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Abstract—The success of future heterogeneous networks (Het-
Nets) heavily depends on the interplay between user associa-
tion and resource allocation on both the access and backhaul
network. While user association is key to improve both the
user and network performance, it is becoming a multi-objective
optimization problem that should consider the number and type
of base station in range. Furthermore, the increasing spatio-
temporal heterogeneity in downlink(DL) and uplink(UL) traffic
suggests that DL/UL resources can be tuned to optimally serve the
respective workload. Split DL/UL association and flexible TDD
offer such an opportunity. While much literature exists on these
problems, the majority consider them separately. In this work,
we develop a framework that tackles the optimal interplay of (i)
user-association, (ii) radio resource allocation, and (iii) backhaul
resource allocation of TDD resources, for a family of objective
functions. We propose an algorithm that reduces the complexity
of this problem by decomposing it into three optimization
subproblems, each potentially solved by a different network
element and at different timescales. We prove convergence to the
global optimum, and provide simulation results that demonstrate
the performance benefits of our approach.

I. INTRODUCTION

LATELY, heterogeneous network (HetNet) deployments
have been widely considered in 4G and beyond wireless

networks. They are composed of conventional macro cells
(MC) overlaid with a set of low-power small cells (SC).
Due to the increasing number and type of base stations
(BS) within the range of each user, the problem of user
association becomes increasingly important. More advanced
schemes beyond simple SINR-based ones are thus needed [1],
[2] to balance user- and network-related performance goals.

While optimization of most current networks revolves
around the downlink (DL) performance, social networks,
augmented reality and other Machine Type Communication
(MTC) applications suggest that uplink (UL) performance
becomes as important. Recent approaches that aim to improve
both DL and UL throughput suggest that UL/DL association
should be in fact decoupled for optimal performance. As one
example, a user equipment (UE) could be connected to a
macro BS in the DL (from which it receives the highest signal
level), and to an SC in the UL (where the pathloss is lower) [3],
[4]. However, if the DL resources of the macro BS, or the UL
resources of the SC are not sufficient, this approach can lead to
unnecessary congestion or under-utilization in either direction.

Typically, in today’s systems, each BS is given an amount
of bandwidth resources to utilize for both DL and UL traffic
by duplexing on the frequency (Frequency Division Duplex-
FDD) or the time (Time Division Duplex-TDD) domain.
While conventional networks are mainly designed for FDD or
pre-configured TDD schemes, heterogeneous traffic demand,
desired architectural flexibility, and scarcity of spectrum has
increased interest in flexible TDD schemes, that can match the
UL and DL resources to the actual demand [5].

Nevertheless, dynamic/flexible TDD schemes require addi-
tional considerations, in particular in asymmetric interference
scenarios (see e.g. Figure 1). As a typical example, if an SC
is doing UL while a nearby MC is transmitting on the DL
(with much higher power), the performance of the SC might be
significantly degraded from this cross-interference. Enhanced
Inter-Cell Interference Coordination (eICIC) schemes such
as Almost Blank Subframes (ABS) could alleviate this but
only to some extent [6], [7]. Large amounts of mismatch
might lead to excessive usage of resources for eICIC, instead
of user traffic, leading instead to considerable performance
degradation. Many additional allocation schemes have further
been proposed to tackle this problem(s) [8] [9] [10], most of
them revolving around a key-enabler for 5G networks, namely
“enhanced Interference Mitigation and Traffic Adaptation"
(eIMTA), standardized in LTE-A Release 13 [11]. However, it
is not clear which scheme is the best option and how it should
interact with user association.

Fig. 1: Cross interference scenarios.

Additionally, a common limitation of most of the above
works, and of others in that area, is that they focus solely
on the radio access part, ignoring the backhaul (BH) net-
work. This might be reasonable for legacy cellular networks,
given that the macro-cell backhaul is often over-provisioned
(e.g., fiber). However, expected backhaul limitations for small
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cells [12] and the additional backhaul load for coordinated
transmission (CoMP) and eICIC put a heavy toll on backhaul
links, that might become the new bottleneck. This calls for a
joint optimization of radio and backhaul e.g. [13], [14], [15],
[16], [17]. Nevertheless, these works mostly focus on the DL.
In our previous work [18] we have analytically derived optimal
UL and DL user association rules for various backhaul-limited
scenarios. However, we assumed a fixed and pre-allocated
amount of resources for UL and DL, for both the radio
access as well as backhaul, and we concluded that such a
pre-configured resource allocation significantly penalizes per-
formance. Undoubtedly, backhaul resource allocation policies
should interact with the user association and flexible TDD
radio access policies, in order to satisfy the UL and DL traffic
demands that the latter generate. However, the analysis of such
an interaction is not well understood yet and it is neither clear
nor trivial how to properly address it, even though it is a key
for the success of future HetNets.

Finally, most of the existing works rely on a centralized
controller, e.g., for user association or TDD schemes etc., to
improve load balancing or throughput [19], [20], [21], [8].
Such a centralized entity shall govern the BSs, the UEs, and
potentially the backhaul links with access to all the necessary
information. However, such an implementation may not be
applicable. Additionally, even when it is applicable, it may
(a) allow only for slow adaptation on the queuing statistics
at relatively long timescales by failing to adapt to sharp
fluctuation, since such a controller is usually implemented
in a server deep in the core network, as well as (b) require
excessive message overhead and computational complexity
that increase exponentially in the network size (e.g. in the
number of BSs, backhaul links, or users). Future MTC and
Internet-of-Things (IoT) applications are expected to bring
online more than 50 billion devices soon, by emerging the
dramatic increase of the network sizes. Thus, to avoid relying
on such a controller that is prone to failures, current systems
shall aim on more distributed implementations.

In this paper, we propose an optimization framework that
jointly considers all these problem dimensions. To our best
knowledge, this is the first work to attempt it. Our main
contributions can be summarized as follows:
(1) We propose an analytical model and then algorithm to
study the interplay between (i) user association, (i) radio ac-
cess resource allocation with cross-interference management,
and (iii) backhaul resource allocation, significantly extending
the popular framework of [1]. (Section II and Section III)
(2) We show that the joint problem is non-convex, unlike
variants studies in the past [1], [18], [3], [17], but possesses
some “hidden” convexity properties that allows its decomposi-
tion into three subproblems. These subproblems can be solved
through convex optimizers, at possibly different elements (e.g.
UE, BS, backhaul link), and at different timescales, facilitat-
ing an hierarchical implementation converging to the global
optimum under some certain circumstances. (Section IV)
(3) Using extensive simulations, we highlight the complex
trade-offs involved between the different subproblems, and
show that significant performance improvements could be
achieved compared to current standards. (Section V)
(4) We show that our framework allows for totally distributed
implementations, is of low computational complexity, highly

TABLE I: Notation

Downlink Uplink
Key control variables

Access Resource Allocation Policy for BS i ζi 1 − ζi
Backhaul Resource Allocation Policy for link k Z(k) 1 −Z(k)

Normalized load of BS i (ζi → 1 and ζi → 0) ρDi ρUi
Other variables

Traffic arrival rate (flows/sec) at location x λD(x) λU (x)

Max. rate of BS i BS at location x cDi (x) cUi (x)

Load estimate of BS i (used for the broadcast) ρ̂Di ρ̂Ui
Load density of BS i at location x ρDi (x) ρUi (x)

BS i max rate requirement for backhaul c̃Di c̃Ui
(Effective) load of BS i ρDi /ζi ρUi /(1 − ζi)

Load-balancing degree αD αU

Association chance of location x with BS i pDi (x) pUi (x)

Penalty indicator for congestion at BH link k J
D
(k) J

U
(k)

Penalty indicator for cross interf. between BS i, j Iij

scalable, offers flexible performance optimization, and that is
extendable to different future work directions (Section VI).

II. SYSTEM MODEL AND ASSUMPTIONS

We use a similar problem setup as the one used in a number
of related works [3], [1], [18], [22], and extend it accordingly.
To keep notation consistent, for all variables considered, the
superscript “D" and “U" refer to downlink and uplink traffic,
respectively. For brevity, in the following we present most
notation and assumptions in terms of downlink traffic only,
assuming that the uplink case and notation is symmetric.
Specific differences will be elaborated, where necessary. In
Table I, we summarize some useful notation.

