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Cette communication pr�esente une nouvelle classe
d'algorithmes d'�egalisation aveugle pour la transmission des
donn�ees MAP ou MAQ �a travers un canal de communica-
tion �a phase non-minimale. Cette classe d'algorithmes est
deriv�ee en minimisant un crit�ere d�eterministe qui impose un
ensemble de contraintes bas�ees sur la propriet�e du module
constant de la constellation �emise et permet l'accel�eration
de la vitesse de convergence par rapport �a celles des algo-
rithmes CMA classiques.

1 Introduction

Blind equalization of digital communication channels is a
domain that has gained increased attention over the last
decade. A typical blind-equalization setup is depicted in
�gure 1. The purpose of the blind equalization algorithm
is to make the equalizer match the impulse response of the
inverse of the communication channel, thus opening the eye
of the communication system and allowing for a correct
retrieval of the emitted symbols. Let ak denote the emit-
ted symbol, xk the channel's output (possibly corrupted
by additive noise), yk the equalizer's output and Wk the
N � 1 equalizer coe�cient vector, all at time instant k.

Also let Xk = [xk xk�1 � � �xk�N+1]
H , where H denotes

complex conjugate transposition. Then the equalizer's out-

put at time instant k may be written as: yk = X
H
k Wk. A
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Figure 1: A typical blind equalization scheme

very popular class of blind equalization algorithms based on
the constant modulus property of the emitted constellation
symbols is the family of Godard blind equalizers [1], [2].
These algorithms minimize by a steepest-descent procedure
the following cost function w.r.t. W :

Jp(W ) = E

�
1

2p
(jyjp � Rp)

2

�
; p 2 1; 2; . . . ; (1)

This paper presents a new class of blind equalization algo-
rithms for PAM or QAM data transmission over a possibly
non-minimum phase communication channel. This class of
algorithms is derived by minimizing a deterministic func-
tion that imposes a set of constraints based on the constant
modulus property of the emitted symbol constellation and
allows for an increased convergence speed as compared to
that of classical CMA's.

where E denotes statistical expectation and Rp is a con-
stant scalar called dispersion constant and de�ned by Rp =
Ejakj

2p

Ejakj
p . The corresponding algorithm is given by:

Wk+1 = Wk � �Xkykjykj
p�2(jykj

p
�Rp) ; (2)

where � is the algorithm's stepsize. In the sequel we assume
for simplicity that jakj � 1. The well-known SATO and
CMA 2-2 algorithms are special cases of (2) for p = 1 and
p = 2, respectively. A variant of CMA 2-2 called NCMA has
been recently introduced in [5] by nulling the algorithm's a
posteriori error at each iteration. This leads to the algo-
rithm:

Wk+1 = Wk �
1

kXkk
2
Xkyk(1 �

1

jykj
) ; (3)

where k:k denotes the 2-norm of a vector in the Euclidean
space. An alternative way of deriving (3) would be to solve
at each iteration the following problem:

min
Wk+1

(jXH
k Wk+1j

2 � 1)2

subject to: kWk+1 �Wkk
2 = minimal :

(4)

We will now present a new class of constant-modulus al-
gorithms that minimize a deterministic criterion similar to
the one in (4).

2 The proposed algorithms

2.1 Derivation

Consider the following SlidingWindow extension of the nor-
malized CMA 2-2 formulation:
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min
Wk+1

(
L�1X
i=0

(jXH
k�iWk+1j

p
� 1)2

)

subject to: kWk+1 �Wkk
2 = minimal :

(5)

It is clear that with L � N , there exist enough degrees of
freedom to choose Wk+1 such that the sum in (5) takes on
its minimal value zero. The �rst line of (5) leads to the
following set of equations:

jX
H
k�iWk+1j = 1 ; i = 0; � � � ; L� 1 : (6)

Now, as the quantity Wk+1 �Wk is a vector of length N ,
it can in general be decomposed as:

Wk+1 �Wk = Xkvk + 
k ; (7)

where Xk is a N � L matrix de�ned as: Xk =
[Xk Xk�1 . . .Xk�L+1]. The �rst term on the right-hand
side of (7) represents the component of Wk+1 �Wk in the
L-dimensional subspace of RN spanned by Xk�i ; i =
0; � � � ; L � 1, and 
k the component belonging to the or-
thogonal complement of this subspace, of dimension N �L.
Therefore, the second line of (5) can be written as:

kXkvkk
2 + k
kk

2 = minimal : (8)

