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Abstract—The Interfering Broadcast Channel (IBC) applies
to the downlink of (cellular and/or heterogeneous) multi-cell
networks, which are limited by multi-user (MU) interference. The
interference alignment (IA) concept has shown that interference
does not need to be inevitable. In particular spatial IA in the
MIMO IBC allows for low latency transmission. However, IA
requires perfect and typically global Channel State Information
at the Transmitter(s) (CSIT), whose acquisition does not scale
well with network size. Also, the design of transmitters (Txs)
and receivers (Rxs) is coupled and hence needs to be centralized
(cloud) or duplicated (distributed approach). CSIT, which is cru-
cial in MU systems, is always imperfect in practice. We consider
the joint optimal exploitation of mean (channel estimates) and
covariance Gaussian partial CSIT. Indeed, in a Massive MIMO
(MaMIMO) setting (esp. when combined with mmWave) the
channel covariances may exhibit low rank and zero-forcing might
be possible by just exploiting the covariance subspaces. But the
question is the optimization of beamformers for the expected
weighted sum rate (EWSR) at finite SNR. We propose explicit
beamforming solutions and indicate that existing large system
analysis can be extended to handle optimized beamformers with
the more general partial CSIT considered here.

Index Terms—Massive MIMO; multi-user; multi-cell; sum
rate; beamforming; partial CSIT; large system analysis

I. INTRODUCTION

In this paper, Tx may denote transmit/transmitter/
transmission and Rx may denote receive/receiver/reception.
Interference is the main limiting factor in wireless transmis-
sion. Base stations (BSs) disposing of multiple antennas are
able to serve multiple User Equipments (UEs) simultaneously.
However, MU systems have precise requirements for CSIT
which is more difficult to acquire than CSI at the Rx (CSIR).
Hence we focus here on the more challenging downlink (DL)
and we talk about the so-called maximizing the weighted sum
rate with partial CSIT. Earlier works have attempted optimal
partial CSIT designs for multi-user MIMO, e.g. the Expected
Weighted Sum MSE (EWSMSE) approach applied in [1] for
MIMO IBC BF design. However, the EWSMSE approach is
suboptimal and cannot even be used in the zero channel mean
case (case of covariance CSIT only). In spite of that, it has
been mistakenly considered optimal as recently as in [2]. We
treat the Gaussian CSIT case with both mean and covariance
information. The goal here is to go beyond the extreme of ZF
and to introduce a meaningful BF design at finite SNR and

with partial CSIT. A significant push for large system analysis
in MaMIMO systems appeared in [3]. It allows to obtain
deterministic (instead of fast fading channel dependent) ex-
pressions for various scalar quantities, facilitating the analysis
of wireless systems. E.g. it may allow to evaluate beamforming
performance without computing explicit beamformers. The
analysis in [3] allowed e.g. the determination of the optimal
regularization factor in R-ZF BF. A little known extension
appeared in [4] for optimal beamformers, but only for the
perfect CSIT case. Some other extensions appeared recently
in [5] or [6] where MISO IBC is considered with perfect CSIT
and weighted R-ZF BF, with two optimized weight levels, for
intracell or intercell interference.

The contributions of this paper are: a new look at Rx/Tx
design with partial CSI, derivation of BF design exploiting
both mean and covariance CSIT for the MIMO IBC, which
becomes optimal in the MaMIMO limit.

II. THE IBC SIGNAL MODEL

Let us consider an IBC system with C cells with a total of
K users. We shall consider a system-wide numbering of the
users. User k is served by BS bk. The Nk × 1 received signal
at user k in cell bk is

yk =Hk,bk Gk xk︸ ︷︷ ︸
signal

+
∑
i6=k

bi=bk

Hk,bk Gi xi

︸ ︷︷ ︸
intracell interf.

+
∑
j 6=bk

∑
i:bi=j

Hk,j Gi xi︸ ︷︷ ︸
intercell interf.