A. Traffic Model
(A.1 - Traffic arrival rates) Traffic at location x ∈ L

consists of file (or more generally flow) requests arriving
according to an inhomogeneous Poisson point process with
arrival rate per unit area λ(x)1. Each new arriving request
is for a downlink (DL) flow, with probability zD, or uplink
(UL) flow with probability zU = 1 − zD. Using a Poisson
splitting argument [23], it follows that the above gives rise to
2 independent, Poisson flow arrival processes with rates

λD(x) = zD ⋅ λ(x), λU(x) = zU ⋅ λ(x). (1)

(A.2 - Flow characteristics) Flow-sizes (in bits) are drawn
from a generic distribution with mean 1/µD(x).

B. Access Network
(B.1 - Access network topology) We assume an area L ⊂

R2 served by a set of base stations B, that are either macro
BSs (eNBs) or small cells (SCs).

(B.2 - Access Resource Allocation Policy) Each BS i ∈
B is associated with a total bandwidth wi, and a resource
allocation parameter 0 < ζi < 1 which reflects the amount of
radio resources (e.g., time, frequency, space) available for DL

1As we are interested in the aggregation of all flows from all locations x
assosicated to BS i, even if flow arrivals at each location are not Poisson the
Palm-Khintchine theorem [23] suggests that Poisson assumption could be a
good approximation for the input traffic to a BS.



3

transmissions. Without loss of generality, we focus on time
resources, as e.g. in the context of the envisioned flexible TDD
standard. 2 Hence, the (long-run) resources of BS i allocated
to DL are ζi ⋅wi, whereas the UL ones are (1− ζi) ⋅wi, where
ζi is a key control variable of our problem.

(B.3 - DL physical data rate) Each BS i ∈ B is associated
with a transmit power Pi. It can deliver a maximum physical
data transmission rate of cDi (x, ζi) to a user at location x in
absence of any other flows served, given by Shannon capacity3

cDi (x, ζi) = ζi ⋅wi ⋅ log2(1 + SINRi(x)), (2)

where SINRi(x) =
Gi(x)Pi

∑j≠iGj(x)Pj+N0
. N0 is the noise power,

and Gi(x) represents the path loss and shadowing effects
between the i-th BS and the UE located at x (as well as
antenna and coding gains, etc.)4. We assume that effects of fast
fading are filtered out, and that the total intercell interference
at location x is static, and considered as another noise source,
as in most aforementioned works [1], [22], [18].

(B.4 - Load density) We introduce the load density at x

ρDi (x, ζi) =
λD(x)

µD(x)cDi (x, ζi)
, (3)

which is the contribution of location x to the total load of
a BS i, when location x is associated with BS i. Assume a
simple example that there are only two locations x1 and x2

associated with a certain BS (we skip the subscripts i). Then,
the total arrival rate of this BS is λ = λ(x1) + λ(x2). The
mean service time per flow E[S], depends on the chance
that a flow comes from x1 or x2, which is λ(x1)

λ(x1)+λ(x2)

and λ(x2)

λ(x1)+λ(x2)
, respectively. Hence, E[S] =

λ(x1)

λ(x1)+λ(x2)
⋅

1
µ(x1)c(x1)

+
λ(x2)

λ(x1)+λ(x2)
⋅ 1
µ(x2)c(x2)

=
ρ(x1)+ρ(x2)

λ(x1)+λ(x2)
. The BS

load is ρ = (λ(x1) + λ(x2)) ⋅E[S] = ρ(x1) + ρ(x2).
(B.5 - BS load) Each location x is associated with routing

probabilities pDi (x) ∈ [0,1], which are the probabilities that
DL flows generated for users at location x get associated with
(i.e., are served by) BS i. Generalizing the simple example
of B.4 to multiple locations x with infinitesimal load, we can
define the total load, or utilization, for BS i as

ρDi (ζi) = ∫
L

pDi (x)ρDi (x, ζi)dx. (4)

Clearly, this load depends on (and is coupled by) the new
control variables ζi, related to the UL/DL allocation problem.
To make this relation explicit, in the following we will use
the normalized load variables ρDi = ρDi (ζi = 1), i.e. the load
when all resources are used for DL (similarly for UL). Note
also that Eq. (4) is a generalization of a well known queueing
result for servers with multiple traffic types (each location x
corresponding to a different traffic type) [23], [24]. We are
interested in the flow-level dynamics of this system, and model
the service of DL flows at each BS as a queueing system

2Although traditional LTE systems only allow some fixed and predefined
values for ζi (depending on the TDD configuration), we relax them to be
more generally applicable.

3We use Shannon capacity for clarity of presentation. However, our
approach could be easily adapted to include modulation and coding schemes.

4In the UL, we assume that the Tx power of each user is PUE , and slightly
abuse notation for SINR, G, etc., as these don’t play a major role later.

with effective load ρDi
ζi

. Also, since we are interested in the
aggregation of all flows at BS level (i.e. all flows from all
locations x associated with BS i), even if flow arrivals at each
x is not Poisson (as in A.1), the Palm-Khintchine theorem [23]
suggests that Poisson assumption is a good approximation for
the BS input traffic. Note that ρi, directly associated with
pi(x) as Eq. (4) shows, is the second set of our considered
key control variables.

(B.6 - Scheduling) Proportionally fair scheduling is often
implemented in LTE networks due to its good fairness and
spectral efficiency properties [25]. This can be modeled as
an M/G/1 multi-class processor sharing (PS) system [23]. It
is multi-class because each flow might get different rates for
similarly allocated resources, due to different channel quality
and modulation and coding scheme (MCS) observed at x.

(B.7 - Performance impact of BS load) The stationary
number of flows in BS i is equal to E[Ni] =

ρDi /ζi
1−ρDi /ζi

[23].
Hence, minimizing ρDi /ζi minimizes E[Ni], and by Little’s
law it also minimizes the per-flow delay for that BS [23]. Also,
the throughput for a flow at location x is ζi ⋅cDi (x)⋅(1−ρDi /ζi).
This observation is important to understand how the user’s
physical data rate ζi ⋅ c

D
i (x) (related to users at location x

only) and the BS load ρDi /ζi (related to all users associated
with BS i) affect the optimal association rule (e.g., in Eq. (16)).

(B.8 - UL/DL association split) In the following, we will
assume that a UE is able to associate with up to two BSs,
one for its DL and one for UL traffic, as proposed in LTE
Rel. 12 [26]. However, our framework is backward compatible
when joint UL/DL association is required (see Section VI).

Fig. 2: A frame example for a certain BS.

(B.9 - UL/DL cross interference avoidance) Without loss
of generality, we assume that each BS i cross interferes with
a subset of other BSs Ci ⊆ B ∖ {i}. In practice, a distance
based rule, or alternatively the cell cluster concept, can be
used to determine these sets. If i is on the DL and a BS j ∈ Ci
on the UL (or vice versa) then these BSs might cause severe
interference to each other (that invalidates assumption B.3).
We refer to this as cross interference. A sufficient condition
to avoid cross-interference is

ρDi + ρUj ≤ 1,∀i ∈ B, j ∈ Ci. (5)

We explain the above condition here. Consider two such BSs
i and j. If ζi = ζj then there is no cross-interference, because
i and j can synchronize their DL (and UL) slots to avoid it. If
ζi ≠ ζj , cross-interference might occur, but it also depends on
the effective loads. ζi slots are at most used for DL. But out of
these only ρDi

ζi
⋅ζi = ρ

D
i will be busy (since ρDi

ζi
is the utilization

of the downlink resources, according to B.5-B.7). The rest of
the DL slots (1−

ρDi
ζi

)⋅ζi = ζi−ρ
D
i could be blanked with ABS
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frames (see also Fig. 2). Similarly, the percentage of slots that
j will be active on the UL is

ρUj
1−ζj

⋅ (1−ζj) = ρ
U
j slots. Hence,

if ρDi
ζi
⋅ ζi +

ρUj
1−ζj

⋅ (1 − ζj) ≤ 1, there are enough different slots
in a frame to schedule all DL and UL of i and j without
any overlap. Taking care for all such links on the interference
graph, gives us Eq.(5). Finally, we stress that this constraint
applies to the long-term allocation policy of resources. The
actual MAC scheduling may still allocate resources in those
time slots to transmissions that are non-interfering.

C. Backhaul Network
(C.1 - Backhaul network topology) Each access network

node (either eNB or SC) is connected to the core network
through an eNB aggregation gateway via a certain number
of backhaul links that constitute the backhaul network. This
connection can be either direct (“star” topology) or through
one or more SC aggregation gateways (“mesh” topology).

Fig. 3: Future Backhaul topology of a HetNet.