The term kXkvkk
2 is completely determined by the system

of equations (6), so that (8) is equivalent to minimizing the

quantity k
kk
2
,which results in 
k = 0. Reporting this

value for 
k in (7) and substituting in (6), we obtain:

X
H
k�iWk +X

H
k�iXkvk = ei ; i = 0; � � � ; L� 1 ; (9)

where jeij = 1; i = 0; � � � ; L� 1. Eq. (9) can be written in

matrix form as follows:

X
H
k Wk +X

H
k Xkvk = e = [e0 � � �eL�1]

T
; (10)

which gives when solved for vk:

vk = (XH
k Xk)

�1(e �XH
k Wk) : (11)

This equation, combined with (7) and 
k = 0 gives the
following recursive formula for the equalizer vector W :

Wk+1 = Wk +Xk(X
H
k Xk)

�1(e �XH
k Wk) : (12)

In order to choose the sign vector e in an optimal way, it

must be such that the second condition of (5) holds, i.e.
kWk+1 � Wkk is minimal. This leads [7] to the following
choice for e :

e = [sign(XH
k Wk) � � � sign(X

H
k�L+1Wk)]

T
; (13)

where the sign of a complex scalar is de�ned as:
sign(rej�) � e

j� if r 6= 0. We also use the convention
sign(0) � 1. Substituting into (12), we have a recursive
algorithm corresponding to the problem (5):

Wk+1 =Wk +XkR
�1

k (sign(XH
k Wk)�X

H
k Wk) ; (14)

where Rk = X
H
k Xk and the sign of a vector is de�ned

as the vector whose elements are the signs of the vector's
elements. One can easily see (by following the same steps)
that (14) solves also the following problem:

min
Wk+1

�
ksign(XH

k Wk)�X
H
k Wk+1k

2
	

subject to: kWk+1 �Wkk
2 = minimal :

(15)

Now using a result in [3] we obtain the following result: An
exact minimization with respect to Wk+1 of the determin-
istic function

ksign(XH
k Wk)�X

H
k Wk+1k

2

R
�1

k

+ (
1

��
� 1)kWk+1 �Wkk

2
;

(16)
where kxk2S = x

H
Sx, is provided at each iteration by the

following algorithm:

Wk+1 = Wk + ��XkR
�1

k (sign(XH
k Wk)�X

H
k Wk) : (17)

Note that the problem of minimizing (16) w.r.t. Wk+1 re-
duces to the problem in (15) as �� ! 1. In (16) the hard
constraints of (6) are replaced by a weighted minimization
of the terms in (16).

2.2 Discussion

Eq. (17) describes a new parametric class of algorithms

for blind equalization. The two adjustable parameters are
the normalized stepsize �� and the window length L. Ac-
cording to the deterministic criterion (16) minimized by
the algorithm, the stepsize �� controls the deviation of the
new equalizer setting Wk+1 from the previous one Wk in
a square-norm sense. It can be shown [3] that the algo-
rithm will have a stable operation for all values of �� 2 (0; 2)
and moreover the fastest convergence speed will be achieved
when �� = 1. On the other hand, the choice of L has to do
with the degree of constraining of our criterion, i.e. at each
iteration we are imposing L soft constraints on the next
equalizer vector. These constraints are represented by the
�rst term of the criterion (16). In the case L = 1 one
immediately recognizes the recently-proposed[5] NCMA al-
gorithm. Actually the derivation above o�ers an alternative
way of deriving the NCMA that covers also the case �� 6= 1.
On the other hand, when L = N the algorithm becomes

Sliding-Window RLS. For all the intermediate choices of
1 < L < N one gets other members of this class of algo-

rithms that reside between the two extreme cases of NCMA
and Sliding-Window RLS constant modulus algorithms and
are expected to compromise for convergence speed and com-
putational complexity in between the two extreme cases.
This class of algorithms is in full analogy with the recently
proposed BUCFTF[4] or UG/SWC FTF[3] classes of algo-
rithms for adaptive �ltering, that reside between the NLMS
and Block/Sliding-Window RLS algorithms.

