
Effective Training of Convolutional Neural Networks for
Face-Based Gender and Age Prediction

Grigory Antipova,b,∗, Moez Baccouchea, Sid-Ahmed Berrania, Jean-Luc
Dugelayb

aOrange Labs, 4 rue Clos Courtel, 35512 Cesson-Sévigné, France
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Abstract

Convolutional Neural Networks (CNNs) have been proven very effective for

human demographics estimation by a number of recent studies. However, the

proposed solutions significantly vary in different aspects leaving many open

questions on how to choose an optimal CNN architecture and which training

strategy to use. In this work, we shed light on some of these questions improving

the existing CNN-based approaches for gender and age prediction and providing

practical hints for future studies. In particular, we analyse four important

factors of the CNN training for gender recognition and age estimation: (1)

the target age encoding and loss function, (2) the CNN depth, (3) the need

for pretraining, and (4) the training strategy: mono-task or multi-task. As

a result, we design the state-of-the-art gender recognition and age estimation

models according to three popular benchmarks: LFW, MORPH-II and FG-

NET. Moreover, our best model won the ChaLearn Apparent Age Estimation

Challenge 2016 significantly outperforming the solutions of other participants.

Keywords: Gender Recognition, Age Estimation, Convolutional Neural

Network, Soft Biometrics, Deep Learning

2010 MSC: 68T10, 68T45

∗Corresponding author
Email addresses: grigory.antipov@orange.com (Grigory Antipov),

moez.baccouche@orange.com (Moez Baccouche), sidahmed.berrani@orange.com (Sid-Ahmed
Berrani), jean-luc.dugelay@eurecom.fr (Jean-Luc Dugelay)

Preprint submitted to Pattern Recognition May 2, 2017



1. Introduction

Automatic recognition of human demographic traits like gender and age has

a number of immediate applications in multiple domains. Indeed, intelligent

security systems can locate a person of interest based on a specific set of soft

biometric attributes. Automatic age estimation algorithms can prevent minors5

from purchasing alcohol or tobacco from vending machines. The content of

the advertising billboards can be adapted depending on the demographics of

pedestrians. In general, large face datasets can be easily managed and organized

based on the demographics of humans. Therefore, many research efforts have

been devoted to design an automatic system which can estimate these essential10

human characteristics from face images [1].

Recently, deep neural networks, and in particular Convolutional Neural Net-

works (CNNs) [2], have boosted nearly all domains of computer vision (e.g.

object detection and recognition [3], image super-resolution [4], image caption-

ing [5] and many others). Since 2012, the prestigious ImageNet challenge on15

object recognition and localization [6] has been won uniquely by CNNs with

constantly increasing depths [7, 8, 9, 3]. The Face Recognition (FR) domain

has also experienced a very significant breakthrough due to CNNs [10, 11, 12].

Unsurprisingly, CNNs have been widely used for both Gender Recognition

(GR) and Age Estimation (AE) problems in recent years. For example, all win-20

ning solutions of the two last editions of the AE challenge [13, 14] are based on

CNNs. More generally, Tables 8 and 9 (which are discussed in details in Sec-

tion 5) demonstrate that since 2014, the majority of studies both on GR and AE

have been either integrally based on CNNs or at least, have used CNN-learned

features as part of their models. These observations underpin the practical in-25

terest of the present research, the goal of which is to find optimal ways of design

and training of CNNs for GR and AE.

In particular, we have identified that existing CNN-based approaches for GR

and AE vary in principal in the following 4 axes: (1) the target encoding and

the loss function used for AE, (2) the depth of the used CNN architecture, (3)30
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presence and type of pretraining (General Task (GT)1 or FR), and (4) the way

how the networks are trained: separately for GR and/or AE or simultaneously

for both tasks. In this paper, we evaluate the importance of each of the presented

axes on the resulting performances providing practical hints for researchers and

practitioners who will choose CNNs for addressing GR and AE problems.35

Our main contributions can be summarized as following:

1. We identify Label Distribution Age Encoding [15] as an optimal way to

represent the target age when training a CNN.

2. We conclude that AE requires deeper CNN architectures than GR when

CNNs are trained from scratch.40

3. We show that FR pretraining allows effective training of deep gender and

age CNNs. In addition, we show that FR pretraining is more suited for

the target problems than the GT one.

4. We demonstrate that CNNs benefit from multi-task training for GR and

AE when trained from scratch. However, this positive effect is encapsu-45

lated by FR pretraining.

5. We report the state-of-the-art results on three popular benchmarks: LFW,

MORPH-II and FG-NET.

6. Based on the designed AE model, we have won the ChaLearn Apparent

Age Estimation Challenge 2016 [14, 16].50

The rest of the article is organised as following: in Section 2, we present the

related studies on automatic GR and AE; in Section 3, which is the central one of

the present work, we identify the optimal CNN design and training parameters

for GR and AE; in Section 4, we use the conclusions of the previous Section

as the basis to design the state-of-the-art CNNs for GR and AE; in Section 5,55

we evaluate our best models on popular benchmarks against the state-of-the-

art; and finally, Section 6 provides the final conclusions of this work and the

directions for the future research.

1Here and further in this work, by the “GT pretraining” we understand the pretraining on

the ImageNet dataset [6] of 1000 classes.
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2. Related Work

In this Section, we briefly present the most relevant works on automatic GR60

and AE from face images. More detailed bibliography studies can be found

in the following surveys: [17, 18] (on GR), [19, 20] (on AE) and [21, 1] (both

on GR and AE). Following the categorization from [22], we can roughly split

non-CNN GR and AE methods into (1) shape-based, (2) texture-based and (3)

appearance-based methods. According to the mentioned categorization, CNNs65

are closer to the texture-based approaches. However, in our opinion, CNNs form

a 4th separate group. Below, we provide examples of approaches in each of the

four categories.