+vk

(1)
where xk are the intended dk × 1 signals (each white and
unit variance), dk is the number of intended streams, Hk,bk

is the Nk × Mbk channel from BS bk to user k. BS bk
serves Kbk =

∑
i:bi=bk

1 users. We consider the noise as
vk ∼ CN (0, σ2INk

). The Mbk × dk spatial Tx filter or
beamformer (BF) is Gk.

III. MAX WSR WITH PERFECT CSIT

This section stems entirely from [7]. Consider as a starting
point for the optimization the weighted sum rate (WSR)

WSR = WSR(Q) =

K∑
k=1

uk ln det(INk
+R−1

k
Hk,bkQkHH

k,bk
)

(2)



where Q represents the collection of transmit covariance
matrices Qk, the uk are rate weights

Rk = Hk,bkQk H
H
k,bk

+ Rk , Qi = GiGH
i ,

Rk =
∑
i 6=k

Hk,biQi H
H
k,bi + σ2INk

. (3)

Rk, Rk are the total and the interference plus noise Rx
covariance matrices resp. The WSR cost function needs to
be augmented with the power constraints∑

k:bk=j

tr{Qk} ≤ PBS
j . (4)

So our optimization problem can be expressed as the follow-
ing:

max
Q

WSR(Q)

s.t.
∑

k:bk=j

tr{Qk} ≤ PBS
j (5)

where WSR(Q) is given in (2). In a classical difference
of convex functions (DC programming) approach, Kim and
Giannakis [7] propose to keep the concave signal terms and to
replace the convex interference terms by the linear (and hence
concave) tangent approximation. More specifically, consider
the dependence of WSR on Qk alone. Then

WSR = uk ln det(R−1
k

Rk) +WSRk ,

WSRk =
∑K

i=1,6=k ui ln det(R−1
i

Ri)
(6)

where ln det(R−1
k

Rk) is concave in Qk and WSRk is convex
in Qk. Since a linear function is simultaneously convex and
concave, consider the first order Taylor series expansion in Qk

around Q̂ (i.e. all Q̂i) with e.g. R̂i = Ri(Q̂), then

WSRk(Qk, Q̂) ≈WSRk(Q̂k, Q̂)− tr{(Qk − Q̂k)Âk}

Âk = −
∂WSRk(Qk,Q̂)

∂Qk

∣∣∣∣∣
Q̂k,Q̂

=

K∑
i 6=k

uiH
H
i,bk

(R̂−1
i
−R̂−1i )Hi,bk

(7)
Note that the linearized (tangent) expression for WSRk

constitutes a lower bound for it. Now, dropping constant
terms, reparameterizing the Qk = GkGH

k , performing this
linearization for all users, and augmenting the WSR cost
function with the constraints, we get the Lagrangian

WSR(G, Ĝ, λ) =

C∑
j=1

λjP
BS
j +

K∑
k=1

uk ln det(Idk
+ GH

k B̂kGk)− tr{GH
k (Âk + λbkIMbk

)Gk}

(8)
where B̂k = HH

k,bk
R̂−1

k
Hk,bk . (9)

The gradient (w.r.t. Gk) of this concave WSR lower bound is
actually still the same as that of the original WSR criterion!
And it allows an interpretation as a generalized eigenmatrix
condition, thus G

′

k = eigenmatrix(B̂k, Âk + λbkIMbk
) is

the (normalized) generalized eigenmatrix of the two indicated
matrices, with eigenvalues Σk = eigenvalues(B̂k, Âk +

λbkIMbk
). Let Σ

(1)
k = G

′H
k B̂kG

′

k, Σ
(2)
k = G

′H
k ÂkG

′

k. The
advantage of formulation (8) is that it allows straightforward
power adaptation: introducing diagonal power matrices Pk ≥ 0

and substituting Gk = G
′

kP
1
2

k in (8) yields

WSR =

C∑
j

λjP
BS
j +

K∑
k=1

[
uk ln det

(
Idk

+ PkΣ
(1)
k )

− tr{Pk(Σ
(2)
k +λbkI)}

]
(10)

which leads to the following interference leakage aware water
filling

Pk(l, l) =

(
1

Σ
(1)
k (l, l)

