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Abstract
The 2016 speaker recognition evaluation (SRE’16) is the latest
edition in the series of benchmarking events conducted by the
National Institute of Standards and Technology (NIST). I4U is
a joint entry to SRE’16 as the result from the collaboration and
active exchange of information among researchers from six-
teen Institutes and Universities across 4 continents. The joint
submission and several of its 32 sub-systems were among top-
performing systems. A lot of efforts have been devoted to two
major challenges, namely, unlabeled training data and dataset
shift from Switchboard–Mixer to the new Call My Net dataset.
This paper summarizes the lessons learned, presents our shared
view from the sixteen research groups on recent advances, ma-
jor paradigm shift, and common tool chain used in speaker
recognition as we have witnessed in SRE’16. More importantly,
we look into the intriguing question of fusing a large ensemble
of sub-systems and the potential benefit of large-scale collabo-
ration.
Index Terms: speaker recognition evaluation, fusion, bench-
mark, Call My Net

1. Introduction
The speaker recognition evaluation (SRE) benchmark regularly
conducted by the National Institute of Standards and Technol-
ogy (NIST) has been a major driving force advancing speaker
recognition technology. Since the first SRE’96 [1], the NIST
evaluations have been focusing on speaker verification: given a
segment of speech, decide whether a specified target speaker is
speaking in that segment. Apart from the large datasets made
available by the organizer, NIST SREs have been driving the re-
search directions in speaker recognition by specifying the per-
formance metrics and evaluation protocol – conversational ver-
sus interview speaking style in SRE’08 and SRE’10, multiple
versus single session enrolment in SRE’12 [2], and more re-
cently fixed versus open training conditions in SRE’16 [3], just
to name a few. SRE’16 is different from the prior SREs in cer-
tain key aspects. For the first time, non-English evaluation data
collected outside North America was used in SRE’16. In partic-
ular, the evaluation data is in Cantonese and Tagalog while the

development set is in Mandarin and Cebuano. One more dif-
ference from previous editions is that SRE’16 explores the use
of unlabeled dataset, which might hold the key to cope with the
language mismatch and dataset shift problem [4].

Aside from a joint submission, the I4U consortium was
formed with a common vision to promote and facilitate ac-
tive exchange of information and experience toward SRE’16.
Following the success of I4U’12 [5], the I4U consortium for
SRE’16 is a collaboration of 62 researchers from 16 research
Institutes and Universities across 4 continents. The names of
the organization and corresponding system identifiers are pro-
vided in Table 1. The collaboration started off with the first I4U
meeting conducted via teleconference in early May, 2016. This
was followed by regular bi-weekly and weekly meetings toward
the end of SRE’16. An online group was also set up, providing
a discussion platform across various issues surrounding NIST
SRE’16. In particular, test segment variability, domain adap-
tation for language and channel shift, uncertainty propagation,
score normalization, session compensation, and various issues
concerning score calibration (quality measure, supervised ver-
sus unsupervised) have been actively discussed. Solutions were
put in place as part of the I4U submission.

The submitted results were based on fusion of multiple clas-
sifiers from a pool of 32 sub-systems contributed by I4U mem-
bers. The availability of such a large ensemble of sub-systems
allows us to look into classifier selection and fusion strategies,
and more importantly develop a strategy for megafusion 1 as de-
tailed in Section 4. Listed in Table 1 are the 17 best sub-systems
selected from each site to form the I4U primary submission.

The paper is organized as follows. Section 2 presents an
overview of SRE’16 datasets and our strategies to cope with
new conditions. Section 3 highlights some important aspects of
the submitted system and the component classifiers. Results of
individual sub-systems and their fusions are presented in Sec-
tion 4. Section 5 concludes the paper.

1Thanks to Doug Reynolds of MITLL who coined the term ‘mega-
fusion’ during the SRE’16 workshop, which has inspired the title of this
paper. † Guangsen Wang is now with Tencent AI Lab, Shenzhen, China.



Table 1: Component classifiers and their assigned system in-
dexes used for I4U primary submission.