2.1. Shape-based Methods

In shape-based (or anthropometry-based) approaches, GR and AE are per-70

formed using distances between predefined facial landmarks to describe the topo-

logical differences between male and female faces or between faces of different

ages. For example, Poggio et al. [23] measured 15 distances (pupil to eyebrow

separation, nose width etc.) while Fellous [24] selected 24 horizontal and verti-

cal distances in a human’s face to recognize gender. In case of AE, Kwon and75

Lobo [25] computed 6 metric proportions on frontal face images and used them

to separate babies from adults. Similarly, Ramanathan and Chellappa [26] used

8 proportions to model age progression among children and teenagers up to 18

years old. In general, in AE, the anthropometric features are mainly useful to

distinguish children from adults, since the facial shape becomes quite stable for80

adults [19]. A common downside of anthropomorphic methods is the fact that

they are very sensitive to precise estimation of the facial landmarks [22].

2.2. Texture-based Methods

Many studies on GR and AE from face images are based on extraction of

the image-based texture features from the processed images. The most straight-85

forward way to extract texture information from images is to directly use pixel

intensities. This simple approach was employed by several GR works [27, 28, 29]
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with various classification algorithms. Raw pixels contain a lot of redundant in-

formation which can be removed using dimensionality reduction methods. To

this end, Khan et al. [30] used Principal Component Analysis (PCA) while Jain90

and Huang [31] employed Independent Component Analysis (ICA) in the con-

text of GR. AE is a more sophisticated problem than GR, and Guo et al. [32]

found that unsupervised dimensionality reduction methods like PCA, ICA or

Locally Linear Embedding (LLE) are not able to project face images to suf-

ficiently discriminative subspaces. Instead, the authors successfully employed95

Orthogonal Locality Preserving Projections (OLPP) which is a supervised man-

ifold learning algorithm. This promising idea of using manifold learning for the

supervised dimensionality reduction method was later further developed in sub-

sequent works of the same research group [33, 34, 35] using respectively Marginal

Fisher Analysis (MSA), Locality Sensitive Discriminant Analysis (LSDA), Ker-100

nel Partial Least Squares (KLPS) and Correlation Component Analysis (CCA).

General-purpose hand-crafted features were also successfully used for esti-

mation of human demographics. Thus, Local Binary Patterns (LBP) are one of

the most basic and popular hand-crafted features. They were broadly utilised

for GR [36, 37, 38] and AE [39, 40]. Biologically Inspired Features (BIF) were105

used for GR in [22], but they proved to be particularly effective for AE [21]

which is confirmed in a number of works [41, 34, 35]. Some other hand-crafted

features were also tried for GR and AE, though less frequently than LBP and

BIF. For example, Wang et al. [42] employed Scaled Invariant Feature Trans-

forms (SIFT) for GR, Gabor filters were used by Xia et al. [43] for GR and by110

Liu and Wechesler [44] for AE, and Haar-like features allowed Zhou et al. [45]

to train a boosting model for AE.

Moreover, a very promising approach is combining several feature representa-

tions strategies in one model. Thus, in the recent work [46], Castrillón-Santana

et al. analysed and compared different methods of fusion of various hand-crafted115

features, including LBP, Histogram of Oriented Gradients (HOG), Weber Local

Descriptors (WLD) and others, in one GR model. Similarly, Moeini et al. [47]

combined LBP features and raw pixel intensities extracted from different regions
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of faces to learn a regression dictionary for GR and AE. In the same spirit, Liu

et al. [48] combined LBP, HOG and BIF features to train a hierarchical AE120

model obtaining the state-of-the-art performances.

2.3. Appearance-based Methods

The appearance-based approaches for automatic GR utilize both texture

and shape information from face images. A typical appearance-based method

is Active Appearance Models (AAM) which was initially proposed for image125

coding [49]. Using the training dataset, AAM separately learns a statistical

shape model and an intensity model of face images. Lanitis et al. [50] extended

AAM for age modelling by proposing an aging function to explain variations in

ages. Later AAM was independently applied for GR by Xu et al. [51] and by

Shih [52]. The famous AGing pattErn Subspace (AGES) algorithm for AE [53]130

also uses AAM. The basic idea of AGES is to model the aging pattern, which

is defined as a sequence of a particular individual’s face images sorted in time

order, by constructing a representative subspace. The proper aging pattern for

a previously unseen face image is determined by the projection in the subspace

that can reconstruct the face image with minimum reconstruction error, while135

the position of the face image in that aging pattern will then indicate its age.

In AGES, each face is firstly encoded with AAM.

Similarly to anthropometry-based approaches, appearance-based algorithms

suffer from imprecise estimation of facial landmarks.

2.4. CNNs-based Methods140

Recently, many studies on GR and AE have employed CNNs (cf. Tables 8

and 9). In this Subsection, we make an attempt to organize these works high-

lighting the differences between them.

One of the most evident difference between various CNN models is the choice

of the network architecture. CNNs can be roughly split into shallow networks145

(up to 5-6 convolutional layers) and deep networks with more convolutional

layers. We have observed that all studies [54, 55, 56, 57, 58, 59, 60] which
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train gender/age CNNs from scratch use shallow architectures, while the works

employing deeper architectures (like AlexNet [7] or VGG-16/19 [61]) fine-tune

already pretrained CNNs [62, 63, 64, 65, 66]. Moreover, two pretraining types150

(the GT one and the FR one) were used for the demographics estimation. Their

fitness for the target problems was studied by Ozbulak et al. [66]. However, the

results of Ozbulak et al. are difficult to interpret given the fact that two types of

pretraining are compared on two different architectures: AlexNet and VGG-16.

Loss functions and age encoding strategies are another source of variation155

between different AE CNNs. Some papers address AE as an ordinal regression

problem [58, 67]. Others define custom loss functions [68, 65]. However the

vast majority of CNN-based age models were trained either with pure classifi-

cation [59, 66, 62] or with pure metric regression objectives [56, 63, 64].

Finally, several studies [56, 58] compared mono-task training for GR and AE160

versus simultaneous multi-task training. Results are apparently contradictory:

Yi el al. [56] reported no difference between mono-task and multi-task training,

and Yang et al. [58] obtained an improvement in AE performance from the

multi-task training.