(
ukΣ

(1)
k (l, l)

Σ
(2)
k (l, l) + λbk

− 1

))+

(11)

for all l s.t. Σ
(1)
k > 0 where z+ = max(0, z) and the

Lagrange multipliers λbk are adjusted to satisfy the power

constraints
∑

k:bk=j

dk∑
l=1

Pk(l, l) = PBS
j . This can be done by

bisection and gets executed per BS. Note that some Lagrange
multipliers could be zero. Note also that as with any alternating
optimization procedure, there are many updating schedules
possible, with different impact on convergence speed. The
quantities to be updated are the G

′

k, the Pk and the λl. The
advantage of the DC approach is that it works for any number
of streams/user dk, by simply taking more eigenvectors. In
other words, we can take the dk max eigenvectors of the
eigenmatrix G

′

k. We mean by the max eigenvectors, the
eigenvectors corresponding to the highest eigenvalues. The
waterfilling then automatically determines (at each iteration)
how many streams can be sustained.

IV. JOINT MEAN AND COVARIANCE GAUSSIAN CSIT

In this section we drop the user index k for simplicity.
Assume that the channel has a (prior) Gaussian distribution
with zero mean and separable correlation model

H = C1/2
r H̃C

1/2
t (12)

where C
1/2
r , C1/2

t are Hermitian square-roots of the Rx and
Tx side covariance matrices

EHHH = tr{Ct} Cr

EHHH = tr{Cr} Ct
(13)

Now, the Tx dispose of a (deterministic) channel estimate

Ĥd = H + C1/2
r H̃d C

1/2
d (14)

where again the elements of H̃d are i.i.d. ∼ CN (0, 1), and
typically Cd = σ2

H̃
IM . The combination of the estimate with

the prior information leads to the (posterior) LMMSE estimate

H = Ĥd (Ct + Cd)−1Ct = H + C
1/2
r H̃p C

1/2
p

Cp = Cd (Ct + Cd)−1Ct
(15)

where H̃ and H̃p are independent. Note that we get for the
MMSE estimate of a quadratic quantity of the form

EH|Ĥd
HHH = H

H
H + tr{Cr}Cp = S . (16)



Let us emphasize that this MMSE estimate implies S =
arg minT EH|Ĥd

||HHH−T||2. It averages out to

EĤd
S = EH,Ĥd

HHH = EHHHH = tr{Cr}Ct . (17)

Hence, if we want the best estimate for HHH (which appears
in the signal or interference powers), it is not sufficient to
replace H by H but also the covariance information should
be exploited. Note that µ = tr{HH

H}
tr{Cr}tr{Cp}

is a form of Ricean
factor that represents channel estimation quality.

V. EXPECTED WSR (EWSR)
For the WSR criterion, we have assumed so far that the

channel H is known. Once the CSIT is imperfect, various
optimization criteria could be considered, such as outage
capacity. Here we shall consider the expected weighted sum
rate EHWSR(Q,H) =

EWSR(Q) = EH

∑
k

uk ln det(IMbk
+ HH

k,bk
R−1

k
Hk,bkQk)

(18)

VI. MAMIMO LIMIT

In the MaMIMO limit where the number of Tx antennas
M becomes very large, the WSR converges to a deterministic
limit that depends on the distribution of the channels. The
actual statistical distribution of the channel is one thing. The
CSIT distribution as in Section IV is another. The Txs have no
choice but to design their BFs according to their partial CSIT.
Then to get the actual resulting WSR, the BFs designed with
the partial CSIT need to be evaluated with the actual channel
distribution. Now, for the design with partial CSIT, the WSR
will also converge to a deterministic limit in the MaMIMO
regime. We get a convergence for any term of the form

HQHH M→∞−→ EH HQHH = HQH
H

+ tr{QCp}Cr . (19)

In what follows we shall go one step further in the separable
channel correlation model and assume Cr,k,bi = Cr,k, ∀bi.
This leads us to introduce

