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Abstract—In the context of Vehicular Ad Hoc NETworks
(VANETs), we investigate the problem of range-based Coopera-
tive Localization (CLoc), which combines absolute position infor-
mation from on-board Global Navigation Satellite System (GNSS)
with relative distance measurements to fellow mobile vehicles, for
instance based on Impulse Radio - Ultra WideBand (IR-UWB).
CLoc accuracy usually suffers from poor Geometric Dilution of
Precision (GDoP) along the dimension orthogonal to the road,
due to highly constrained VANET mobility and topology. This
paper considers benchmarking and even combining two different
approaches to resolve this problem. The first solution accounts
for the vehicle’s heading, making use of an Inertial Measurement
Unit (IMU). The second one assumes prior lane detection, along
with associated road information (e.g., lane width stored in a
digital map). The data fusion scheme is based on a modified
Extended Kalman Filter (EKF) capable of filtering out the
unbounded noise process integrated at the gyroscope and/or using
lane boundaries to numerically refine the density of posterior
state estimates. The proposed strategies are shown to boost the
probability to reach an accuracy of 0.5 m from 60% up to 85–
90% in comparison with conventional range-based approaches.

I. INTRODUCTION

In order to achieve the high positioning accuracy re-
quired by future Cooperative Intelligent Transport System
(C-ITS) applications, new Cooperative Localization (CLoc)
techniques suitable to Vehicular Ad hoc NETworks (VANETs)
have been introduced recently. These solutions combine both
Global Navigation Satellite System (GNSS) and “Vehicle-to-
X” (V2X)1 communication technologies. Accordingly, each
“ego” vehicle considers its neighbors as potential “virtual
anchors” [1]–[5] (i.e., mobile anchors with imperfect location
information). Conceptually, CLoc follows three phases. First,
each vehicle encapsulates its latest absolute location in a Bea-
con2 broadcast over V2X communication links. Through the
reception of such Beacons, a given “ego” vehicle thus becomes
aware of the absolute positions of its neighbors. The second
phase aims at retrieving relative Vehicle-to-Vehicle (V2V)
location-dependent information with respect to “virtual an-
chors”, either out of received Beacon signals directly or by
relying on a side ranging-enabled wireless technology. Ad hoc
trilateration/triangulation can then be locally applied to fuse

1“V2X” refers to any technology capable of Device-to-Device (D2D)
communication in a vehicular context.

2To remain technology neutral, a “Beacon” is a message periodically
broadcast by each node.

the latter information with on-board GNSS position estimates
and further refine the absolute location (See Fig. 1). In the last
phase, the “ego” vehicle contributes to improve the localization
of other vehicles by keeping on sharing its enhanced position
estimates in subsequent Beacons.

CLoc has already been addressed rather extensively in [1],
[3], [4], [6], exploiting signals of opportunity such as the
Received Signal Strength Indicators (RSSI) of received Coop-
erative Awareness Messages (CAMs) [7], in compliance with
V2X ITS-G5 technology3. However, RSSI-based ranging is a
parametric technique that requires precise channel behavioral
models. It is also very sensitive to channel irregularity and
non-stationarity, including large fading dispersion or uncal-
ibrated transmit power [1], [4], [8]. More recently, it has
thus been proposed in [5] to replace ITS-G5-based RSSI
measurements by Impulse Radio - Ultra WideBand (IR-UWB)
Time-of-Flight (ToF) measurements, which can theoretically
reach centimeter-level distance resolutions [8]. Nevertheless,
despite the fine ranging potential of IR-UWB technology, the
performance of fusion-based CLoc strongly depends on the
geometric configuration of “virtual anchors”. In vehicular con-
texts, relative nodes positions are indeed strictly constrained
by the topology of occupied roads/lanes and accordingly, they
are unequally distributed along the road direction (along-track)
and the direction orthogonal to the road (cross-track). Hence,
the along-track location error can usually be significantly
reduced, whereas the cross-track error cannot leverage rang-
ing accuracy but mostly reveals poor Geometric Dilution of
Precision (GDoP).