3. CNN Design and Training Strategy165

As outlined in Subsection 2.4, the existent CNN-based solutions for GR and

AE mainly differ in the following aspects: (1) the age encoding and the loss

function for the age CNNs, (2) the depth of the employed CNN architectures,

(3) the use of pretraining, and (4) the training strategy: mono-task vs. multi-

task. The objective of this Section is to study each of these design and training170

parameters and to evaluate their relative impact on the resulting gender and

age prediction accuracies. In particular, in Subsection 3.1, we detail the men-

tioned CNN parameters highlighting their importance, and in Subsection 3.2,

we experimentally compare the selected configurations. The conclusions of this

Section are used to optimally train the deep top performing gender and age175

CNNs in the following Section 4.
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Parameter
Tested Values

Gender CNN Age CNN

Target Age Encoding N/A

0/1-CAE

RVAE

LDAE

CNN Depth

2 conv. layers

4 conv. layers

6 conv. layers

8 conv. layers

Pretraining / Multi-task Learning

No pretraining, mono-task

FR pretraining, mono-task

No pretraining, multi-task

FR pretraining, multi-task

Table 1: CNN design and training parameters for GR and AE CNNs which are evaluated in

Section 3. GR = Gender Recognition. AE = Age Estimation. FR = Face Recognition.

3.1. Studied CNN Parameters

Table 1 summarizes the CNN parameters which are evaluated in the present

Section. Below, we subsequently define each of them highlighting their impor-

tance for GR and AE CNNs.180

3.1.1. Target Age Encoding and Loss Function

Target encoding defines how the target labels (in our case, genders and ages)

are represented in a neural network. Both the information which is given (or

not) to the neural network during training and the choice of the loss function

for optimization depend on target encoding.185

GR is a binary classification problem which does not leave much liberty for

the choice of the target encoding and the loss function to optimize. Binary clas-

sification problems are solved by neural networks with one or two neurons at the

output layer. In the first case, the logistic regression loss function is employed
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for optimization and in the second case, the cross-entropy one. Cross-entropy190

loss is mathematically equivalent to logistic one in case of binary classification,

so there is no need for experimental comparison of the two losses. If not said

otherwise, we train GR CNNs with two neurons at the output layer and the

cross-entropy loss.

Contrary to GR, the AE problem can be approached in many different ways:195

classification with coarse categories, per-year classification, regression or even

ranking (cf. Subsection 2.4). Each case imposes particular age encoding and

loss function. In this Section, we compare three strategies which proved to

be the most effective during the 1st edition of ChaLearn Apparent Age Esti-

mation Challenge [13]: pure per-year classification (employed by the 1st place200

winner [62]), pure regression (employed by the runner-ups [63, 64]) and soft

classification (employed by the participants who got the 4th place [69]). It is

important to highlight that the results of the ChaLearn Challenge cannot be

regarded as a fair comparison between the mentioned age encoding strategies be-

cause many other factors influence the final performances of AE methods (each205

team used different CNN architectures, pretraining types, training datasets etc.)

Table 2 presents the compared age encodings as well as the corresponding

loss functions, and Figure 1 provides an example on how they are used to encode

an age of an example face image. Below, we detail each of the three encodings.

In pure per-year classification, each age (with a precision up to one year)210

is treated as a separate class which implies that the age label is encoded as a

one-hot 1D-vector. The size of this vector corresponds to the number of classes

(in this work, we use 100 classes for ages between 0 and 99 years old). We

further refer to this encoding as 0/1 Classification Age Encoding (0/1-CAE).

Pure regression has real numbers as targets, therefore real age values are215

used as labels in this case. This straightforward age encoding is referred as

Real-Value Age Encoding (RVAE) in our work.

Finally, soft classification can be seen as an intermediate case between the

discrete classification and continuous regression. As in pure classification, in soft

classification ages are encoded by vectors of the dimension which corresponds220
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to the number of classes. However, instead of being binary, the values in the

vector are encoded with Gaussian distribution centred at the target age. This

allows to encode a notion of neighbourhood between different age classes (which

is present in RVAE but does not exist in 0/1-CAE): LDAE for example, encodes

that the age of 20 years old is closer to the age of 21 years old than to the age225

of 80 years old. Following the work where the encoding was introduced [15], we

refer to it as Label Distribution Age Encoding (LDAE).

interne Orange 1 

0 1 99 98 30 31 32 29 28 

… … 

0 1 99 98 30 31 32 29 28 

… … 

30 𝑡 = 30 

𝑡𝑖 =  
1, 𝑖𝑓 𝑖 = 30

0
 

𝑡𝑖 =
1

𝜎 2𝜋
𝑒
−

𝑖−30 2

2𝜎2  

RVAE 

0/1-CAE 

LDAE 

Target age: 
30 years old 

Figure 1: Example of age encodings. t denotes the resulting encoding. σ is a hyper-parameter

of LDAE. In this work, we use σ = 2.5 (by experimenting with various σ ∈ [1, 4], we have not

experienced a significant impact of the σ value on the resulting performance).

Encoding Loss function

0/1-CAE LCAE = − 1
N

∑N
k=1

∑100
i=1 t

k
i log pki

RVAE LRV AE = 1
N

∑N
k=1(tk − pk)2

LDAE LLDAE = − 1
N

∑N
k=1

∑100
i=1(tki log pki + (1− tki ) log (1− pki ))

Table 2: Age encodings and corresponding loss functions. N denotes the number of images

in a mini-batch, t denotes the targets and p denotes the predictions of CNNs.

Subsection 3.2 provides an experimental evaluation of the compared age

encodings.

3.1.2. CNN Depth230

The depth of a neural network (i.e. number of its hidden layers) has a

fundamental importance in Deep Learning as it allows to learn a hierarchy of
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image descriptors for a particular problem starting from the elementary features

in the early hidden layers until the high-level problem-dependent features in the

last ones [70, 8]. Informally, the more complicated is a particular problem, the235

deeper CNN architecture is required to address it.

Several recent works [71, 9] have shown that fully-convolutional CNNs (i.e.

CNNs composed of only convolutional layers with no fully-connected ones) per-

form almost identically to classical CNNs while having much less trainable pa-

rameters. It suggests that the discriminative power of a CNN depends rather240

on its convolutional layers than on its fully-connected ones.

Therefore, in this work, we evaluate the impact of the number of convolu-

tional layers on the quality of gender/age CNNs. In particular, CNNs from 2

and up 8 convolutional layers are compared in Subsection 3.2.