Sys Feature and classifier Site
1 PNCC IV-PLDA + GMM-UBM AAU
2 MFCC IV-SVM Alibaba Inc
3 MFCC IV-PLDA CRSS, UTD
4 MFCC IV-PLDA CRSS, UTD
5 MFCC IV-SVDA-PLDA CRSS, UTD
6 ICMC IV-PLDA EURECOM
7 MFCC IV-PLDA + Quality Meas Func HDA
8 MFCC IV-PLDA I2R
9 Tandem DNN IV-PLDA I2R
10 MFCC DNN I-vector LIUM
11 Tandem IV-PLDA NTU
12 MFCC IV-PLDA HK Poly U
13 MFCC IV-PLDA UEF
14 MFCC IV-PLDA EET, UNSW
15 PLP IV-PLDA ValidSoft
16 MFCC DNN IV-PLDA Nottingham
17 MFCC IV-PLDA LIA

2. Train, development, and test sets
To build and evaluate a speaker recognition system, three dis-
joint datasets are required for training, development, and test,
respectively. In the context of NIST SREs, the training and de-
velopment sets are usually released at a much earlier date than
the test set (a.k.a the evaluation set), which the participants have
to process and submit their system outputs (in the form of log-
likelihood scores) in a limited period of time.

Similar to previous evaluations, the emphasis of SRE’16
has been on conversational telephone speech recorded from the
public telephone system (e.g., cell phone, landline). Table 2
shows the list of corpora we used in I4U for the core task of
SRE’16. In particular, the training set constitutes data used to
train the universal background model (UBM) [6], deep neural
network (DNN) to predict senone target [7, 8, 9], i-vector ex-
tractor [10], linear discriminant analysis (LDA), probabilistic
LDA (PLDA) [11, 12, 13] and other parametric models found
in most state-of-the-art systems, as in those top performance
systems with I4U. It is worth mentioning that Switchboard 1
(Swb 1) and the two Fisher corpora come with transcription
which is required in training DNN [14, 15], or splice time de-
lay DNN (TDNN) [16], to produce frame-level senone label and
to extract deep bottleneck features [9, 17]. The Fisher corpora
were also used for UBM training in some of I4U systems. Very
specific to I4U was that we set aside SRE’10 and SRE’12 data
for development and experiment purposes instead of including
them in the training set. This setting allows us to validate the
results across multiple validation and test sets.

Different from previous evaluations, the test data of SRE’16
consists of speech utterances spoken in Tagalog and Mandarin
instead of English in previous evaluations. Also, the test seg-
ments have varying duration ranging from 10 to 60 seconds.
These changes introduce two new challenges to SRE’16:

i. Dataset shift between the training and test sets due to
language mismatch and differences in data collection in-
frastructure (e.g., telephone network, front-end devices).

ii. Test duration variability where test duration is uniformly
distributed from 10 to 60 seconds.

The SRE’16 test data is a subset of the on-going Call My Net
speech collection by the Linguistic Data Consortium (LDC).

The changes from the Switchboard and Mixer datasets used in
the previous SREs to the new Call My Net is cast as a dataset
shift problem. In this regard, we found the inter dataset vari-
ability compensation (IDVC) [4] to be extremely effective in
dealing with this problem. On the other hand, the duration
variability was accounted for with the use uncertainty prop-
agation [19] and variance compensated length-norm [20] for
i-vector PLDA system. Most sub-systems developed in I4U
were equipped with the dataset and duration compensation tech-
niques mentioned above.

Also shown in Table 2 is the development set consisting
of speech utterances spoken in Cebuano and Cantonese drawn
from the same Call My Net collection as the test set. A small
unlabeled set in Tagalog, Mandarin, Cebuano, and Cantonese
was made available with an intention to bridge the gap between
the development and test sets. Numerous efforts and discussion
among I4U members have focused on the use of the unlabeled
set for score normalization and calibration.

Table 2: List of telephone speech copora partitioned into train-
ing, development, and test sets used in I4U for SRE’16.

Partition Corpus Language

Training

SRE’04-05-06-08
EnglishSwb-2 Phase II & III

Swb-Cell Part 1 & 2
Fisher 1 & 2 English
Swb-1 Release 2 (with transcript)

CallMyNet-Unlabeled Cebuano, Mandarin
Tagalog, Cantonese

Development CallMyNet-Dev Cebuano, Mandarin
SRE’10, SRE’12 English

Test CallMyNet-Test Tagalog, Cantonese

3. Recognition systems
Table 3 shows the key features of 17 systems used to form the
I4U’16 primary submission. At the core of all the sub-systems
listed in Table 3 is the i-vector approach [10], which represents
the current mainstream technique in text-independent speaker
recognition. At the i-vector extraction stage, we have sub-
systems that use either GMM or DNN posteriors [7, 8] for frame
alignment (i.e., the role of the UBM). Except for Sys2 that uses
support vector machine (SVM), PLDA was used to handle ses-
sion variability and as the scoring back-end in all other sub-
systems. In addition, a rich set of acoustic feature extraction
including MFCC, PLP, PNCC (power normalized cepstral co-
efficients) [23], tandem feature [24, 25], and the recently pro-
posed ICMC (infinite impulse response constant Q mel-scaled
cepstral coefficients) [26] were used at the front-end. Among
these, MFCC remains the most commonly used acoustic fea-
tures. Also, a vast majority of our sub-systems use energy-based
voice activity detector (VAD) in view of its simplicity and effec-
tiveness. Other options for VAD that have been adopted are (i)
VQ-VAD [21] in Sys1 and Sys14, (ii) speech/non-speech prob-
abilities inferred from the DNN senone posterior in Sys9, and
(iii) two-channel VAD [22] in Sys12.