3 Computational organization

The updating of the current equalizer vector Wk described
by eq. (17) may be organized in the following way [4]:

1. Compute the L � 1 a priori error vector (NL multipli-
cations):

Ek = sign(XH
k Wk)�X

H
k Wk (18)

2. Update Rk from Rk�1 (close-to-Toeplitz matrix) (O(L)
multiplications).
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3. Solve the following linear system by use of the generalized
Levinson algorithm (5:5L2 + O(L2) multiplications):

RkHk = ��Ek (19)

4. Update the equalizer vector as follows (NL multiplica-
tions):

Wk+1 = Wk �XkHk (20)

A further reduction in complexity may be achieved if the
algorithm is implemented in a Block-updating form, i.e:

Wk+M = Wk � ��XkR
�1

k (XH
k Wk � sign(XH

k Wk)) (21)

The algorithm (21) will have a complexityM times smaller
than (17) but also a lower convergence speed. It is possible
to use FFT techniques to perform the computations in (18)
and (20) in O(Nlog2L) operations. Also the computations
in (19) can be reduced to O(Llog2L) operations by using the
displacement representation of R�1k (this necessitates the
use of the FTF algorithm for propagating the generators of
R
�1

k in O(L) operations). These alternative computations
are interesting when L is large. Finally, if we introduce an
approximation in NSWCMA corresponding to taking

e = [sign(XH
k Wk) � � � sign(X

H
k�L+1Wk�L+1)]

T (22)

(compare to (13)), the USWC FTF algorithm of [3] may be
used to run NSWCMA in 12N + O(L) operations/sample.

4 Algorithm's performance

We will separately examine the algorithm's performance in
the noiseless and the noise-present cases. In contrast to
the classical adaptive �ltering context where the noise in-

uence is modeled as an additive noise contaminating the
desired signal, the modelling of noise in an equalization
setup is somewhat di�erent, i.e. the received data at the
equalizer's input are assumed to be corrupted by additive
(usually white Gaussian) noise. Moreover, as the commu-
nication channel is usually modeled as a FIR �lter and the
equalizer is a FIR �lter itself too, there is a second kind
of \noise" arising from the fact that the equalizer has only
a �nite number of taps and thus can never exactly match
the in�nite-length impulse response of the channel's inverse.
Therefore, in order to examine a \noiseless" case we will
model the channel as an AR(N-1) �lter and the equalizer
as an MA(N-1) �lter thus avoiding order-mismatch noise.

4.1 Noiseless case

Based on the above assumption, we consider the al-
gorithm when �� = 1 and L = N . In a clas-
sical adaptive �ltering context where the desired sig-
nal is available, the algorithm would converge after
one single iteration [4]. In the blind-equalization

context the desired signal is replaced by the vec-
tor [sign(XH

k Wk) sign(XH
k�1Wk) � � �sign(X

H
k�L+1Wk)]

T .
When the elements of this vector coincide with the trans-
mitted symbols at time instants k; k�1; . . . ; k�L+1, then
the algorithm will converge in one more iteration. This
rather deterministic than stochastic approach makes sense
in this case, since the algorithm forces exactly at each iter-
ation a deterministic criterion rather than a stochastic one.

Moreover, as L grows from 1 to N the algorithm becomes
less and less sensitive to the colouring of the input signal in
contrast to NCMA (NSWCMA with L = 1) which will ex-
hibit a very slow convergence rate when the input signal is
strongly coloured. Moreover, as the absence of noise allows
for the use of a big stepsize ��, these algorithms may avoid
converging to a local minimum of their cost function as op-
posed to classical CMA's that may get more easily trapped
by local-minima (see [6] for a more elaborate discussion).

4.2 Noise present

We now consider the realistic case of a FIR channel and
an additive white Gaussian noise corrupted received sig-
nal. We can again draw a parallel with the performance
of BUCFTF. As explained in [4], the conditioning of the
sample covariance matrix Rk has a signi�cant impact on
the convergence of the BUCFTF algorithm when noise is
present. In fact the noise contribution to the MMSE is
directly proportional to the following term:

� = ��XkR
�2

k X
H
k : (23)

Now if one uses the SVD of the data matrix Xk = U�V H ,
(23) becomes:

� = ��U��2UH
: (24)

This last equation shows that when the matrixRk = X
H
k Xk

has a big eigenvalue spread, the noise will get ampli�ed in
a large and very disproportional manner along the di�er-
ent eigen-directions of this matrix, thus resulting in a big
steady-state MSE. This will become more and more severe
as L moves from 1 to N , which will be the worst case from
this point of view. Di�erent remedies to this problem might
be either regularizing in some way the sample covariance
matrix Rk or reducing the stepsize ��. In the �rst case one
deviates from satisfying exactly the deterministic criterion
(16), in the second case one reduces the convergence speed.
In the NSWCMA class of algorithms, a similar behaviour
is expected, deteriorated also by the fact that the vec-
tor [sign(XH

k Wk) sign(XH
k�1Wk) � � �sign(X

H
k�L+1Wk)]

T

might deviate very much at some iterations from the actu-
ally transmitted symbols at time instants k; k � 1; . . . ; k �
L + 1. However, a faster convergence than NCMA's may
still be achieved.

