. 6393–6406, Nov 2016.

[8] A. N., N. S. Prem, V. M. Prabhakaran, and R. Vaze, “Critical database
size for effective caching,” in 2015 Twenty First National Conference
on Communications (NCC), Feb 2015, pp. 1–6.

[9] N. Golrezaei, K. Shanmugam, A. Dimakis, A. Molisch, and G. Caire,
“Femtocaching: Wireless video content delivery through distributed
caching helpers,” in INFOCOM, 2012 Proceedings IEEE, 2012.

[10] B. Perabathini, E. Bastug, M. Kountouris, M. Debbah, and A. Conte,
“Caching at the edge: a green perspective for 5G networks,” in IEEE Int.
Conf. on Communication Workshop (ICCW), June 2015, pp. 2830–2835.

[11] U. Niesen, D. Shah, and G. W. Wornell, “Caching in wireless networks,”
IEEE Trans. Inf. Theory, vol. 58, no. 10, pp. 6524–6540, Oct 2012.

[12] E. Bastug, M. Bennis, and M. Debbah, “A transfer learning approach
for cache-enabled wireless networks,” in 2015 13th International Sym-
posium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks (WiOpt), May 2015, pp. 161–166.

[13] J. Hachem, N. Karamchandani, and S. N. Diggavi, “Coded caching for
heterogeneous wireless networks with multi-level access,” CoRR, vol.
abs/1404.6560, 2014. [Online]. Available: http://arxiv.org/abs/1404.6560

[14] J. Hachem, N. Karamchandani, and S. Diggavi, “Effect of number
of users in multi-level coded caching,” in Proc. IEEE Int. Symp.
Information Theory (ISIT), Hong-Kong, China, 2015.

[15] K. Shanmugam, M. Ji, A. Tulino, J. Llorca, and A. Dimakis, “Finite
length analysis of caching-aided coded multicasting,” 2015, submitted
to IEEE Trans. Inform. Theory - July 2015.

[16] M. Deghel, E. Bastug, M. Assaad, and M. Debbah, “On the benefits
of edge caching for MIMO interference alignment,” in Signal Process-
ing Advances in Wireless Communications (SPAWC), 2015 IEEE 16th
International Workshop on, June 2015, pp. 655–659.

[17] R. Timo and M. A. Wigger, “Joint cache-channel coding over erasure
broadcast channels,” in 2015 International Symposium on Wireless
Communication Systems (ISWCS), Aug 2015, pp. 201–205.

[18] A. Ghorbel, M. Kobayashi, and S. Yang, “Cache-enabled broadcast
packet erasure channels with state feedback,” in Proc. Allerton Conf.
Communication, Control and Computing, Sept 2015, pp. 1446–1453.

[19] M. A. Maddah-Ali and U. Niesen, “Cache-aided interference channels,”
in Proceedings of the IEEE International Symposium on Information
Theory (ISIT’2015), Hong-Kong, China, 2015.

[20] F. Xu, K. Liu, and M. Tao, “Cooperative tx/rx caching in interference
channels: A storage-latency tradeoff study,” in 2016 IEEE International
Symposium on Information Theory (ISIT), July 2016, pp. 2034–2038.

[21] J. Zhang, F. Engelmann, and P. Elia, “Coded caching for reducing
CSIT-feedback in wireless communications,” in Proc. Allerton Conf.
Communication, Control and Computing, Illinois, USA, Sep. 2015.

[22] A. Sengupta, R. Tandon, and T. C. Clancy, “Fundamental limits of
caching with secure delivery,” in 2014 IEEE International Conference
on Communications Workshops (ICC), June 2014, pp. 771–776.

[23] V. Ravindrakumar, P. Panda, N. Karamchandani, and V. Prabhakaran,
“Fundamental limits of secretive coded caching,” in 2016 IEEE Inter-
national Symposium on Information Theory (ISIT), 2016, pp. 425–429.

[24] B. Schneier, Applied cryptography : protocols, algorithms, and
source code in C. New York: Wiley, 1994. [Online]. Available:
http://opac.inria.fr/record=b1084163