Without loss of generality, we assume that there is a fiber
link from the eNB to the core network, and focus on the set of
capacity-limited backhaul links (wired or wireless) connecting
SCs to the eNB, denoted as Bh. We denote as routing path
Bh(i) the set of all backhaul links j ∈ Bh along which traffic
is routed from BS i to an eNB aggregation point, and we
assume that it is given (e.g., calculated in practice as a Layer
2 (L2) spanning tree). For example, in Fig. 3, Bh(1) = {1},
and Bh(3) = {1,2,3}. We further denote as B(j) the set of
all BS i ∈ B whose traffic is routed over backhaul link j. E.g.,
B(1) = {1,2,3,4} and B(2) = {2,3,4} in Fig. 3.

(C.2 - Backhaul Resource Allocation Policy) Each j ∈ Bh
backhaul link is associated with a total capacity Ch(j).
While traditional backhaul links are multiplexed using FDD,
nowadays TDD gains more ground due to the performance
improvements it promises [27]. So, in the context of TDD,
we introduce the backhaul resource allocation parameter 0 <

Z(j) < 1, that splits the backhaul capacity of the j link
between DL (Z(j) → 1) and UL (Z(j) → 0). In other words,
Z(j) ⋅ Ch(j) and (1 − Z(j)) ⋅ Ch(j) correspond to the total
resources that the j backhaul link allocates for the DL and
UL traffic, accordingly, where Z(j) is another key control
variable of our problem. Note that, backhaul links usually
don’t implement any particular scheduling algorithm, so they
can be seen as a data “pipe”.

(C.3 - Backhaul capacity requirement) The DL capacity
requirement of a backhaul link j ∈ Bh in terms of bits per
second consists of the sum of DL loads of all BSs using that
link (i ∈ B(j)) [18]

∑
i∈B(j)

ρDi
ζi

⋅ (ζi ⋅ c̃
D
i ) = ∑

i∈B(j)

ρDi ⋅ c̃Di . (6)

For example, if a single BS i only uses backhaul link j (e.g.
a star topology), and i has a load of ρDi = 0.7, i.e., is active
70% of the time on the downlink, then the average downlink
rate on backhaul j will be 0.7 ⋅ c̃Di . As for c̃Di , this is a
parameter tuned by the operator. It could be directly replaced
with the average rate considering all possible locations (e.g.
as in [24]). However, this is a rather optimistic value to use,
and would lead to backhaul link capacities being violated
often. Conversely, the use of peak rate (i.e. assuming the
maximum MCS used for every active flow) corresponds to
the most conservative choice for this parameter. However, it
is well known that this is much higher than the average “busy”
rate [12], and would lead to backhaul resources being wasted
too often. Finally, the direct usage of pi(x) to derive c̃i would
not only complicate significantly the problem at hand, but is
also somewhat superfluous since in most “busy” scenarios the
average rate mostly depends on the edge users [12] and does
not change much. We therefore leave this to the operator as a
design parameter, to set it depending on how conservative he
wants to be and past statistics.Note that Eq. (6) is neither the
BS load nor the backhaul link load but simply the total rate
requirement on the backhaul link (which should not exceed
capacity).

(C.4 - Backhaul provisioning) For each backhaul link
j ∈ Bh, we have formulated for the DL direction: the available
resources given the allocation scheme (Z(j) ⋅ Ch(j), see
C.2) and the capacity requirement (∑i∈B(j) ρ

D
i ⋅ c̃Di , see C.3).

Each of these links shall introduce a backhaul constraint to
avoid exceeding its maximum capacity and prohibit backhaul
congestion ∀j ∈ Bh

∑
i∈B(j)

ρDi ⋅ c̃Di ≺ Z(j) ⋅Ch(j),

∑
i∈B(j)

ρUi ⋅ c̃
U
i ≺ (1 −Z(j)) ⋅Ch(j).

(7)

Throughout this paper, we assume that the backhaul network
is either under-provisioned if the capacity of at least one
backhaul link is exceeded, or provisioned otherwise.

(C.5 - Interference-free Backhaul) Modern backhaul ar-
chitectures are developed using (highly) directional P2P or
P2MP static architectures [28]. These are planned topologies
and thus cross interference between BH links with asymmetric
UL/DL schedules can be considered negligible.

III. OPTIMIZATION PROBLEM

We are now ready to formulate our optimization framework,
and jointly study the problems of (i) user association, (ii)
access, and (iii) backhaul TDD resource allocation. We remind
the reader that the variables associated with these problems
are: ρDi , ρ

U
i (see B.5), ζi,∀i ∈ B (see B.2) and Z(j), j ∈ B

(see C.2), respectively.
We start by defining the feasible region of these opti-

mization variables. This can be delimited by the requirement
that the effective load of no BS (Eq. (8e)) as well as the
TDD allocation policies of no BS (Eq. (8d)) and no BH link
(Eq. (8f)) in either DL/ UL direction being exceeded.
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Definition 1. (Feasible set) If ε is an arbitrarily small
positive constant, the feasible region of (ρD;ρU ; ζ;Z) =

((ρD1 , ρ
D
2 , . . . , ρ

D
∥B∥

); (ρU1 , ρ
U
2 , . . . , ρ

U
∥B∥

); (ζ1, ζ2, . . . , ζ∥B∥);

(Z1, Z2, . . . , Z∥Bh∥)) is

F ={(ρD, ρU , ζ,Z) ∣ ρyi = ∫
L

pyi (x)ρ
y
i (x)dx, (8a)

∑
i∈B

pyi (x) = 1, (8b)

0 ≤ pyi (x) ≤ 1, ∀x ∈ L, y ∈ {U,D}, (8c)
0 + ε ≤ ζi ≤ 1 − ε, (8d)

0 ≤
ρDi
ζi
,
ρUi

1 − ζi
≤ 1 − ε, ∀i ∈ B, (8e)

0 + ε ≤ Z(j) ≤ 1 − ε, ∀j ∈ Bh} (8f)

Lemma 3.1. The feasible set F is convex.

Proof: The proof for the feasible set F without the last
three constraints can be found in [1]. Constraints (8d), (8f)
are linear, and constraint (8e) refers to the image of ρ under
different perspectives. So they preserve convexity [29], and
the complete feasible set remains convex.

We now proceed into our cost function. Following our
previous work [18] we extend the proposed cost function
that only considers the BS loads ρDi , ρ

U
i , to also include the

resource allocation variables ζi,∀i ∈ B. The operator may
weigh the importance of DL and UL traffic performance
with a parameter τ ∈ [0,1]. αD controls the amount of load
balancing desired in the DL resources, and αU in the UL. Let
α = [αD;αU ], where αD and αU can have different values.
Definition 2. (Cost function) Our α-fair cost function that
considers the access network performance is

φα(ρ, ζ) = ∑
i∈B

τ
(1 − ρDi

ζi
)1−α

D

αD − 1
+ (1 − τ)

(1 − ρUi
1−ζi )

1−αU

αU − 1
, if αD, αU ≠ 1.

(9)

If αD is equal to 1, the respective fraction must be replaced
with log(1−

ρDi
ζi

)−1. The respective α-fair functions can capture
different objectives such as maximizing spectral efficiency
(α = 0) or throughput (α = 1), minimizing mean per flow
delay (α = 2), and maxmin load-balancing (α →∞); similarly
for the UL.

Lemma 3.2. The cost function φα(ρ, ζ) is a multi convex
function, i.e., it is convex in ρ for fixed ζ, and versa.

Proof: The objective function is the sum of the basic α

function
(1− ρζ )

1−α

α−1
over different BSs, with (ρ, ζ) ∈ F . When

ζ is fixed this is the simplest form of the well known α-
fair function which is clearly convex in ρ. And so is the
corresponding sum over all BSs (sum preserves convexity).
For fixed ρ, the basic α function is also convex in ζ (it has
non-negative second derivative, namely 2ρζ−3(1 − ρ/ζ)−α +
αρ2ζ−4(1 − ρ/ζ)−α−1 ≥ 0), and so does its sum.

Summarizing, in Definition 1 we formulated the feasibility

set of our control variables: ρ, ζ,Z, and in Definition 2 we
defined our α-fair cost function considering the radio network
performance using ρ, ζ. Two things remain to formulate our
optimization problem. Firstly, to consider the backhaul net-
work constraints defined in C.4 that (i) include the third di-
mension Z into the picture, and (ii) further delimit our solution
space with respect to the available link capacities. Secondly,
to also consider the cross-interference constraints with respect
to the dynamic TDD slots, as explained in B.8. The direct
consideration of these constraints is of utmost importance
to avoid performance degradation in multiple scenarios (e.g.
when backhaul capacities starts becoming under-provisioned
or when a BS doing DL starts interfering with the UL of
a neighboring one) as explained earlier. This will also be
demonstrated later in the simulations with numerical examples.