In this paper, we specifically aim at reducing cross-track
errors by fusing GNSS positions and V2V IR-UWB range
measurements with additional heading information issued at
on-board Inertial Measurement Units (IMUs) or/and lane infor-
mation (i.e., road geometry). One single data fusion framework
based on a modified Extended Kalman Filter (EKF) is pro-
posed, i) accounting for the uncertainties of “virtual anchors”,
ii) mitigating the propagation of estimation biases through
cooperative transactions, iii) reducing unbounded noise in-
tegrated at the gyroscope according to a prediction model
and finally, iv) numerically refining the density of posterior

3CAM and ITS-G5 are European counterparts to the Basic Safety Mes-
sage (BSM) and Dedicated Short Range Communication (DSRC) in the US.
ITS-G5 is expected to be available in every vehicle sold from 2019.



Fig. 1. “Ego” car receiving CAMs and exchanging ranging frames RFRAME
from/with single-hop “virtual anchors” to perform distributed CLoc. The CLoc
positional beliefs (i.e., after fusing GNSS and V2V IR-UWB ranges) are
expected to be more concentrated than that of non-CLoc (i.e., with standalone
GNSS only).

location estimates based on the knowledge of occupied lane’s
boundaries, following an approach rather similar to [9].

The paper is organized as follows. Section II describes
general concepts and system models related to CLoc, while
Section III presents the main contributions of the paper. Sim-
ulation results and benchmarks are presented in Section IV.
Finally, conclusions and future works are given in Section V.

II. PROBLEM FORMULATION

We consider a VANET consisting of a set V of connected
vehicles. At each vehicle i ∈ V , time is locally sampled
into a sequence of discrete events ti,0, ti,1, . . . , ti,k, which are
simply indexed by k4. Vehicles’ states are denoted by Xi,k =

(x†i,k,v
†
i,k)†, where xi,k = (xi,k, yi,k)†, vi,k = (vxi,k, v

y
i,k)†

are the 2-D absolute position and 2-D velocity respectively.
This state is assumed to evolve according to a mobility model.
At discrete time ti,k, the “ego” vehicle i has the set S→i,k,
i /∈ S→i,k of “virtual anchors” and acquires an observation
vector zi,k, which is related to its own state Xi,k and its
neighboring states Xj,ki , j ∈ S→i,k via a measurement model.

A. True Mobility and Mobility Prediction Models Mismatch

For traffic simulations, we herein assume a Gauss-Markov
mobility model, which describes well the correlated velocity
of vehicles in the form of a time-correlated Gauss-Markovian
process and is suitable into vehicular contexts [3], [10] i.e.,(
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)
︸ ︷︷ ︸

Xi,k+1
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(
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)
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)
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(
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(
1/2∆T 2I2
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)
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G(α,∆T )

wi,k,

(1)

where α is the memory level, ∆T the time step, v̄i =
(v̄xi , v̄

y
i )† the 2-D asymptotic (cruising) velocity, wi,k =

4Due to asynchronously sampled time instants, the index k is locally
meaningful. For notation brevity, the subscript indicating the vehicle index
is dropped. If, however, it is included, the associated variable is strictly
considered w.r.t. the timeline of the stated vehicle index.

(wxi,k, w
y
i,k)† ∼ N ((0, 0)†,Qi,k) a 2-D Additive White Gaus-

sian Noise (AWGN) term associated with noisy control inputs,
I2 the identity matrix of size 2× 2.

Although we could assume that each vehicle has perfect
knowledge about its own mobility model i.e., a model like
in (1) or more generally, a conditional transition probability
density function (pdf) p(Xi,k+1|Xi,k) (known a priori for
highly controlled mobility regimes or possibly self-calibrated
on the wing based on previous state estimates), this perception
is usually an approximation of the true mobility statistics.
To remain as mobility-independent as possible, one simpler
approach consists in employing a very generic tracking model,
e.g. a 2-D version of Newton’s force law [10], as mobility
prediction model. The corresponding discrete time model is

Xi,k+1 =

(
I2 ∆T I2

02 I2

)
︸ ︷︷ ︸

F̃(∆T )

Xi,k +

(
1/2∆T 2I2

∆T I2

)
︸ ︷︷ ︸

G̃(∆T )

w̃i,k, (2)

where w̃i,k ∼ N ((0, 0)†, Q̃i) is the 2-D process noise. It
is important to keep the process noise covariance Q̃i large
enough so as to take into account the model’s prediction
error (or model mismatch) and preserve filtering stability ac-
cordingly [11]. In practice, vehicle’s acceleration/deceleration
capacity is used to fine-tune this process noise. Finally, this
generic prediction model can be applied to any vehicle with
simple tuning and is appropriate for predicting both “ego”
and neighbors’ estimated states, as well as for resynchronizing
related data before filtering/fusion5, like in [1], [3].