Hk = [Hk,1 · · ·Hk,C ] = Hk −C
1/2
r,k H̃kC

1/2
p,k

Q=


∑

i:bi=1

Qi

. . . ∑
i:bi=C

Qi

=

C∑
j=1

∑
i:bi=j

IjQiI
H
j

Qk = Q− IbkQkI
H
bk

(20)

where Cp,k = blockdiag{Cp,k,1, . . . ,Cp,k,C}, and Ij is an
all zero block vector except for an identity matrix in block j.
Using (19), let us define

R̆k = σ2INk
+ HkQH

H

k + tr{QCp,k}Cr,k

R̆k = σ2INk
+ HkQkH

H

k + tr{QkCp,k}Cr,k

(21)

which represent the total and the interference plus noise Rx
covariance matrices in the MaMIMO regime respectively. This
leads to

WSR = uk ln det(IMbk
+ HH

k,bk
R̆−1

k
Hk,bkQk) +WSRk

(22)

Thus,

WSR = uk ln det (Idk
+ GH

k B̆kGk) +WSRk with

B̆k = EH|HHH
k,bk

R̆−1
k

Hk,bk

= H
H

k,bk
R̆−1

k
Hk,bk + tr{Cr,kR̆

−1
k
}Cp,k,bk

(23)

which is now similar to the corresponding expression in (9).
Note that B̆k corresponds to a total Tx side correlation matrix
as in (16), but now for an interference plus noise whitened
channel R̆

−1/2
k

Hk,bk . The linearization Ăk of WSRk w.r.t.
Qk (7) gives in the MaMIMO regime:

Ăk =

K∑
i 6=k

ui[Ă
C
i,k(IMbk

+ QkĂ
C
i,k)−1

− ĂD
i,k(IMbk

+ QkĂ
D
i,k)−1] (24)

with

ĂC
i,k = H

H

i,bk
R̆−1

i,k
Hi,bk + tr{R̆−1

i,k
Cr,i}Cp,i,bk ;

ĂD
i,k = H

H

i,bk
R̆−1

i,k
Hi,bk + tr{R̆−1

i,k
Cr,i}Cp,i,bk ;

R̆i,k =

K∑
j 6=i,j 6=k

Hi,bjQjH
H

i,bj + tr{QjCp,i,bj}Cr,i + σ2INi ;

R̆i,k =

K∑
j 6=k

Hi,bjQjH
H

i,bj + tr{QjCp,i,bj}Cr,i + σ2INi
.

The proof is given in the Appendix. As in section III, to get
the normalized precoder we use

G
′

k = eigenmatrix(B̆k, Ăk + λbkIMbk
) (25)

with eigenvalues Σk = eigenvalues(B̆k, Ăk + λbkIMbk
). Let

Σ
(1)
k = G

′H
k B̆kG

′

k, Σ
(2)
k = G

′H
k ĂkG

′

k. Powers Pk ≥ 0 are
defined as in (11). λbk is determined also as described in
section III. We can take also only dk max eigenvectors as
described in section III. The algorithm can be then summarized
as in Table I.

VII. NUMERICAL RESULTS

In this section, the performance of our proposed scheme,
denoted by ”with Combined Channel Estimate and Covariance
CSIT”, is evaluated through numerical simulations. We com-
pare it to the ”EWSMSE” approach in [1] and to the approach
given in section III with channel estimate considered as true
channel. The latter approach is denoted by ”with Channel
Estimate Only”. For the initialization of our approach we use
the transmit covariance matrix output from the approach ”with
Channel Estimate Only”. Figures 1 and 2 show the achievable
sum rate versus SNR for a Mutliple-Input Single-Output
(MISO) system composed of 2 cells, with 8 single-antenna
users in total and 8 antennas per BS , the Tx covariance
matrices Ct,i,bk∀i, ∀k and Cp,i,bk∀i,∀k are considered as
identity matrices in Figure 1 and as low rank matrices (rank
= 2) in Figure 2. The low-rank property of the correlation
matrices is motivated in the work in [8]. Since we are in a