Definition 3. (Optimization Problem 1) The joint user associ-
ation, radio access and backhaul resource allocation problem
can be expressed as

min
ρ,ζ,Z

{φα(ρ, ζ) ∣ (ρ, ζ,Z) ∈ F},

subject to Eq. (5),
Eq. (7).

(10)

Lemma 3.3. Optimization Problem 1 is a multi convex mini-
mization problem.

Proof: This is a multi convex optimization problem since
the objective function and the affine constraints are multi
convex on the (multi) convex feasible set F . For an analytical
survey on bi/multi convex optimization problems, we refer the
interested reader to [30].

IV. BOTTOM-UP OPTIMIZATION APPROACH

The first thing we notice is that this problem, unlike the
original one and other variants, is non convex and thus the
standard fixed point method or other convex solvers cannot be
directly applied. Our solution direction is further delimited,
baring in mind our additional constraints in terms of com-
plexity and implementation, e.g. that our solution should not
follow an exhausting searching procedure (e.g. as the multiple
start branch for such non convex problems) that puts an
unaffordable toll on the complexity based on the variable size.
Or baring in mind our requirement that our method should be
distributed, e.g. to be easily adoptable, to be scalable, and not
to depend on centralized entities that are prone to failures.

Solution Roadmap. Following that direction, we suggest
that the complex Optimization Problem 1 can be actually
decomposed into three simpler optimization sub-problems,
each potentially solved by a different network element, and at
different timescale. This facilitates a multi-level hierarchical
decomposition allowing, as it will turn out also later, for
distributed implementations with multiple desirable proper-
ties under certain circumstances. We now sketch our ap-
proach to solve our three-level optimization problem using
the bottom-up method. For the simplest scenario with solely
one optimization level, where one tackles the convex problem
of (i) user association, the problem is tractable by convex
solvers and we refer the interested reader to past variants
works including [1], [18]. For the joint consideration of
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(i) user association and (ii) radio access resource allocation
problems, we sketch a two level hierarchical decomposition
algorithm, Algorithm 1, that globally converges as shown in
Section IV-A; we analytically focus and tackle each decoupled
problem in Sections IV-A1 and IV-A2, accordingly. Finally,
for the complete problem that also considers the (iii) backhaul
resource allocation problem we extend the latter algorithm and
we build Algorithm 2 using an additional optimization level,
as shown in Section IV-B.

A. Two-level Optimization Algorithm.
In this section we focus on the joint problem of (i) user

association, and (ii) access resource allocation, i.e.

min
ρ,ζ

{φα(ρ, ζ) ∣ (ρ, ζ) ∈ F},

subject to Eq. (5).
(11)

In the following we attempt to sketch an algorithm that
solves this problem, and we assume that the backhaul network
is over-provisioned and we thus forget about the backhaul
network and the Z variables. (We come back to the complete
problem later in Section IV-B). Note that this is a multi convex
problem of two variables, also called biconvex.

The nonconvex objective in Eq. (11) is block separable in
ρD, ρU . Indeed, if we fix ζ, the problem decomposes in two
simpler problems with variables ρD and ρU , that are coupled
from constraint (5), and so we call ζ the complicating variable.
Therefore, it makes sense to decompose the objective into
two levels of optimization, following the primal decomposition
method [31]. Specifically, at the lower level there are two sub-
problems that run in parallel, that aim to find the optimal
values of ρ∗D and ρ∗U , namely ρ∗ = [ρ∗D;ρ∗U ], upon a
fixed ζ. At the higher level we encounter the master problem,
where we attempt to update (and eventually optimize), the
complicating variable ζ. Note that constraint (5) only depends
on ρ and thus does not affect the master problem. Formally,
the sub-problems (that we encounter at the lowest level) and
the master problem (that we encounter at the higher level) are

minρ{φα(ρ, ζ)} subj. to Eq. (5) (sub-problems) (12)
minζ{φα(ρ, ζ)} (master problem) (13)

The above decomposed problems are convex since the joint
problem of Eq. (11) is biconvex. Thus, they can efficiently be
tackled through convex optimizers.

Our proposed iterative algorithm is sketched in Algorithm 1.

Algorithm 1 Two-level Optimization Algorithm that solves
the user association and access TDD allocation problem.

1: Repeat until ∥ζ(m) − ζ(m−1)∥ < ε.
2: (Update the master problem (Section (IV-A2)).)
3: Resource allocation: ζ → DL, 1 − ζ → UL.
4: (Solve the two subproblems (Section (IV-A1)).)
5: Derive ρ∗D given the available resources (ζ).
6: Derive ρ∗U given the available resources (1 − ζ).

At the (m) iteration step the master problem allocates the
available resources by directly giving each sub-problem the
amount of resources that it can use (ζ(m) for the DL and

(1 − ζ(m)) for the UL traffic) [Algorithm 1 line 3]. Then, we
solve the two sub-problems (derive ρ∗ = [ρ∗D;ρ∗U ]) based
on their given resources currently and the coupling constraint
[Algorithm 1 line 5-6]. In the next iteration (m+1), we update
the complicating parameter (derive ζ(m+1)), and re-solve the
two sub-problems. We repeat the process until ζ(m) converges
to a stationary point [Algorithm 1 line 1]. In Section IV-A1 we
present an iterative algorithm running at the UE that efficiently
derives the optimal BS load vector ρ∗ given a fixed ζ(m) or
simpler ζ (see also Lemma 4.3). Similarly, in Section IV-A2
we present the rule to descently update the resource allocation
ζ(m) given a fixed ρ∗ or simpler ρ (see also Lemma 4.4).

Now, we show convergence of this algorithm through the
next Lemma. The proof can be found in Section VIII-A.

Lemma 4.1. Let {(ρ∗, ζ)
(m)

} be the sequence generated
within the (m) iterations by Algorithm 1, when the two (lower
level) sub-problems are solved on a faster timescale than the
(higher level) master problem. Then, any limiting point of
{(ρ∗, ζ)

(m)
} is the global optimum of the problem of Eq. (11).

1) Two-level Optimization Algorithm: sub-problem running
at the UE.: In this section we focus on the two sub-problems
of Algorithm 1, by keeping a fixed resource allocation policy
ζ. As discussed, these sub-problems, also defined in Eq. (12),
correspond to the DL and UL user association problem. Our
objective is to provide distributed user association rules that
should run at the UE level and push the control variable ρ =
[ρD;ρU ] to converge to its optimum value ρ∗ = [ρ∗D;ρ∗U ]

given the current access resource allocation ζ.
An efficient way to tackle the coupling cross-interference

constraints in a distributed implementation setup is to directly
include the constraints in the objective as penalty functions
that increase the objective when a cross-interference constraint
is violated [29]. We can then solve the new unconstrained
problem, coupled by the penalty constant γ > 0, as follows

min
ρ

⎧⎪⎪
⎨
⎪⎪⎩

Φα(ρ, ζ, γ) = φα(ρ, ζ) + γ∑
i∈B

∑
j∈Ci

Iij(ρ
D
i + ρUj − 1)2

⎫⎪⎪
⎬
⎪⎪⎭

,

(14)
where φα(ρ, ζ) is our α-fair cost function discussed earlier
(see e.g. Definition 2). The desired penalty is introduced from
the sum using the indicator variable Iij that reveals whether
BS i cross interferes with BS j, i.e.

Iij = {
1, when ρDi + ρUj > 1

0, otherwise.
(15)

This penalty function is quadratic on the amount of excess
cross interference. (Quadratic penalty functions like the above
are common [32] and preserve the convexity5.) Parameter
γ can be chosen as a small constant, introducing a “soft”
constraint (i.e., cross-interference could be slightly exceeded,
if this really improves our main objective), or preferably
be increased monotonically, so as to converge to a “hard”
constraint [32].

We now tackle the problem of minimizing Φα(ρ, ζ, γ) in
ρ as seen in Eq. (14). We start our discussion by assuming
that γ is fixed to a small positive constant referring to “soft”

5This can be easily seen, since the function (x+y−1)2 has Hessian matrix
the [2,2; 2,2], and so it is positive semidefinite and convex.
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cross interference constraints. We remind the reader that in
this section ζ is also assumed to be static. To deal with
this minimization problem, we sketch a distributed iterative
algorithm, where at each iteration step our cost function
is monotonically improved, and two parts are involved: the
mobile device and the BS. We assume that the starting point
ρ(0) is feasible.