Increased Complexity: We observed a general trend in us-
ing higher dimensional feature vector and a larger UBM. From
Table 3, the input dimensionality of acoustic features ranges
from 39 to 139 with majority of the systems settle at 60. The so-
called tandem features used in Sys9 and Sys11 were formed by
concatenating MFCC and deep bottleneck feature (DBF) lead-



Table 3: List of 17 systems used to form the I4U primary submission to SRE’16, their key features at the front-end, the classifier,
unlabeled data, and toolkits that have been used.

Sys Features, dim VAD UBM type, size IV dim Unlabeled data Classifier Toolkit
1 PNCC+∆ + ∆∆, 39 VQ-VAD [21] GMM, 512 400 UBM, t-norm PLDA Alize, Bob

Mean replace
2 MFCC+∆ + ∆∆, 60 Energy-based DNN, 3859 600 SVM -ive samples SVM Kaldi, LibSVM
3 MFCC+∆ + ∆∆, 60 Energy-based GMM, 2048 600 Mean subtraction PLDA Kaldi
4 MFCC+∆ + ∆∆, 60 Energy-based GMM, 2048 600 Mean subtraction PLDA Kaldi, MSR toolkit
5 MFCC+∆ + ∆∆, 60 Energy-based GMM, 2048 600 Mean subtraction, SVDA PLDA Kaldi
6 ICMC+∆ + ∆∆, 60 Energy-based GMM, 2048 600 - PLDA Inhouse
7 MFCC+∆ + ∆∆, 39 Energy-based GMM, 4096 600 Mean subtraction 2Cov, PLDA SideKit, BOSARIS
8 MFCC+∆ + ∆∆, 60 Energy-based GMM, 2048 600 IDVC PLDA Kaldi
9 Tandem, 137 DNN Posterior DNN, 2395 400 IDVC PLDA Kaldi, SideKit

10 MFCC+∆ + ∆∆, 60 Energy-based DNN, 2304 400 Mean replace PLDA SideKit, Theano
11 Tandem, 90 Energy-based GMM, 2048 400 IDVC PLDA Kaldi
12 MFCC+∆ + ∆∆, 60 Two-channel GMM, 512 300 UBM, t-norm, z-norm PLDA Inhouse

VAD [22] Mean subtraction
13 MFCC+∆ + ∆∆, 60 Energy-based GMM, 1024 600 IDVC PLDA MSR toolkit
14 MFCC+∆ + ∆∆, 39 VQ-VAD [21] GMM, 2048 600 Mean replace PLDA Inhouse
15 PLP+∆ + ∆∆, 50 Energy-based GMM, 512 600 Mean replace PLDA Inhouse
16 MFCC+∆ + ∆∆, 60 Energy-based DNN, 2304 600 Mean subtraction PLDA SideKit
17 MFCC+∆ + ∆∆, 60 Energy-based GMM, 4096 400 IDVC PLDA Alize

ing to a dimensionality of around a hundred. The size of the
UBM increases tremendously from the typical value of 512 in
SRE’12 [5] to 2048 being commonly used in SRE’16. Notably,
those large UBMs used in Sys2, Sys9, Sys10, and Sys16 are
based on DNN and trained in a supervised manner to predict
senone targets. Compared to previous evaluations, the increased
complexity was made possible by advances in deep learning and
also the availability of increasingly powerful computers.

Embracing Deep Learning: An emerging trend that we
have observed is the adoption of deep learning technique.
Though we did not observe a remarkable performance boost in
general, as in other speech applications [14, 15, 27], there are
a handful of our sub-systems (six out of seventeen in Table 3)
that have successfully incorporated deep learning in one form or
another: (i) Deep bottleneck feature (DBF) in Sys9, (ii) Stacked
bottleneck feature in Sys11, (iii) DNN posterior in Sys2, Sys9,
Sys10, Sys16, (iv) Splice time delay DNN (TDNN) [16] in Sys2,
and (v) Denoising autoencoder in Sys14. For the bottleneck
features in Sys9 we used a DNN with seven hidden layers each
having 1024 hidden units except for the third layer with only 80
units. The DBF was extracted from this layer and concatenated
with MFCC forming the tandem feature. The stacked bottle-
neck features used in Sys11 were obtained by feeding the DBF
to another DNN [28, 29]. Another use of DNN is to replace the
GMM posterior for frame alignment as proposed in [7, 8, 9].
This was adopted in four sub-systems as shown in Table 3,
where the entries to the UBM type are denoted as DNN. Finally,
Sys14 explores the idea of transforming i-vectors of noisy short
utterances to clean long utterances using denoising autoencoder
[31]. The implementation details can be found in I4U system
description [32] and the references therein.