5 Simulations

The behaviour discussed above of the proposed class of al-
gorithms has been veri�ed through computer simulations.
We will again discriminate between a noiseless and a noise-
present case. The emitted symbols are assumed to belong
to a binary alphabet (2-PAM constellation) and the trans-
mitting channel to be a linear �lter. As a measure of per-
formance we will use the evolution in time of the so-called
closed-eye measure of the communication system de�ned as
follows for a constant modulus constellation:

� =

P
i jhij �maxijhij

maxijhij
; (25)

where fhig represents the convolution of the channel and
the equalizer impulse responses.
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5.1 Noiseless AR channel

In a �rst experiment we consider an AR(7) linear noise-
less channel and an MA(7) equalizer (N = 8). The chan-
nel's poles are located at �1 = 0:1; �2;3 = 0:2e�j�=4; �4;5 =
5e�j�=4; �6;7 = 6e�j�=6, i.e. far from the unit circle. This
corresponds to a well conditioned sample covariance matrix
Rk. The SATO and CMA algorithms with step-sizes that
have been found by trial and error to guarantee stability
as well as the NSWCMA with unit stepsize (�� = 1) and
three di�erent choices for L (1,3,8) have been implemented.
Figure 2(a) shows the evolution of the closed-eye measure
of the communication system for the di�erent algorithms
during 1000 iterations. One can see the faster convergence
provided by NCMA w.r.t. SATO and CMA and the further
increase of convergence speed of NSWCMA as L grows up
towards N . In a second experiment another AR(7) chan-
nel is chosen with poles �1 = 0:3; �2;3 = 0:5e�j�=4; �4;5 =
1:5e�j�=4; �6;7 = 2e�j�=6. This channel has its poles closer
to the unit circle than the previous one, thus resulting in
a more strongly coloured received signal and a more ill-
conditioned matrix Rk. Figure 2(b) shows again the evo-
lution of the closed-eye measure by di�erent algorithms in
this case. We can see that all algorithms except NSWCMA
L = N have now a lower convergence speed because of

the colouring of the received signal. However, as expected,
NSWCMA L = N seems to be insensitive to this colour-
ing and to converge at the same speed as for the previous
channel.

5.2 Noisy FIR channel

We now examine a more realistic case of a FIR channel, cor-
rupted by 20 dB of additive noise. The channel's impulse
response is [1 2 0:6]T (relatively ill-conditioned). The equal-
izer is implemented as an MA(5) �lter (corresponding to a
6 coe�cients tapped-delay line). The emitted sequence is
again 2-PAM and the NSWCMA algorithm is implemented.
In order to avoid a very big steady-state error, we have used
the following regularization for the calculation of the ma-
trix R

�1

k : as the generalized-Levinson algorithm provides
us automatically a LDU decomposition of the matrix Rk

(Rk = LDL
T with L lower triangular), we calculate R�1k as

R
�1

k = L
�T

D
�1
L
�1. In order to avoid the e�ect of severe

ill-conditioning of the matrix Rk at certain time instants
when Rk has a very big eigenvalue spread, we consider all
diagonal elements ofD that are less than 5000 times smaller
than its maximum-valued element to be zero, and thus their
inverse is also set to zero (pseudo-inverse of D). Figure 3
shows the closed-eye measure evolution of NSWCMA for
three di�erent values of L (L = 1 (NCMA), 3 and 5) aver-
aged over 100 di�erent experiments (realizations) for each
algorithm. As L increases, we reduce the stepsize in order to
combat the growing in
uence of noise. We notice that both
algorithms (L = 3; �� = 0:2 and L = 5; �� = 0:1) provide a
faster convergence as compared to the case L = 0; �� = 1

(NCMA of maximum convergence speed). We have also
run simulations for the modi�ed NSWCMA corresponding
to (22) and have found a negligible degradation in conver-
gence speed for moderate values of L.

6 Conclusions
A new class of algorithms for blind equalization called Nor-
malized Sliding Window Constant Modulus Algorithms has

been introduced. These algorithms correspond to an exact
minimization of the deterministic criterion (16) and may
be viewed as \blind" counterparts of the BUCFTF[4] and
UG/SWC FTF[3] classes of adaptive �ltering algorithms.
The algorithms of this class have been shown to have a
faster convergence speed w.r.t. classical CMA's.
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