Mobile Device. At each iteration step (l), each user at loca-
tion x receives a BS broadcast message and simply associates
with the BS maximizing the respective quantity as shown in
the following theorem, in a distributed manner. This updates
the association variables pi(x).

Theorem 4.2. If ρ(l) = (ρ
(l)
1 , ρ

(l)
2 ,⋯, ρ

(l)

∣∣B∣∣
) denotes the current

BS load vector, the DL association rule for a user at location
x giving a descent direction is expressed by (similarly in UL)

iD(x) = arg max
i∈B

⎛
⎜
⎜
⎝

cDi (x)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

user knowledge

⋅

BS broadcast message
«
PDi

⎞
⎟
⎟
⎠

(16)

where PDi =

ζi⋅
⎛

⎝

1−
ρ
(l),D
i
ζi

⎞

⎠

αD

1+2γ⋅ζi⋅
⎛

⎝

1−
ρ
(l),D
i
ζi

⎞

⎠

αD

∑

j∈Ci
Iij(ρ

(l),D
i +ρ

(l),U
j −1)

.

The proof of the above Theorem can be found in Sec-
tion VIII-B. Regarding the derived rules, we note that when
the interference constraints for the BS i are not violated
(i.e., Iij = 0,∀j ∈ Ci), the above theorem states that the
optimal downlink associations are the same as the one in [1].
However, when the BS i cross interferes with another BS, an
additional term is added in the denominator that penalizes BS
i making it less preferable to users at location x. Note that the
amount of penalization depends on the amount of total cross
interference (sum term) from nearby BSs. This penalization
makes sense, since additional users to that BS would increase
its effective load as well as its DL busy slots, and thus increase
the cross interference. Finally, note that our derived rules are
scalable, since each BS i needs to only broadcast one value
per dimension (i.e., PDi for downlink) no matter the number of
cross-interfering BSs i ∈ Ci, they are of low-complexity since
the user only needs to perform a simple max operation to find
the best BS for association, and they offer flexible performance
given the α value.

Base Station. Each BS maintains an estimate ρ̂i of its
average utilization load. To deal with the utilization constraint
(ρi < 1− ε), the parallel and potentially asynchronous updates
of pi(x) variables, and non-stationarities in the traffic demand,
the BS load estimate ρ̂i is updated regularly as follows:

ρ̂
(l+1)
i = (1 − β(l)) ⋅ ρ

(l)
i + β(k) ⋅ ρ̂

(l)
i . (17)

This is an exponential moving average with parameter β(l) ∈
[0,1). ρ(l)i is the current load measurement (derived e.g. using
Eq. (4)) while ρ̂(l)i is the current load average estimate. ρ̂(l+1)

i
is used for the next iteration broadcast message.

The above algorithm essentially implements a distributed
gradient on ρi, within the (l) iterations, for the minimization
of the cost function of Eq. (14) by assuming that γ is a small
positive constant. Lets denote the sequence generated within

iterations as {ρ(l)}(γ). Then, any limiting point of {ρ(l)}(γ)
is the global optimum for that problem with respect to this
γ, by requiring a simple modification of the proof found of
the original algorithm [1]. 6 In the following lemma we show
that minimization of a sequence of these cost functions using
increasing values for γ (chosen such that the solution of the
next problem is close to the previous one; otherwise we risk
getting stuck in steep valleys) transforms the “soft” constraints
to “hard” ones, and it gradually leads to the global optimum
of the original sub-problems of Eq. (12). The proof can be
found in Section VIII-C.

Lemma 4.3. Let {ρ(k)} be the sequence generated from the
limiting points of {ρ(l)}(γ) using increasing values for γ

within the (k) iterations. Then, any limiting point of {ρ(k)}
is the global optimum point ρ∗ of the sub-problems of Algo-
rithm 1.

2) Two-level Optimization Algorithm: master problem run-
ning at the BS.: In this section we focus on the master problem
of Algorithm 1, by assuming fixed user association policies
and fixed BS load vector ρ. As discussed, this problem, also
defined in Eq. (13), correspond to the access TDD allocation
problem distributing the BS resources between UL and DL.
Our objective is to provide distributed TDD allocation rules
that should run at the BS level and push the control variable
ζ to converge to its optimum value.

There are plenty of methods to update the access TDD
allocation vector ζ at the next iteration (m + 1) and thus
the master problem. Following optimization theory [29], the
general rule to improve the objective is through a descent
method, as it follows in the next lemma.

Lemma 4.4. If ζ(m)i is the current TDD allocation for BS i,
at the next iteration it should be updated to

ζ
(m+1)
i = ζ

(m)
i + t

(m)
i ∆ζ

(m)
i . (18)

Then, ζ(m+1)
i is a descent update of the master problem of

Algorithm 1.
To calculate this update we need two parameters. Firstly,

the descent direction, ∆ζ
(m)
i that can be found from the first

derivative criterion:

∆ζ
(m)
i = τ

⎛
⎝

1 −
ρDi

ζ
(m)
i

⎞
⎠

−αD
ρDi

ζ
(m)
i

+ (1 − τ)
⎛
⎝

1 −
ρUi

1 − ζ(m)i

⎞
⎠

−αU
ρUi

1 − ζ(m)i

.

(19)
Secondly, the step size. The backtracking method suggests

that the this step size τi can be found by starting with τi = 1
and repeat τi = ν ⋅ τi, until

φ(ρ, ζi ⋅ ti ⋅∆ζi) < φ(ρ, ζi) +A ⋅ t ⋅ ∇φ(ρ, ζi)
T
⋅∆ζi, (20)

where A ∈ (0,0.5), ν ∈ (0,1). 7

6The descent direction at x improving the objective at the next iteration,
through the corresponding inner product, is now provided from Eq. (16).
This formula appropriately projects the direction under the cross interference
constraint of Eq. (5) as shown in the proof of Theorem 4.2.

7Alternatively, there are other methods to calculate the descent direction and
the step size. For instance, one could use the Newton method that provides
the steepest descent direction in local Hessian norm, or the exact line search
for the step size.
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Note that, the TDD allocation update ζi of each BS i is per-
formed in a distributed manner and independently from each
other. The rules are scalable, the corresponding computational
complexity is kept low since the first-order derivative criterion
is only needed, and they offer flexible performance based on
the α value. Finally, when stationarity is reached, we ensure
that this is not a saddle point through a “stochastic” gradient: a
noise vector with mean 0 is added to the gradient direction of
stationary points that provably pushes them away from saddle
points [33].

B. Three-level Optimization Algorithm.

We have successfully solved the joint problem of (i) user
association and (ii) access resource allocation as shown in Al-
gorithm 1, assuming that backhaul is always over-provisioned,
e.g. assuming that Ch →∞. However, in real time implemen-
tations backhaul capacities are usually (quite) limited, leading
to under-provisioned backhaul links. The latter emerges the
need of including the backhaul constraints of Eq. (7), and thus
also of using the third control variable Z namely (iii) backhaul
resource allocation distributing the backhaul resources of a
link between DL and UL. We remind the reader that, formally,
considering these three dimensions together corresponds to
Optimization Problem 1. In this section, we will provide an al-
gorithm that efficiently tackles it, by building on Algorithm 1.

The backhaul constraints defined in Eq. (7) can be again
tackled using penalty functions, by keeping the distributiveness
of our framework. Thus, our new unconstrained cost function
is similar in nature with Eq. (14), where now it should
aggregate the penalties coming from both cross interference
and backhaul constraints. As the analysis is an extension
following similar logic to the previous section, we will not get
into details. and we will immediately provide the algorithmic
sketch in Algorithm 2.

Algorithm 2 (Complete) Three-level Optimization Algorithm
that solves the user association and access and backhaul TDD
allocation problem i.e. Optimization Problem 1.

1: Repeat until ∥Z(M) −Z(M−1)∥ < ε.
2: Update the master problem.
3: BH resource allocation: Z → DL, 1 −Z → UL.
4: Update the secondary master and the two sub-problems.
5: Run Algorithm 1.

We now show the convergence of this algorithm through
the next lemma.

Lemma 4.5. Let {(ρ∗, ζ∗, Z)
(M)

} be the sequence generated
within the (M) iterations by Algorithm 2, if at each iter-
ation of a higher level master problems all the lower level
problems have already converged. Then, any limiting point of
{(ρ, ζ,Z)

(M)
} is the global optimum of Optimization Problem

1.