TABLE I: The Iterative EWSR Algorithm

For k = 1 . . . K, initialize Qk

Repeat until convergence
For j = 1 . . . C

Set λ = 0, λ = λmax

For k such that bk = j

Compute Ăk using (25) and the interference terms using (21)
Next k
Repeat until convergence
λ = 1

2
(λ+ λ)

For k such that bk = j

Compute B̆k using (23)
Compute the generalized eigenmatrix Gk of B̆k

and Ăk + λIM
Normalize the generalized eigenmatrix so as to have G

′
k

Compute Σ
(1)
k = G

′H
k B̆kG

′
k , Σ

(2)
k = G

′H
k ĂkG

′
k

Compute Pk as in (11)
Next k
Compute P=

∑
k Pk

if tr(P) ≥ PBS
j , set λ = λ , otherwise set λ = λ

For all k such that bk = j, set Qk = G
′
kPkG

′,H
k

Next j

MISO scenario, the Rx covariance scalars as considered as
one by default. So for a user k we have the following:

hk,bk =
√
α2(

M

tr(Ct,k,bk)
)

1
2 h̃k,bkC

1
2

t,k,bk
+√

(1− α2)(
M

tr(Cp,k,bk)
)

1
2 h̃p,k,bkC

1
2

p,k,bk
; (26)

hk,bk = h̃k,bkC
1
2

t,k,bk
. (27)

The model in (26) and (27) is the same as (15) and (12) but
conceived in a way to preserve the channel gain. In other
words the real channel hk,bk in (27) and the channel estimate
hk,bk in (26) have the same gain. Proof:

E((α2)
M2

tr(Ct,k,bk)2
h̃k,bkCt,k,bk h̃

H
k,bk

)

= (α2)
M

tr(Ct,k,bk)
tr(Ct,k,bk) = (α2)M ; (28)

E((1− α2)
M2

tr(Cp,k,bk)2
h̃p,k,bkCp,k,bk h̃

H
p,k,bk

)

= (1− α2)
M

tr(Cp,k,bk)
tr(Cp,k,bk) = (1− α2)M ; (29)

(28) + (29) = M = E(hk,bkh
H

k,bk
) (30)

which completes the proof. For the simulations of Figures 1
and 2, we have used 100 channel realizations with α2 = 3

4 , i.e.
100 different realizations of the couple h̃k,bk and h̃p,k,bk which
both follow the zero-mean unit-variance Gaussian distribution.
Thus, in Figure 1 and Figure 2 we have in total 1 − α2 = 1

4
as estimation error variance. As Figures 1 and 2 suggest,
our algorithm surpasses the EWSMSE approach in [1], and
we perceive a huge gain for our approach with respect to

EWSMSE in the case of low rank correlation matrices as
depicted in Figure 2. The reason of the gain can be explained
as follows. The Expected Signal-to-Interference plus Noise
ratio (ESINR) given in (31)

ESINRk = E[
hH
k,bk

Qkhk,bk

σ2 +
∑
i 6=k

hH
i,bk

Qihi,bk

] (31)

converges to (32) when the number of Tx antennas becomes
very large and induces quantities containing the posterior
covariance matrix Cp.

ESINRk =
E[hH

k,bk
Qkhk,bk ]

σ2 +
∑
i 6=k

E[hH
i,bk

Qihi,bk ]

=
h
H

k,bk
Qkhk,bk + tr{QkCp,k,bk}

σ2 +
∑
i 6=k

h
H

k,biQihk,bi + tr{QiCp,k,bi}
(32)

Furthermore, the EWSMSE approach maximizes the WSR
via the minimization of the MSE which in the signal terms
contains a term linear in h as shown in [1, Equation (3)]
and its expectation in the same section of [1], which only
contains the (posterior) mean of h, hence does not account for
the posterior covariance. However, our approach maximizes
directly the expression in (32) and hence is better than the
EWMSE approach.