3.1.3. Pretraining and Multi-Task Training245

Despite pretraining and multi-task training may seem as two completely

independent techniques at the first sight, both of them are considered as partic-

ular cases of the so called “Transfer Learning” [72]. Indeed, the idea of Transfer

Learning is that the knowledge learned from one problem can be reused for the

other one. It is both reflected in pretraining and multi-task learning.250

In case of pretraining, CNN is initialized by a training on a separate com-

plex problem for which there is a lot of training data. The rich internal CNN

representations which are learned during pretraining facilitate the further CNN

training (also called “fine-tuning”) for a problem of interest.

Thus, in this work, we have selected Face Recognition (FR) as a pretrain-255

ing task due to the following two intuitions. Firstly, contrary to GR and AE

problems, FR allows training very deep CNNs from scratch as in [10, 11, 12]

which proves that this problem is difficult enough to serve as a strong CNN

regularizer during the training. Secondly, being a face-related task, FR is close

to our target problems. Indeed, gender is a part of a person’s identity, therefore260

GR can be seen as an elementary sub-problem of FR. Though age is clearly

independent of a person’s identity, it was shown that the face representation
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learned by a FR CNN implicitly encodes elementary age information [73].

A multi-task CNN is trained to resolve several problems (in our case, GR and

AE) at the same time. This way, the CNN learns to extract more information265

from input images than in case of mono-task training which also results in richer

internal CNN representations.

In Subsection 3.2, FR pretraining and multi-task training are evaluated both

separately and simultaneously in the frame of GR and AE problems.

3.2. Experiments270

3.2.1. Experimental Protocol

We firstly define the experimental protocol which is used for evaluation of

all tested CNN parameters in this Section. The protocol consists of the set of

the CNN architectures with varying number of convolutional layers as well as

of the training and test datasets.275

fast CNN Architecture. For our experiments, we have designed a set of com-

pact CNN architectures of varying depths: fast CNN 2, fast CNN 4, fast CNN 6

and fast CNN 8 with 2, 4, 6 and 8 convolutional layers, respectively. These CNN

architectures are presented in Table 3. All of them are used for evaluation of the

impact of the CNN depth on GR and AE, while the experiments on target age280

encoding and Transfer Learning are performed with the middle-size architecture

fast CNN 4, which is further referred as fast CNN for simplicity.

We have empirically observed that when trained from scratch, using signifi-

cantly more complex CNN architectures than fast CNN results in poor conver-

gence of the early layers of the network (especially in case of GR). As shown285

below, this is due to the relative simplicity of the GR problem with respect to

FR problem, for example. Thus, we have opted for quite compact CNN architec-

tures (comparing to the state-of-the-art ones like VGG-16 [61], GoogLeNet [9]

and ResNet [3]), as the goal of this Section is the objective comparison of the

presented above CNN parameters rather than the design of the best performing290

gender/age CNNs. The latter is done in Section 4, where we train the very
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deep state-of-the-art CNNs of 16 and 50 layers for AE and GR based on the

conclusions of the present Section.

fast CNN 2 fast CNN 4 fast CNN 6 fast CNN 8

Input: 64x64 Input: 64x64 Input: 64x64 Input: 64x64

Conv1 1: 32@3x3 Conv1 1: 32@3x3 Conv1 1: 32@3x3 Conv1 1: 32@3x3

— Conv1 2: 32@3x3 Conv1 2: 32@3x3 Conv1 2: 32@3x3

— — Conv1 3: 32@3x3 Conv1 3: 32@3x3

— — — Conv1 4: 32@3x3

MaxPool: 2x2 MaxPool: 2x2 MaxPool: 2x2 MaxPool: 2x2

Conv2 1: 32@3x3 Conv2 1: 32@3x3 Conv2 1: 32@3x3 Conv2 1: 32@3x3

— Conv2 2: 32@3x3 Conv2 2: 32@3x3 Conv2 2: 32@3x3

— — Conv2 3: 32@3x3 Conv2 3: 32@3x3

— — — Conv2 4: 32@3x3

MaxPool: 2x2 MaxPool: 2x2 MaxPool: 2x2 MaxPool: 2x2

FC: 512 FC: 512 FC: 512 FC: 512

Experiment-specific output layer

Table 3: CNN architectures which are used in experiments of Section 3.2

fast CNN follows the same basic design principles as VGG-16 CNN [61].

In particular, (1) all convolutional layers are composed of square feature maps295

with kernels of size 3x3 pixels, and (2) max-pooling layers reduce both heights

and widths of feature maps in 2 times. In order to facilitate convergence and to

prevent overfitting, we employ a batch normalization module [74] before ReLU

activations and a 0.5-dropout module [75] on the fully connected layer. fast CNN

is fed with 64x64 face RGB-images. The retina size of 64x64 for fast CNN has300

been chosen in conformance with previous work on GR and AE [55, 58]. The

design of the output (fully-connected) layer as well as the corresponding loss

2“Conv: N@MxM” denotes a convolutional layer with N filters of size MxM. “MaxPool:

MxM” means that input maps are downsampled by a factor of M using Max-Pooling. “FC:

N” denotes a fully-connected layer with N neurons.
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function depend on the particular experiment.

Training Dataset: IMDB-Wiki cleaned. In this work, all GR and AE

CNNs have been trained on the internal IMDB-Wiki cleaned dataset which305

is a subset of the public IMDB-Wiki dataset [76] collected in 2015. IMDB-

Wiki cleaned contains about 250K images (2 times less than IMDB-Wiki).

The original IMDB-Wiki dataset suffers from a large number of wrong gender

and age annotations, so in IMDB-Wiki cleaned we have left only those images

for which we are sure that the corresponding annotations are correct (the details310

are explained in [16]).

Test Dataset: Private Balanced Gender Age (PBGA). The common

problem of public benchmark datasets (like LFW, MORPH-II and FG-NET

used in Section 5 for comparison with state-of-the-art) is the fact that they are

not well-balanced. For example, the ratio of men and women both in LFW and315

MORPH-II is almost 80% to 20%. Similarly, about 50% of images in FG-NET

belong to children while MORPH-II dataset contains almost 0 images of people

over 60 and below 18 years old.