Regarding the master and secondary master problem update,
the resource allocation parameters update (ζ,Z update) shall
follow the same logic as described in section IV-A2. As for the
two sub-problems (ρ optimization), the distributed algorithm
and the optimal user association rules of section IV-A1 stay

same in nature, i.e.

iD(x) = arg max
i∈B

⎛
⎜
⎜
⎝

cDi (x)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

user knowledge

⋅

BS broadcast message
«
PDi

⎞
⎟
⎟
⎠

(21)

but now the BS broadcast message part PDi should include
all the penalties coming from both backhaul and cross inter-

ference constraints, i.e. PDi =

ζi⋅
⎛

⎝

1−
ρ
(l),D
i
ζi

⎞

⎠

αD

1+2γ⋅ζi⋅
⎛

⎝

1−
ρ
(l),D
i
ζi

⎞

⎠

αD

⋅ΠDi

, where

ΠD
i is

∑
k∈Bh(i)

JD(k)c̃Di
Z(k)Ch(k)

⎛
⎜⎜⎜
⎝

∑
l∈B(k)

ρ
(l),D
w c̃Dw

Z(k) ⋅Ch(k)
− 1

⎞
⎟⎟⎟
⎠
+ ∑
w∈Ci

Iij(ρ(l),Di +ρ(l),Uw −1).

JD(k) indicates whether the k backhaul link is congested
in the DL (JD(k) = 1 when ∑i∈B(k) ρic̃i

Z(k)Ch(k)
> 1). Note that,

when the capacity constraints for the backhaul links k are
not violated (e.g., JD(k) = 0), the above rules state that
the optimal associations are the same as the one in Eq. (16).
However, when a link becomes congested, an additional term
is added that penalizes that BS making it less preferable to
UEs at location x. Note that this penalty considers the whole
backhaul path Bh(i) that traffic from BS i traverses, and adds
a penalty for every link along that path that is congested (first
sum of ΠD

i ). Overall, our derived rules provide the optimal
way to penalize the performance of a BS i depending on the
total amount of congestion of all backhaul links this BS needs
to traverse up to the core ( k ∈ Bh(i)), and amount of cross
interference of other neighboring BSs (w ∈ Ci).

Finally, note that even in the under-provisioned backhaul
scenario our association rules are scalable, since each BS i
needs to only broadcast one value per dimension (i.e., PDi
for downlink) no matter the number of cross-interfering BSs
i ∈ Ci and the number of backhaul links it needs to traverse up
to the core, they are of low-complexity and they offer flexible
performance. Similarly for the TDD allocation updates.

V. SIMULATIONS

In this section, we evaluate our proposed algorithm on
example scenarios, and discuss related insights. We first con-
sider a simple scenario with one macro BS and three SCs,
in order to better elucidate the qualitative behavior of our
algorithm, compared to standard practices, as well as better
trace its performance benefits and where these come from. We
then consider a larger network scenario and demonstrate that
similar benefits can be observed there as well. Note that our
main focus is directly on Algorithm 2, referred as proposed
algorithm hereafter, that considers the complete Optimization
Problem 1. Specific elaborations on particular subproblems,
constraints and tradeoffs will be stressed out where necessary.

Scenario 1: We consider a 2 × 2 km2 area. Fig. 4 shows
a color-coded map of the heterogeneous traffic demand λ(x)
(flows/hour per unit area) with 3 hotspots (blue implying low
traffic and red high). We assume that this area is covered by
three SCs (referred with BS numbers 1-3), and one macro
cell (BS number 4). Without loss of generality, we assume
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that each SC offloads its traffic through a dedicated backhaul
link (corresponding BH link numbers 1-3) to the macro BS,
and that the macro BS cross interferes with all SCs (i.e., C4 =

{1,2,3}, C1 = C2 = C3 = {4}, see B.9). We consider standard
parameters as adopted in 3GPP [34], listed in Table II8. We
set αD = αU = 1 to optimize user throughput. (We have also
considered other values, with similar conclusions.)

Variable Value
PeNB,SC,UE 43,24,12 dBm
wi, ∀i ∈ B 10 MHz

Ch(j), ∀j ∈ Bh 100 MBps
N0 -174 dBm/Hz

1/µD,U (x) 100,25Kbytes
zD, zU 0.7,0.3
αD, αU 1,1

Fig. 4 & TABLE II: Traffic arrival rate and other simulation parameters.

Coverage Snapshots: We first look at the coverage maps
that different schemes create. Figure 5(a), 5(b) depict the
optimal user associations for fixed LTE-TDD configuration 1
that assumes static UL/DL timeslot ratio 4 ∶ 4 i.e., fixed ζi =
0.5,∀i ∈ B. Similarly for the BH links Z(j) = 0.5,∀j ∈ Bh.
As a first note, we see that in DL most users are associated
with the macro BS, and a few to SCs (macro BS attracts more
DL users due to the higher transmit power). In the UL, users
tend to form Voronoi cells (to minimize path loss and improve
UL SINR). Secondly, we note that the DL coverage areas of
the various SCs are decreased according to the corresponding
traffic arrival intensity: e.g. SC 1 that serves the most intense
hotspot (see Fig.3) has the smallest coverage area, while SC
3 which sees lower traffic intensity has the largest). The main
reason is that the SCs have limited DL backhaul capacities that
force some users to the far away macro BS. This alleviates the
backhaul link congestion but hurts overall performance. At the
same time, a high amount of the pre-configured UL backhaul
resources might remain wasted (due, to assymetry in DL/UL
traffic intensity for example).

Summarizing, the observed coverage maps for this scenario
demonstrate two possible shortcomings of pre-configured
TDD: (a) asymmetry in the DL/UL coverage areas and corre-
sponding transmit powers suggest that a TDD allocation other
than 50-50% could improve performance; (b) some (usually
DL) user associations could be suboptimal, dictated by back-
haul capacity limitations arising from the preconfigured fixed
allocation on the BH, even if the total BH resources would
suffice for the sum of both UL and DL traffic.

To explore these possibilities, we now relax the allocation
variables ζ and Z (see B.2 and C.2) and apply our proposed
algorithm. Clearly, in this simple example, a single-step im-
provement in either direction described above ((a) or (b)) could
improve performance. We remind the reader that our proposed
algorithm goes beyond this single step, alternating between
optimizing coverage maps and TDD resource allocation, until
it finds the best possible combination. The resulting coverage
maps (i.e. optimal ρ values) and radio/BH allocations (optimal
ζ and Z values) are shown in Fig. 5(c), 5(d). We first note

8As for the sizes and ratios of different flows, as well as BH capacities, we
can use different values in order to capture different simulation scenarios.

that macro BS increases its ζ4 = 0.77 to serve more DL users,
and SC increase their UL resources 1 − ζ1 = 0.54,1 − ζ2 =

0.84,1− ζ3 = 0.79 to serve more UL, bewaring to avoid cross
interference. Interestingly, such an allocation simultaneously
improves both UL and DL performances (we will explicitly
show this later). Also, the DL BH allocated resources (Z(j))
are increased to accommodate more DL traffic, while ensuring
not to exceed a maximum value that would congest the UL.
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(a) DL assoc. (fixed TDDs).
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Fig. 5: DL and UL user associations for different scenarios (τ = 0.5).

User-centric performance: We now go beyond the above
qualitative behavior and evaluate the quantitative benefits. We
first focus on user-centric performance and consider various
τ values (we remind the reader that τ is a parameter that
balances the importance of DL vs UL performance). We
compare the performance of the following main schemes.
(ProposedAlg): our proposed algorithm – see Algorithm 2;
(TDD Fixed): the optimal allocation algorithm of [18] with
equal, pre-confiigured UL/DL resources on both radio access
and BH. To better understand the importance of consider-
ing the cross-interference and BH capacity constraints, we
also include results for the following schemes. (AlgNoCross):
jointly optimal allocation, but not taking cross-interference
into account. If there is an eventual asymmetry in the optimal
UL/DL schedules, potential cross-interference is included in
the SINR to capture its impact. (AlgNoBH): jointly optimal
allocation without considering the backhaul constraints. Here,
we assume that all BSs associated with a BH link that is
congested decrease their performance proportionally to the
amount of congestion.