Fig. 1: Sum rate Comparison for C = 2,K = 8,Mbk = M =
8Nk = N = 1∀k and Ct,i,bk = Cp,i,bk = IM ∀i,∀k

VIII. CONCLUSION

In this work, we introduced a novel algorithm which max-
imizes the weighted sum rate in the presence of partial CSIT,
but with combined channel estimate and covariance CSIT,
using tools from RMT. We compared ours to the existing
approach in [1] and demonstrated its superiority for both cases
of full and low rank channel correlation matrices.
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APPENDIX

The proof of (25) is based on lemmas from Random Matrix
Theory (RMT) in [3]. The equation (7) can be reformulated
as

Ak =

K∑
i6=k

ui
[
AA

i,k −AB
i,k

]
;

AA
i,k = HH

i,bk
R−1

i
Hi,bk ;AB

i,k = HH
i,bk

R−1i Hi,bk

R−1
i

= R−1
i,k

+ (R−1
i
−R−1

i,k
)with

Ri,k =
∑

j 6=i,j 6=k

Hi,bjQj H
H
i,bj + σ2INi

(33)

Applying [3, Lemma 2],
(R−1

i
−R−1

i,k
) = −R−1

i
(Ri −Ri,k)R−1

i,k

= −R−1
i

(Hi,bkQkH
H
i,bk

)R−1
i,k

;

AA
i,k = HH

i,bk
Ri,kHi,bk

−HH
i,bk

R−1
i

(Hi,bkQkH
H
i,bk

)R−1
i,k

Hi,bk ;

AA
i,k = AC

i,k −AA
i,kQkA

C
i,k with AC

i,k = HH
i,bk

R−1
i,k

Hi,bk .

Similarly,
AB

i,k = AD
i,k −AB

i,kQkA
D
i,k

with AD
i,k = HH

i,bk
R−1

i,k
Hi,bk

and Ri,k =
∑
j 6=k

Hi,bjQj H
H
i,bjσ

2INi
.

Using the channel model in section IV,
AC

i,k = H
H

i,bk
R−1

i,k
Hi,bk

+C
1
2 ,H

p,i,bk
H̃H

p,i,bk
C

1
2 ,H
r,i R−1

i,k
C

1
2
r,iH̃p,i,bkC

1
2

p,i,bk

−C
1
2 ,H

p,i,bk
H̃H

p,i,bk
C

1
2 ,H
r,i R−1

i,k
Hi,bk

−HH

i,bk
R−1

i,k
C

1
2
r,iH̃p,i,bkC

1
2

p,i,bk

(a)−→

H
H

i,bk
R̆−1

i,k
Hi,bk + tr{R̆−1

i,k
Cr,i}Cp,i,bk = ĂC

i,k;

Ri,k = σ2INi
+

K∑
j 6=i,j 6=k

Hi,bjQjH
H

i,bj

+

K∑
j 6=i,j 6=k

C
1
2
r,iH̃p,i,bjC

1
2

p,i,bj
QjC

1
2 ,H

p,i,bj
H̃H

p,i,bjC
1
2 ,H
r,i

−
K∑

j 6=i,j 6=k

[C
1
2
r,iH̃p,i,bjC

1
2

p,i,bj
QjH

H

i,bj

+Hi,bjQjC
1
2 ,H

p,i,bj
H̃H

p,i,bj
C

1
2 ,H
r,i ]

(b)−−→
K∑

j 6=i,j 6=k

Hi,bjQjH
H

i,bj + tr{QjCp,i,bj}Cr,i

+σ2INi
= R̆i,k;

Moreover,

AD
i,k

(c)−→ H
H

i,bk
R̆−1

i,k
Hi,bk + tr{R̆−1

i,k
Cr,i}Cp,i,bk = ĂD

i,k;

Ri,k

(d)−−→
K∑

j 6=k

Hi,bjQjH
H

i,bj + tr{QjCp,i,bj}Cr,i

+σ2INi
= R̆i,k.

(34)
Note that (a) and (c) above correspond to ”using the expected
value of the matrix and (34)”, and ”using the expected value of
the matrix and (34)” respectively, while (b) and (d) correspond
both to ”using the expected value of the matrix”. Now, the
proof is completed.