Dataset Shift: The DNNs used to generate DBF and
frame posterior probabilities were trained in supervised manner,
which required orthographic transcription. As shown in Table
2, transcribed data is only available in English which exhibits a
slightly difference phonetic coverage than the development and
test sets in Cebuano/Tagalog and Mandarin/Cantonese. Also,
the PLDA trained on the Switchboard and Mixer datasets might
have modeled a distribution different from that of the test i-
vectors. This could be cast as a dataset shift problem. One sim-
ple solution is to replace the mean vector of the PLDA with the
global mean estimated from the unlabeled in-domain data (see

Table 2), or equivalently, subtract the global mean (estimated
from the unlabeled set) from the test i-vectors. A more elabo-
rate solution is the IDVC (inter-dataset variability compensa-
tion) [4] which removes the low-rank subspace corresponds to
the local means estimated from various datasets. IDVC was im-
plemented in Sys8, Sys9, Sys11, Sys13, and Sys17. Another
effective way of using the unlabeled data is score normalization
as in Sys1 and Sys12. In addition, support vector discriminant
analysis (SVDA) [18] performed well in Sys5 for compensat-
ing this mismatch by incorporating unlabeled in-domain data
without using any pseudo labels.

Tools: Also listed in Table 3 are various open-source toolk-
its used in developing the I4U systems. More than half of the
systems use the Kaldi toolkit. Apart from i-vector extraction,
Kaldi was also used to implement and train DNN for extract-
ing bottleneck features and senone posteriors. Readily available
Kaldi scripts tailored for SRE tasks have made fast prototyping
relatively easier than before and therefore promote wider adop-
tion. Other popular tools utilized by I4U consortium members
are SideKit [33], Alize [34], MSR toolkit [35], and BOSARIS
[36] which were developed more specifically for speaker recog-
nition, and LibSVM [37], Bob [38], Theano [39] designed for
general machine learning.

4. System and fusion performance
Considering that the I4U consortium had in total 32 base clas-
sifiers, an idea to use a classifier selection was clear from the
beginning. To that end, we performed initially a 5-fold cross-
validation (CV) on the development set. Base classifier selec-
tion and whether pre-calibration of the scores was to be per-
formed were decided using a 5-fold CV setting (recording aver-
age performance over folds). Pre-calibration showed systemati-
cally better results than without pre-calibration. In the selection
setting, we experimented with many different ideas on how to
fix the final subset of classifiers (noting that we started with
32 base classifiers). Final ensemble was selected using heuris-
tic rule of using the best single systems (minCprimary < 0.7)
and one system from each site. This resulted in better cross-
validated results than using just the best systems. The base
classifier results on Eval set are shown in Table 4. We show sep-
arately the performance on Tagalog (tgl) and Cantonese (yue),



Table 4: Base classifier performance and their fusions in terms
of equal-error-rate (EER%) on Eval and Dev sets, shown sep-
arately for Tagalog (tgl), Cantonese (yue), Cebuano (ceb) and
Mandarin (cmn) trials.

Eval set Dev set
Sys. EER (tgl) EER (yue) EER (ceb) EER (cmn)

1 36.96 36.85 24.00 13.82
2 16.96 9.13 23.33 12.34
3 18.16 9.46 22.33 12.84
4 17.28 8.46 21.78 9.75
5 15.85 7.10 22.50 9.83
6 21.13 11.05 26.80 14.47
7 17.38 8.81 23.35 10.68
8 16.67 7.83 20.66 9.50
9 16.21 7.62 24.08 10.79
10 20.68 11.98 27.63 13.79
11 18.30 9.07 25.00 10.12
12 19.78 13.23 24.83 13.13
13 21.20 12.71 27.05 14.47
14 36.80 32.13 23.66 13.73
15 19.83 9.70 22.25 12.38
16 19.78 11.06 27.82 13.33
17 16.73 7.91 23.04 10.39