In Fig 6 we depict the DL and UL user throughput as a
function of τ in different scenarios. It is easy to see that our
ProposedAlg significantly outperforms the TDD fixed policy
by up to 2.5 − 3×. What is more, for most intermediate τ
values, it is able to simultaneously improve both DL and
UL performance. As τ increases further, the emphasis of
ProposedAlg moves exclusively to the DL (and vice versa)
which is consistent with our expectations, unlike the fixed
TDD scheme where DL and UL performances are optimized
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independently of τ (decoupled objective).
Regarding the impact of the cross interference constraint,

AlgNoCross can still offer some improvement on the DL for
τ > 0.5, compared to the baseline (TDD Fixed). However,
it does so with a significant penalty on UL performance
(up to 3× worse), which is the most sensitive to cross-
interference (this DL-to-UL interference is a key problem for
future Flexible TDD [35]). This underlines the importance of
directly considering cross interference constraints in our opti-
mization framework through Eq.(5). Finally, the performance
of AlgNoBH shows similar behavior, where it can sometimes
provide better performance for the DL or the UL (compared
to TDD fixed) but not both.
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(a) DL throughput.
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(b) UL throughput.

Fig. 6: User-centric Performance.

One could notice that user throughput does not drops signif-
icantly when we neglect the cross interference constraint and
we end up with cross-interfering BSs, as in the (AlgNoCross),
e.g. as τ → 0 UL throughput drops 3 → 1.2 Mbps (2.5
times). Or, when we neglect backhaul constraints and we
end up with congested links, as in the (AlgNoBH), e.g. as
τ → 1 DL throughput drops 7.8→ 6.2 Mbps (1.3 times). This
is due to the fact that: cross-interfering BSs and congested
backhaul links do not affect the whole network, but specific
groups of users associated with the cells that suffer from cross-
interference or low backhaul capacity. To better illustrate this,
in Table III we show the average throughput of such affected
users, as a function of τ . Indeed, their performance is severely
affected: e.g. as τ → 0 UL throughput now drops all the way
to 0.3 Mbps (10 times) for (AlgNoCross), or as τ → 1 DL
throughput drops to 1.8 Mbps (4.5 times) for (AlgNoBH).

TABLE III: Mean Throughput for negatively affected users (in Mbps)

Scenario. τ → 0 τ → 0.5 τ → 1

DL and UL thr. for (AlgNoBH) 0.15 and 1.5 1 and 0.7 1.8 and 0.1
DL and UL thr. for (AlgNoCross) 0.1 and 0.3 3.2 and 0.15 6.1 and 0.05

Summarizing, the following important conclusions can be
drawn from the above analysis: (a) jointly optimal allocation
of user association and DL/UL radio resources can actually
lead to considerable performance degradation, unless cross-
interference is taken explicitly into account; (b) a jointly opti-
mal allocation, even with cross-interference taken into account,
might still be quite suboptimal, if the DL/UL resources on
the BH are not also optimized to conform to the new load
requirements imposed by the BSs; (c) joint optimization of

all these dimensions is feasible, and can offer significant
performance improvement for both DL/UL.

Network-centric performance. Table IV considers the
performance improvements in the same comparison scenario
(ProposedAlg and TDD Fixed [18]), but now from the network
perspective when τ = 0.5. We consider two metrics: Spectral
Efficiency (SE) in terms of bits/s/Hz, and Load Balancing (LB)
in terms of mean square error between different BS loads,
similar to what is assumed in [18]. DL/UL spectral efficiency
improve up to 44% since flexible TDD better allocates the
resources with respect to the heterogeneous transmit powers
that help physical data rates improve (see B.2-B.3). It also
considers related traffic statistics and asymmetries across users
(see A.1-A.2) by diminishing the BS load fluctuations (e.g.,
BS under/over utilizations) and thus LB is improved. It is
interesting to note that simultaneous improvement of these
metrics implies improvement in user performance, as showed
previously and explained in B.7.

TABLE IV: Network (SE,LB) Performance (τ = 0.5)

Downlink Uplink
Performance. SE LB SE LB

Percentage % of improvement. 42 16 44 54

Scenario 2: Having highlighted the different tradeoffs and
sources of performance improvement in the basic scenario
above, we now turn our attention to a larger network topology
consisting of 4 macro BSs and 13 SCs. Considerable per-
formance improvements can be observed in this scenario as
well if we compare our proposed algorithm with the TDD
Fixed, as can be seen from Table V (e.g. 86% better UL user
performance). Relative lower improvement values compared
to the smaller Scenario 1 are mainly due to: (a) not all
BSs experience bad performance now so even if ProposedAlg
considerably improves the performance of the problematic
BSs, average performance is not as affected; (b) the additional
cross interference constraints posed from the neighboring
clusters.

TABLE V: User (UE) and Network (SE, LB) Performance (τ = 0.5)

Downlink Uplink
Scenario. UE SE LB UE SE LB

Percentage % of improvement. 29 39 4 86 42 51

VI. DISCUSSION AND FUTURE WORK

Distributed algorithm. Our proposed framework proposes a
novel convergent algorithm that solves the coupled problem of
joint user association, access and backhaul TDD allocation, in
a totally distributed manner. Decoupling it in three simpler
optimization sub-problems, we showed how to solve them
in three different network elements: user, base station, and
backhaul links at potentially different timescales. There, each
network element solves a certain problem at different rounds,
by only requiring some simple message exchanges between
rounds, facilitating a distributed implementation that globally
converges without the need of any centralized entity. For exam-
ple, the user is able to select where to associate based on own
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measurements and BS broadcast information. Note that this
is inline with user association in current LTE systems, where
user association depends on device centric information (e.g.
SINR measurements) but also BS-transmitted information (e.g.
priority lists of BSs to monitor). In a similar manner, aligned
with the eIMTA enabler, each BS distributes its resources
between UL/DL by avoiding cross-interference based on the
user demand in either direction and the previous allocation
policy, or each link based on the corresponding demand by
the BSs it offloads and the previous allocation policy.

Scalability, Complexity and Flexibility. Our derived user
association rules are: scalable (constant amount of the BS
broadcast messages irrespective of the number of users, back-
haul topology, and cross-interference map), of low complexity
(requiring a simple max operation) and offer flexible perfor-
mance (defined from α values); see e.g. Eq. (21). Similarly,
the rules for the access/backhaul resource allocation update
satisfy similar characteristics by only requiring a first order
derivative criterion; see e.g. Lemma 4.4.

Decomposition order. While our proposed decomposition is
not the only possible decomposition, we believe this lends
itself to a natural implementation between different network
elements. As discussed, the hierarchical decomposition can
be done by a number of different decomposition orders and
all would converge to the global optimum under the men-
tioned certain circumstances. Specifically, upon n optimization
problems there are n! (factorial of n) possible decomposition
orders; for us this would be 3! = 2 ∗ 3 = 6. However, our
proposed decomposition order captures and comforts to the
network dynamics in reality. User association is proposed
to run in the fastest timescale to adapt to the high traffic
fluctuations across different locations and users. The load of
a single BS depends on the sum of its attached users and is
subject to fewer fluctuations. It only has to react to (slower)
traffic shifts of the aggregate loads, by updating its ζ parameter
accordingly. Finally, a backhaul link further aggregates the
traffic of multiple BS, and can update its optimal allocation Z
at an even slower timescale.

Cross-layer and cross-network optimization: In this frame-
work we perform cross-layer optimization since we jointly
optimize different functionalities coming from different layers:
e.g. the user association problem (coming from the network
layer), the TDD allocation problem (coming from the MAC
layer), as well as the cross-interference management (coming
from the PHY layer). Also, we perform cross-network op-
timization since we jointly consider and optimize different
functionalities and characteristics of both radio access and
backhaul networks. In our future work plans we include the
consideration of fronthaul network too, as explained in the
next paragraph.

Fronthaul Network and C-RAN. In the proposed framework
we have successfully considered the backhaul network and the
constraints related to it along with the radio access. However,
modern networks tend to increasingly focus on Centralized-
Radio Access Network (C-RAN) architectures, fact that has
lead fronthaul networks to be rather under-provisioned and
their architecture to be revisited. Thus, the introduction of
the fronthaul in our framework, along with the potentially
influenced by, backhaul network, and their interaction with
radio access is another promising extension.

Joint UL/ DL association: Our framework is also applicable
when DL and UL traffic at a location x have to be offloaded
to the same BSs (see B.8), by requiring pDi (x) = pUi (x)
in the association rule derivations. We defer to future work
other similar splits, e.g., for control/data channels, or best
effort/dedicated traffic [25].

VII. CONCLUSION

In this paper, we formulated a novel algorithm that carefully
studies the coupled problems of (i) user association, TDD
(ii) access, and (iii) backhaul resource allocation under the
emerging backhaul and cross interference constraints. Using
optimization theory we proved that under certain circum-
stances it converges to the global optimum. Simulation re-
sults corroborate the correctness of our framework and reveal
promising qualitative and quantitative results.