The performances measured on these benchmarks are prone to be biased.

This is not critical for comparing the final best gender and age estimators with320

other state-of-the-art models (anyway, almost all GR and AE studies evaluate

their algorithms on one of the three listed benchmarks).

However, in this Section, where our goal is to make important design and

training choices for gender and age CNNs, we want to minimize the possible bias

due to the evaluation dataset. To this end, we use a private internal dataset of325

non-celebrities. For each age in the interval between 12 years old and 70 years

old, the dataset contains 30 images of men and 30 images of women. Thus, 3540

images in total. Below, we refer to this dataset as Private Balanced Gender

Age dataset or simply the PBGA dataset. All results reported on the PBGA

dataset in this Section are calculated according to the cross-dataset protocol330

(i.e. without fine-tuning on PBGA).
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3.2.2. Experimental Results

Target Age Encoding. Table 4 compares AE accuracies of fast CNN s trained

with different target age encodings presented in Subsection 3.1. In Table 4 and

further in this work, AE CNNs are compared according to Mean Absolute Errors335

(MAEs). MAE is simply defined as a mean value of absolute differences between

predicted ages p and real (biological) ages t (the averaging is done on N testing

examples): MAE = 1
N

N∑
i=1

|pi − ti|.

Age Encoding Age Prediction Type Age MAE

0/1-CAE
ArgMax 7.00

Expected Value 6.42

RVAE N/A 7.19

LDAE
ArgMax 6.58

Expected Value 6.05

Table 4: Comparison of target age encodings. Age Estimation (AE) MAEs are reported on

the PBGA dataset. Experiments are performed using the fast CNN architecture.

For 0/1-CAE- and LDAE-based CNNs, we explore two possibilities to predict

an age given 100 activations of the output layer. On the one hand, one can340

select the class (i.e. the age) which corresponds to the neuron with the highest

activation — we denote this approach as “ArgMax” in Table 4. On the other

hand, the age can be estimated as the expected value of all output activations:

age =
∑100
i=1 i ∗ pi, where pi is the activation of the i-th output neuron (here, we

assume that
∑100
i=1 pi = 1).345

The results in Table 4 have at least two conclusions. Firstly, we observe

that AE by expected values significantly outperforms AE by “ArgMax” both

for 0/1-CAE and for LDAE. This result conforms with the similar findings by

Rothe et al. [62]. Secondly, the results demonstrate the general superiority of the

CNN trained with LDAE over CNNs trained with 0/1-CAE and RVAE. Indeed,350

LDAE combines the strong points of two other encodings: the similarity of the

neighbouring ages (as in RVAE) and the robustness of AE (as in 0/1-CAE).
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Based on the obtained results, in the rest of the paper, we use LDAE encoding

and the expected value approach for AE.

CNN Depth. As explained in Subsection 3.1, four CNN architectures of dif-355

ferent depths: fast CNN n, where n ∈ {2, 4, 6, 8} is the number of convolutional

layers, are compared for GR and AE tasks. GR CNNs are evaluated according

to their Classification Accuracies (CAs) and also according to their Areas Un-

der ROC Curves (AUCs) for the sake of more balanced evaluation between two

classes (men and women).360

CNN
Gender

Age MAE
CA AUC

fast CNN 2 92.2% 0.9833 6.65

fast CNN 4 92.8% 0.9867 6.05

fast CNN 6 92.9% 0.9862 5.95

fast CNN 8 92.3% 0.9859 5.89

Table 5: Impact of the CNN’s depth on Gender Recognition (GR) and Age Estimation (AE).

Results are reported on the PBGA dataset.

The results presented in Table 5 highlight the difference between GR and AE.

Indeed, in case of GR (columns 2-3 of Table 5), we observe that the best perfor-

mances are already obtained with only four convolutional layers. Increasing the

depth up to six layers has almost no impact on GR results, while fast CNN 8 of

eight convolutional layers performs even worse than shallower networks overfit-365

ting on the training dataset. At the same time, the column 4 of Table 5 clearly

indicates a positive correlation between the depth of AE CNNs and their perfor-

mances. fast CNN 4 outperforms fast CNN 2 by almost 10% while fast CNN 6

and fast CNN 8 subsequently improve the AE by more than 1% each.

These findings illustrate that AE is a more complex and demanding problem370

than GR. Indeed, the performed experiments show that contrary to AE, GR

training does not provide CNNs with the information which is discriminative

enough to take the full advantage of the CNN’s depth.
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FR Pretraining and Multi-Task Training. Experiments presented in Ta-

ble 6 evaluate the impacts of the FR pretraining and multi-task training on the375

performances of gender and age fast CNN s. Thus, both FR pretraining and si-

multaneous learning for the two tasks increase the GR and AE accuracies with

respect to the mono-task fast CNN which is trained from scratch (lines (1, 3)

and (1, 2) of Table 6, respectively).

Training Type Pretraining
Gender

Age MAE
CA AUC

Mono-task None 92.8% 0.9867 6.05

Multi-task None 93.9% 0.9891 5.96

Mono-task FR 95.0% 0.9917 5.96

Multi-task FR 94.5% 0.9874 5.96

Table 6: Effect of Transfer Learning (FR pretraining and multi-task learning) for Gender

Recognition (GR) and Age Estimation (AE) CNNs. Results are reported on the PBGA

dataset using fast CNN. FR = Face Recognition.

The relative improvement of Transfer Learning on gender fast CNN is more380

important than that on age fast CNN. This perfectly makes sense as GR training

itself is not challenging enough to take the full advantage of deep CNNs (cf. the

results of the CNN depth experiments). Hence, FR pretraining and multi-

task training work as regularizers during the GR training making fast CNN to

learn richer and more expressive internal CNN representations. At the same385

time, AE is a more complicated problem than GR which rather requires more

sophisticated deep CNN architectures than an explicit help of Transfer Learning

(though the latter also remains useful for age fast CNN as shown in Table 6).