Primary 12.94 5.03 17.70 6.70
Cont. 1 13.54 6.22 17.19 6.83
Cont. 2 13.93 5.60 15.53 5.90

and notice immediately that Tagalog is remarkably harder set
than Cantonese. Majority of the base classifier obtain around
20% EER on Tagalog and around 10% EER on Cantonese. Min-
imum is 15.85% and 7.10% EER for Tagalog and Cantonese,
respectively. Also shown in the table are the EERs on Dev set
by which the hyper-parameters for individual sub-systems were
optimized. The Eval set is generally easier than the Dev set,
where the EERs on Tagalog (tgl) and Cantonese (yue) are lower
compared to Cebuano (ceb) and Mandarin (cmn), respectively.
This is true for all base classifiers except for Sys1 and Sys14,
which appear to be over-fit on the Dev set. Despite some base
classifiers performing two times worse than the single best clas-
sifier, the fusion results consistently outperform the single best,
which signifies the benefit of megafusion of a large ensemble of
classifiers.

The primary submission fusion was designed so that we
first pre-calibrated all 17 base classifiers, via minimizing the
Cwlr cost, with ptar = 0.01. Development set was used to
estimate the scale and bias for all the base classifiers and then
applied to the eval-set scores. Then the linear fusion parame-
ters were estimated on the pre-calibrated scores using the same
settings. We notice in the Table 4 that this fusion strategy signif-
icantly improves in terms of EER compared to any single best
base classifier.

The first contrastive system was based on the approach to
focus on a smooth transition from minor to major languages.
It consists of a trial-wise unsupervised calibration followed by
a simple score averaging. To this end, we divided the unla-
beled data (only the major language partition was used) into
5 subsets: 4 high-confidence language-gender subsets that ac-
count for about 60% of the data and a single subset containing
the remaining utterances to be discarded. The purpose of our
language-gender subsets was two-fold. Firstly, we used pair-
wise scores within each subset to train Gaussian classifiers for
target and non-target distributions. Secondly, we used it to find
subset-dependent log-likelihoods for each enrolment and test
i-vectors separately. Summed log-likelihood scores for all i-
vectors within each trial was used to determine the subset label

Table 5: Performance of the primary and contrastive fusions on
Eval set in terms of EER, Minimum and Actual Cprimary . Each
entry represents the Equalized and Unequalized performance
metrics [3].

Evalset
Equalized EER (%) Cprimary (Min) Cprimary (Act)
Primary 8.59 0.6392 0.8779
Cont. 1 9.58 0.7538 0.7615
Cont. 2 9.28 0.7118 2.5538
Unequalized EER (%) Cprimary (Min) Cprimary (Act)
Primary 8.80 0.6328 1.0617
Cont. 1 10.00 0.7473 0.8410
Cont. 2 9.60 0.7218 3.2037

of a trial and apply the corresponding calibration parameters.
The second contrastive system was based on the fusion

of 32 base classifiers, where unwanted base classifiers were
automatically removed. The scores were subjected to z-
normalization, where the z-norm parameters were learned from
the dev set. We applied the OSCAR [40] sparsity promoting
regularization to the Cwlr objective. We notice in Table 4 that
OSCAR based fusion system reaches the lowest EER on dev
set, but on eval set the primary submission has a better perfor-
mance.

Calibration performance of the primary and contrastive fu-
sions are shown in Table 5. We contrast their performance in
terms of minimum and actual DCF on the Eval set. We notice
that only in Contrastive 1 fusion we achieved low calibration
error (i.e., actual DCF is closer to the minimum DCF values) on
Eval set which indicates a more effective use of unlabeled data
in score calibration. We note that most of the base classifiers
did not use unlabeled set in score normalization.

5. Conclusions
This paper presents an overview of the recognition systems and
their fusion developed for NIST SRE’16 by I4U consortium.
The collaboration of 62 researchers from 16 research teams
benefited all members during the preparation of robust speaker
recognition systems. I4U submissions to SRE’16 encompass
32 sub-systems, each one of them presenting a high-end system
involving several weeks or months of careful parameter opti-
mization and data engineering. Even if such massive megafu-
sion may be challenging to apply in real use cases, shared eval-
uation resources and fusion methodology are important tools to
enable large-scale collaboration; it facilitates attacking a com-
mon challenge engineering goal with shared resources.

NIST SRE’16 was positioned to tackle a more open-ended
problem commonly encountered in practical deployment – lan-
guage mismatch, lack of labeled data, fast adaptation using
limited/unlabeled data. To this end, dataset shift could be ac-
counted for with mean compensation. It is also clear that un-
labeled dataset could be used for UBM training and score nor-
malization, which does not required labels.
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