VIII. PROOFS OF THEORETICAL RESULTS

A. Proof of Lemma 4.1
Our proposed decomposition algorithm falls into the cat-

egory of Alternate Convex Search (ACS) [36], [30], that
is a special case of the popular Block Coordinate Decent
(BCD) or Gauss-Seidel method [37]. Thus, our proposed
algorithm provably converges to a stationary point that could
be either a (local or global) optimal, or even a saddle point.
There, starting from an initial feasible point, one attempts
to minimize the objective by cyclically iterating through the
different optimization directions with respect to one coordinate
direction at a time. Precisely, in our case at the end of the (m)

iteration it is

φα(ρ, ζ
(m)

) ≺ φα(ρ, ζ
(m−1)

).

This will continue until convergence to a stationary point,
where the gradient vanishes and the above inequality ap-
proaches equality. ACS algorithms in its simplest form suggest
that the stationary point could be a saddle point, a local
or global optimal [36]. However, Algorithm 1 guarantees
convergence to the global optimum due to the following two
points.

(1) Uniqueness of optimum point: The considered problem
of Eq. (11) can be converted to a geometric programming
(GP) problem, since both its objective and constraints can be
written as a sum of posynomials terms composed of positive
monomials, according to the transformation in [38]. Such
problems have a single optimum. (The GP equivalent form
of our problem is not convenient for decomposition, so we
use this argument only to prove uniqueness, but not to solve
the joint problem.)

(2) Saddle point escape: Our proposed algorithm can escape
from potential saddle points, as discussed in Section IV-A2,
with the use of stochastic gradient.

B. Proof of Theorem 4.2
To write the proof compactly with respect to the coupling

constraints, we denote (only within the proof) ζD = ζ, ζU =

1 − ζ, I(D) = Iij , I(U) = Iji and assume that L is either D
or U (L ∈ {D,U}) with complementary value L̃.
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For ρ ∈ F , we will show that the rules derived in Theo-
rem 4.2 update the association variables and eventually the
BS load vector at the (l) iteration to ρ(l) in a descent
direction. A sufficient condition for this is to ensure if
⟨∇Φ(ρ(l), ζ, γ),∆ρ(l)⟩ ≥ 0 for all ρ ∈ F , where ∆ρ(l) =

ρ − ρ(l). In addition, these rules maximize this inner product
with gradient at ρ, ensuring the steepest descent direction. Let
p(x) and p(l)(x) be the associated routing probability vectors
for ρ and ρ(l), respectively.

Using the deterministic DL and UL cell coverage generated
by (16) the respective optimal association variables at the (l)

iteration, denoted as p(l),Li (x), are p(l),Li (x) = 1{i = iL(x)}.

Then, the inner product ⟨∇Φ (ρ(l), ζ, γ) ,∆ρ(l)⟩ is equal to

∑
L

∑
i∈B

⎛
⎜⎜⎜⎜⎜
⎝

1

ζLi (1 − ρ
(l),L
i

ζL
i

)
αL

+ 2γ ∑
j∈Ci

I(L)(ρ(l),Li + ρ(l),L̃j − 1)

⎞
⎟⎟⎟⎟⎟
⎠

(ρLi − ρ
(l),L
i ) =

∑
L

∑
i∈B

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 + 2γ ⋅ ζLi (1 − ρ
(l),L
i

ζL
i

)
αL

∑
j∈Ci

I(L)(ρ(l),Li + ρ(l),L̃j − 1)

ζLi (1 − ρ
(l),L
i

ζL
i

)
αL

⎞
⎟⎟⎟⎟⎟⎟
⎠

⋅

⋅ ∫L
ρLi (x) (p

L
i (x) − p

(l),L
i (x))dx =

∑
L
∫L

λL(x)
µL(x) ∑i∈B

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 + 2γζLi (1 − ρ
(l),L
i

ζL
i

)
αL

∑
j∈Ci

I(L)(ρ(l),Li + ρ(l),L̃j − 1)

ζLi c
L
i (x)(1 − ρ

(l),L
i

ζL
i

)
αL

⎞
⎟⎟⎟⎟⎟⎟
⎠

⋅ (pLi (x) − p
(l),L
i (x))dx.

Note that in the DL i.e. L =D (similarly in UL)

∑
i∈B

pDi (x)

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 + 2γ ⋅ ζLi (1 − ρ
(l),D
i
ζi

)
αD

∑
j∈Ci
Iij(ρ(l),Di + ρ(l),Uj − 1)

ζicDi (x)(1 − ρ
(l),D
i
ζi

)
αD

⎞
⎟⎟⎟⎟⎟⎟
⎠

≥

∑
i∈B

p
(l),D
i (x)

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 + 2γ ⋅ ζLi (1 − ρ
(l),D
i
ζi

)
αD

∑
j∈Ci
Iij(ρ(l),Di + ρ(l),Uj − 1)

ζicDi (x)(1 − ρ
(l),D
i
ζi

)
αD

⎞
⎟⎟⎟⎟⎟⎟
⎠

holds because p(l),Di (x) is an indicator for the minimizer of

1+2γζLi
⎛

⎝

1−
ρ
(l),D
i
ζi

⎞

⎠

αL

∑

j∈Ci
Iij(ρ

(l),D
i +ρ

(l),U
j −1)

ζicLi (x)
⎛

⎝

1−
ρ
(l),D
i
ζi

⎞

⎠

αD
.

So, ⟨∇Φ(ρ(l), ζ, γ),∆ρ(l)⟩ ≥ 0 holds.

C. Proof of Lemma 4.3
Let within this proof ρ(k) be the optimum of the problem

of minimizing the cost function Φα(ρ, ζ, γ
(k)) of Eq. (14)

using the penalty factor γ(k) at the (k) iteration, i.e. of

the problem minρΦα(ρ, ζ, γ
(k)). Then, let us denote as

ρ(k) = {ρ(0), ρ(1), ..., ρ(k), ...} the sequence of optimums of
the cost function Φα(ρ, ζ, γ

(k)) using increasing values of
γ(k): γ(0) < γ(1) < γ(2) < ... < γ(k) < ..., at each iteration
(k). We will show that any limiting point ρ̃ of ρ(k) is the
global optimal point of the set of the original sub-problems
defined in Eq. (12).

Given the cross-interference constraints defined in Eq. (5),
let us define as P (ρ) = ∑i∈B∑j∈C(ρ

D
i + ρUj − 1)2. It is

Φα(ρ, ζ, γ) = φα(ρ, ζ) + γ ⋅ P (ρ). (22)

From the continuity of φα we have

lim
k→∞

φα(ρ
(k), ζ) = φα(ρ̃, ζ). (23)

Let ρ∗ be the solution of the problem of Eq. (12), and f∗
be the value of the considered cost function at this point. It
can be shown that the sequence of values of Φα(ρ

(k), ζ, γ(k))
are non-decreasing:

Φα(ρ
(k+1), ζ, γ(k+1)

) = φα(ρ
(k+1), ζ) + γ(k+1)

⋅ P (ρ(k+1)
) ≥

≥ φα(ρ
(k+1), ζ) + γ(k) ⋅ P (ρ(k+1)

) ≥

≥ φα(ρ
(k), ζ) + γ(k) ⋅ P (ρ(k)) =

= Φα(ρ
(k), ζ, γ(k)),

and bounded above by f∗ for each k:

f∗ = φα(ρ
∗, ζ) + γ(k) ⋅ P (ρ∗) ≥ φα(ρ

(k), ζ) + γ(k) ⋅ P (ρ(k)) ≥

≥ φα(ρ
(k), ζ).

(24)
Thus, from the above-mentioned equations we can easily

imply that the following limit is a real number:

lim
k→∞

Φα(ρ
(k), ζ, γ(k)) = q∗ ≤ f∗. (25)

Subtracting (25) from (23) yields

lim
k→∞

γ(k)P (ρ(k)) = q∗ − φα(ρ̃, ζ). (26)

Since P (ρ(k)) ≥ 0 and γ(k) → ∞, Eq. (26) implies that
surely

lim
k→∞

P (ρ(k)) = 0. (27)

Using the continuity of P , this implies that P (ρ̃) = 0 i.e.
the constraints have converged to “hard” ones and thus ρ̃ is
feasible. To show that ρ̃ is optimal we note from Eq. (24) that
also φα(ρ(k), ζ) ≤ f∗, and hence

φα(ρ̃, ζ) = lim
k→∞

φα(ρ
(k), ζ) ≤ f∗. (28)
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