Moreover, while the two Transfer Learning approaches have exactly the same

impact on age fast CNN (MAE improvement from 6.05 to 5.96), FR pretraining390

is more effective than multi-task training for gender fast CNN. Indeed, as al-

ready mentioned above, GR can be considered as a sub-problem of FR because

gender is a part of a person’s identity. Thus, the internal CNN representations of

input faces which are learned during FR pretraining contain information which
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can be directly used to predict gender.395

Finally, the lines (3, 4) of Table 7 demonstrate that FR pretraining and

multi-task training for GR and AE are not complimentary. Combining the two

approaches together does not improve age MAEs and even leads to a slight

decrease of gender CAs. This result indicates that the CNN regularization

arising from the multi-task training for GR and AE has already been obtained400

during the FR pretraining. So we can conclude that FR pretraining encompasses

the positive effects of the multi-task training for GR and AE being a more

general regularization approach.

4. State-of-the-art CNNs for Gender and Age Prediction

In this Section, we design the top performing gender and age prediction405

CNNs. The idea is to employ some of contemporary deep CNN architectures

which have proven to be the most effective for other problems (such as Im-

ageNet classification [6]) and to train them for GR and AE according to the

conclusions of Section 3. These conclusions can be summarized as following:

(1) LDAE should be employed as the age encoding strategy; (2) AE is a more410

complex problem than GR, and both GR and AE trainings can be improved

with help of Transfer Learning; (3) FR pretraining is particularly effective for

GR; and (4) FR pretraining encompasses multi-task training meaning that the

two Transfer Learning strategies should not be used together. In particular,

we adopt two recent CNN architectures:VGG-16 [61] and ResNet-50 [3] of 16415

and 50 layers, respectively. VGG-16 is a natural choice because the design of

fast CNN, which is used in Section 3, is inspired from VGG-16, so this architec-

ture can be considered as a very deep extension of fast CNN. At the same time,

ResNets of different depths are currently the state-of-the-art CNN architectures.

As shown in [77], ResNet-50 is a very good trade-off between the running time420

and the resulting performances.

More precisely, the following strategy is used to train both CNNs (VGG-16

and ResNet-50 ) for GR and AE:
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1. GR and AE CNNs are firstly pretrained for FR.

2. CNNs for GR and AE are trained separately (mono-task training).425

3. LDAE is used to encode ages for AE CNNs.

CNN
Pretraining Gender

Age MAE
CA AUC

VGG-16 GT 96.8% 0.9958 4.50

VGG-16 FR 97.1% 0.9967 4.26

ResNet-50 FR 98.7% 0.9991 4.33

Table 7: Our best performing Gender Recognition (GR) and Age Estimation (AE) CNNs.

Results are reported on the PBGA dataset. FR = Face Recognition. GT = General Task.

In this work, we employ VGG-16 from [11] which is pretrained for FR and ob-

tains 97.2% of face verification accuracy on the standard LFW benchmark [78].

We have pretrained ResNet-50 for FR following the same training strategy as

in [11], and the resulting CNN reaches 99.3% on LFW. Hence, ResNet-50 has430

proven to be much more effective than VGG-16 for FR.

As already observed in Section 3, FR pretraining has a direct influence on

GR because the latter can be considered as a particular sub-problem of the

former. This is further confirmed by the results in Table 7. Indeed, being more

accurate for FR, ResNet-50 also outperforms VGG-16 for GR by 1.6 CA points.435

On the contrary, AE and FR are two independent problems, and while FR

pretraining has a very important regularization role to facilitate AE training,

the particular FR accuracy is not a decisive aspect for AE as in the case of GR.

Thus, as presented in Table 7, the AE accuracies of ResNet-50 and VGG-16

are almost the same. Actually, the fact that a much deeper ResNet-50 does not440

improve VGG-16 for AE reveals the limits of the IMDB-Wiki cleaned dataset

which is used for AE training. Indeed, ResNet-50 CNN model is so complex

that it overfits on 250K of training images just after about 5 training epochs

(while VGG-16 does not overfit even after 50 full epochs). That said, we believe

that ResNet-50 would outperform VGG-16 on AE if more training images with445
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age annotations were available. For example, in order to effectively pretrain

ResNet-50 for FR, we have used a dataset of several millions of face images.

Summarizing the results in Table 7, we select ResNet-50 CNN as our best

model for GR, and VGG-16 CNN as our best model for AE.

Finally, as a side remark of this Section, it is interesting to measure the par-450

ticular impact of FR pretraining with respect to General Task (GT) pretraining.

Indeed in Section 3, we only intuitively motivate the choice of FR as a pretrain-

ing task. In order to quantitatively confirm this intuition, we also train VGG-16

from [61] (pretrained on ImageNet) for GR and AE, and the resulting scores

are presented in line 1 of Table 7. As one may observe, the FR preatraining is455

more effective than the GT one both for GR and AE (lines (1,2) of Table 7).

interne Orange 1 

conv1_2 conv2_2 conv3_3 conv4_3 conv5_3 

ImageNet 

Face 
Recognition 

Figure 2: (Better viewed in color). Heat maps of mean activations of convolutional layers in

two VGG-16 CNNs: the one trained for General Task (GT) classification on ImageNet (top),

and the one trained for Face Recognition (FR) (bottom).

Moreover, the difference between FR and GT CNNs can be also perceived

qualitatively. To this end, we visualize the mean activations of the intermediate

convolutional layers of GT and FR VGG-16 CNNs when human faces are given

at the inputs of the two networks in Figure 2. More precisely, VGG-16 is460

composed of five blocks of 2-3 convolutional layers in each of them, and in

Figure 2, we present the mean activations at the last convolutional layers of

each of these block. In general, early convolutional layers of a deep CNN are
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activated by elementary parts of input images: like edges, corners etc. Thus,

activations in the early layers conv1 2 and conv2 2 of the FR and GR VGG-465

16 CNNs are similar, and they focus on the most salient face parts (i.e. eyes,

mouth, and nose). FR VGG-16 further consolidates these activations in the

deeper layers conv3 3, conv4 3 and conv5 3 targeting its attention on the face

region. Therefore, the last convolutional layer of the FR CNN is a high-level

face descriptor which can be potentially used for GR and AE. On the contrary,470

the mean activations of the last conv5 3 layer of GT VGG-16 are uniformly

dispersed all over the map demonstrating that GT VGG-16 is not trained to

focus on human faces (there are few human faces among ImageNet images).

Thus, FR pretraining allows a CNN to better extract high-level information

from face images than GT pretraining making the former more suitable for475

face-related problems such as GR and AE.

5. Benchmark Evaluation

In previous Section 4, we have designed the top performing deep CNNs:

ResNet-50 for GR and VGG-16 for AE. In this Section we evaluate these two

CNNs on three popular benchmark datasets: LFW (for GR), FG-NET (for480

AE) and MORPH-II (for both tasks).

5.1. Benchmark Datasets

Below, we present the benchmark datasets and the corresponding evaluation

protocols are presented.

5.1.1. LFW (gender recognition)485

The Labelled Faces in the Wild (LFW ) dataset [78] containing 13, 233 pho-

tos was collected in 2007. Today, it is the standard benchmark for face and

gender recognition systems. In this Section, we employ it for the comparison of

our best GR CNN with the state-of-the-art GR models. Most of the recent stud-

ies reporting GR results on LFW do not fine-tune their models on the target490

dataset. Therefore, we also follow this cross-dataset protocol for LFW.
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5.1.2. MORPH-II (gender recognition and age estimation)

The MORPH-II dataset [79] is the biggest public dataset of non-celebrities

with both gender and age annotations. The dataset which was collected by

American law enforcement services contains more than 50K face images.495

Guo et al. [41] proposed an evaluation protocol on MORPH-II which was

later adopted by a large part of the research community. The protocol is the

following: the MORPH-II dataset is split into three non-overlapping parts S1,

S2 and S3 with predefined proportions on gender and ethnicity distributions

in each of the parts. GR and AE systems are firstly trained on S1 and tested500

on S2 ∪ S3, and secondly trained on S2 and tested on S1 ∪ S3. Mean CA and

MAE over these two experiments are reported as the final ones. We follow this

protocol to evaluate both our best GR and AE CNNs.

5.1.3. FG-NET (age estimation)

FG-NET [80] is a tiny dataset containing 975 face images of 82 persons with505

age annotations. Despite its small size, FG-NET is still broadly used in AE

community. The Leave One Person Out (LOPO) (i.e. 82-fold Cross-Validation)

protocol has been widely adopted for evaluating AE models on FG-NET. We

follow this protocol to compare our AE CNN with the state-of-the-art.

5.2. Quantitative Evaluation510

For convenience, Tables 8 and 9 regroup the scores of our best GR ResNet-50

and AE VGG-16, respectively comparing them with the state-of-the-art.

Many of the works from Tables 8 and 9 are discussed in Section 2, but for

all reported results we provide short descriptions of the employed methods in

the dedicated column. To the best of our knowledge, the current best results515

for GR were obtained by [54] and [35] on LFW and MORPH-II, respectively.

Castrillon et al. [54] combined hand-crafted features (LBP and HOG) with the

features from a compact CNN (comparable by size to fast CNN ) and used an

SVM classifier above. Guo et al. [35] used BIF features (which are somewhat

similar to the features from early layers of deep CNNs) and a kernel-based520
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Reference Year Used Approach
CA

LFW MORPH-II

[41] 2010 BIF + OLPP N/A 97.8%

[34] 2011 BIF + kPLS N/A 98.2%

[36] 2012 LBP + SVM 94.8% N/A

[37] 2013 Multiscale LBP + SVM 95.6% N/A

[35] 2014 BIF + kCCA N/A 98.4%

[56] 2014 Multi-scale CNN N/A 97.9%

[58] 2015 Ranking CNN N/A 97.9%

[22] 2015
BIF + hierarchical SVM N/A 97.6%

Human Estimators N/A 96.9%

[81] 2015 FIS + SVM/RBF 93.35% N/A

[38] 2015 LBP + C-Pegagos 96.86% N/A

[82] 2016 Local CNN 94.5% N/A

[55] 2016 Compact CNN 97.3% N/A

[54] 2016 LBP/HOG/CNN + SVM 98.0% N/A

[47] 2017 (in press) SLCDL + CRC 96.4% N/A

This Work 2017 ResNet-50 CNN 99.3% 99.4%

Table 8: Comparison of our best Gender Recognition (GR) CNN with the state-of-the-art

works on LFW and MORPH-II datasets.

Canonical Correlation Analysis for simultaneous estimation of gender and age.

We improve the results of these two works from 98.0% to 99.3% and from 98.4%

to 99.4%, respectively. For both datasets, the improvements are statistically

significant with p < 0.01 according to the proportions test. We believe that the

key reason for the success of our model is the usage of FR as pretraining which525

has allowed us to train a much deeper CNN than those which were employed

by previous CNN-based approaches for GR.

The state-of-the-art AE models were reported by the recent works [48], [65]

and [62]. The study from [48] is extremely interesting because despite the au-

thors employed a fusion of very basic hand-crafted features with a standard530

SVR, they managed to obtain excellent AE results by a meticulous selection

of a hierarchical structure of their model (i.e. by first predicting an age group

and then estimating the precise age inside the group) and by proposing several

feature fusion algorithms. However, the choice of an optimal combination of

features to fuse depends on the dataset, therefore it is difficult to evaluate the535
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Reference Year Used Approach
MAE

FG-NET MORPH-II

[45] 2005 Boosting + Regression 7.48 N/A

[53] 2007 AGES 6.77 8.83

[32] 2008 OLPP + regression 5.07 N/A

[83] 2009 AAM + SVR 4.37 N/A

[84] 2010 MTWGP 4.83 6.28

[41] 2010 BIF + OLPP N/A 4.33

[85] 2011 CAM + SVR 4.12 N/A

[86] 2011 OHRANK 4.85 5.69

[34] 2011 BIF + kPLS N/A 4.18

[35] 2014 BIF + kCCA N/A 3.92

[56] 2014 Multi-scale CNN N/A 3.63

[22] 2015
BIF + hierarchical SVM 4.8 3.8

Human Estimators 4.7 6.3

[57] 2015 Unsupervised CNN 4.11 3.81

[58] 2015 Ranking CNN N/A 3.48

[67] 2015 Ordinal CNN N/A 3.27

[48] 2015 Hierarchical grouping and fusion 2.81-3.55 2.97-3.63

[65] 2016 Group-aware CNN 3.93 3.25

[62] 2016 ImageNet VGG-16 CNN + regression 3.09 2.68*

This Work 2017 VGG-16 CNN + LDAE 2.84 2.99/2.35*

Table 9: Comparison of our best Age Estimation (AE) CNN with the state-of-the-art works

on FG-NET and MORPH-II datasets. (*) different protocol (80% of dataset for training,

20% for test).

real AE scores from their work (thus, in Table 9, we provide intervals from

their paper rather than a single score). Liu et al. [65] used a hierarchical age

grouping to train an AE CNN reporting the currently best score on MORPH-II

following the well-established protocol from [41]. Rothe at al. [62] did not follow

this protocol on MORPH-II so their score on MORPH-II cannot be compared540

to others in Table 9 (for the sake of fair comparison, we evaluate our age CNN

both according to the protocols from [41] and [62]). Rothe et al. [62] also ob-

tained the best MAE of 3.09 on the FG-NET dataset. The approach of Rothe et

al. [62] is very similar to ours: the same VGG-16 CNN architecture and IMDB-

Wiki training dataset. However, the principal difference between our solutions545

is the fact that we use LDAE instead of regression encoding and FR pretraining
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instead of GT pretraining. The results in Table 9 confirm the validity of the

training choices made in Section 3.

5.3. Qualitative Evaluation

GR and AE by our best CNNs can be qualitatively assessed in Figure 3.550

We provide both examples of successful predictions and examples on which our

models fail (in the case of AE, the failed prediction means that the corresponding

MAE is significantly bigger than the average one).

woman 
woman (1.00) 

man 
man (1.00) 

woman 
woman (0.99) 

woman 
man (0.55) 

man 
woman (0.68) 

woman 
man (0.92) 

Real gender: 
Predicted gender: 

36 
37.0 

52 
52.9 

62 
64.4 

28 
18.8 

33 
39.6 

56 
64.1 

Real age: 
Predicted age: 

Figure 3: (Better viewed in color). Examples of Gender Recognition (GR) (on LFW ) and of

Age Estimation (AE) (on MORPH-II ) by our best models. Both successful and failed cases

are presented. For GR, the maximum softmax activation is provided.

For the sake of better understanding of the designed models, we perform a

simple ablation analysis to estimate the relative importance of various regions555

of human faces for the designed GR and AE CNNs. The idea is to blur these

regions in input images (using Gaussian filter with σ = 7) and to evaluate

the resulting impacts on gender CAs and age MAEs. The amount of impact

indicates the importance of each tested region for the respective tasks. We

use three types of occlusions: 49 small square regions, 7 vertical stripes and 7560

horizontal stripes. The results are presented in Figure 4.

Globally, we observe that both networks are sensitive to the salient regions of

the face: eyes, eyebrows, nose and mouth. The gender CNN is more sensitive to
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gender 
recognition 

age 
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Figure 4: (Better viewed in color). Sensitivity to occlusions of our best CNNs. Percentages

and heat maps indicate the relative losses in performances after blurring the corresponding

image parts.

the center of the mouth and to the periocular region conforming with previous

studies [87, 88], while the age CNN more equally depends on all salient face565

parts. Figure 4 also demonstrates that the two CNNs quite precisely follow the

horizontal symmetry of faces.

5.4. ChaLearn Competition on Apparent Age Estimation

In order to further validate the selected approach, in 2016, we participated in

the 2nd edition of the ChaLearn Apparent Age Estimation challenge [14]. Our570

submission [16] was based on the VGG-16 CNN pretrained for FR and fine-

tuned for AE using LDAE encoding (as described in this work). Statring from

the basic CNN, we additionally fine-tuned a separate network for AE of children

from 0 to 12 years old (because there were many children in the competition

dataset). We won the challenge significantly outperforming other competitors575

(see Table 10) which confirms the effectiveness of the selected training strategy.
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Position Team ε-score3

1 OrangeLabs (our team) 0.2411

2 palm seu 0.3214

3 cmp+ETH 0.3361

4 WYU CVL 0.3405

5 ITU SiMiT 0.3668

6 Bogazici 0.3740

7 MIPAL SNU 0.4569

8 DeepAge 0.4573

Table 10: Final results of the ChaLearn Apparent Age Estimation challenge 2016 [14].

6. Conclusion and Future Work

In this work, we have been looking for an optimal way of training CNNs

for Gender Recognition (GR) and Age Estimation (AE) problems. To this

end, we have analysed and experimentally compared (1) different target age580

encodings (and loss functions), (2) CNN architectures of various depths, and (3)

two Transfer Learning strategies, namely: pretraining and multi-task training.

As a result, we have obtained the state-of-the-art CNN models for GR and AE.

Below, we highlight the key conclusions of our work:

1. Label Distribution Age Encoding (LDAE) is more effective for AE CNN585

training than pure classification and regression encodings.

2. AE is a more complex problem than GR. Therefore, when no pretraining

is used, AE requires deeper CNN architectures than GR.

3. Face Recognition (FR) pretraining is essential for training deep gender

and age CNNs and more suited for the target tasks than the General Task590

(GT) pretraining.

4. Multi-task training for GR and AE helps only when a CNN is trained

from scratch.

5. We have obtained the state-of-the-art results on popular benchmarks:

99.3% of CA on LFW, 2.99 of MAE and 99.4% of CA on MORPH-II,595

3The AE used in the Challenge. It evaluates how far are the model predictions from the

estimations made by humans. The lower the better.
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and 2.84 of MAE on FG-NET.

6. The trained AE VGG-16 CNN is used as a starting point in our win-

ning submission [16] in the ChaLearn Apparent Age Estimation Challenge

2016 [14].

In our future work, we plan to explore the effectiveness of hierarchical ap-600

proach for GR and AE. The idea is to firstly classify images into coarse age

categories and then to separately train GR and AE CNNs for each category.

The recent work [48] as well as our own study [16] (where we train a separate

model for children images) demonstrate the high potential of this approach. It

might also be interesting to extend our mono-task vs. multi-task study from 2605

(gender and age) to k demographic characteristics.
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