B. Observation Models

1) GNSS Absolute Position: The 2-D position estimate de-
livered by GNSS, pi,k = (pxi,k, p

y
i,k)†, is affected by an AWGN

noise vector ni,k = (nxi,k, n
y
i,k)† ∼ N ((0, 0)†, σ2

GNSSI2) [2],
[3] of standard deviation σGNSS.

pxi,k = xi,k + nxi,k, pyi,k = yi,k + nyi,k. (3)

2) IR-UWB V2V Ranges: Through a ranging protocol (e.g.,
based on the ToF estimation of transmitted packets involved
in multiple-way handshake transactions [8], [12]), vehicle i at
time ti,k estimates the V2V distance d̃j→i,k to node j, j ∈
S→i,k in position xj,ki

d̃j→i,k = ‖xi,k − xj,ki‖+ nj→i,k, (4)

where nj→i,k ∼ N (0, σ2
UWB) is the ranging measurement

noise of standard deviation σUWB.
3) IMU Heading: The vehicle’s heading is obtained by

integrating the yaw rate given by the rate-gyroscope of an
IMU, given heading initialization6. The measured angular rate

5The transmission intervals between CAMs are constrained by channel
load conditions, leading to non periodic transmissions and as such, non
synchronous data reception from the “virtual anchors”. If a highly parametric
mobility prediction is employed, model-specific parameters might not be
supported by the standard 300-byte CAM.

6Heading can be initialized (at rest or in motion) using magnetic compass,
gyrocompass, lane marker detection with an enhanced digital map, etc. with
rather high accuracy of a few milliradians (a tenth of degree) [11], [13].



about the vertical axis ω̃zi,k at time ti,k is characterized by a
general-purpose parametric model [11], [14], such as

ω̃zi,k = (S + δS)ωzi,k + bf,ωi,k + bi,ωi,k + nωi,k, (5)

where S is the scale factor, δS the scale factor error, ωzi,k the
true yaw rate, bf,ωi,k , bi,ωi,k the fixed bias and bias instability
respectively, nωi,k the thermal noise. The scale factor and
fixed bias are deterministic by nature and can be calibrated
at sensor level [14], [15]. The bias instability refers to bias
drift, typically modeled as a random walk [15], [16]. The
vehicle’s heading is determined by integrating the gyro signal,
following the rectangular rule. Thus, the thermal noise and
the bias instability result in angle random walk and second-
order random walk in the integrated signal respectively. Using
Allan Variance analysis, at 10 Hz7, thermal noise is the
most important noise process perturbing the gyro signals [16].
Hence, the vehicle’s heading measurement can be modeled as

θ̃i,k ≈ θi,k + bθi,k + εθi,0 = atan2(vyi,k, v
x
i,k) + bθi,k + εθi,0, (6)

where θi,k and θ̃i,k denote the true and measured headings
respectively, atan2(y, x) the four-quadrant inverse tangent,
εθi,0 ∼ N (0, (σθi,0)2) the heading initialization error, and bθi,k
the random walk term. The random walk error model has the
following form

bθi,k = bθi,k−1 + nθi,k, (7)

where nθi,k is a centered AWGN random term with standard
deviation σωi

√
∆T/Bωi , where σωi is the standard deviation

of the yaw rate signal for a bandwidth Bωi , and ∆T is the
integrated timespan.

III. PROPOSED APPROACHES

A. Limitations of Range-Based CLoc in VANETs

In the VANET context, the performance of the range-based
CLoc depends critically on three factors: (i) the quality of
the range measurements, (ii) the uncertainties of the positions
of the “ego” vehicle and its “virtual anchors”, and (iii) the
local geometric configuration of the latter anchors relatively
to the “ego” vehicle. The first factor can be satisfied by
accurate time-based ranging via IR-UWB technology. The
second factor can be taken into account in a modified EKF,
capable of monitoring the uncertainties of the “virtual anchors”
(See Algorithm 1) and by broadcasting enhanced position esti-
mates so as to assist neighbors (similarly to message passing).
Since mobility is strongly constrained by the roads/lanes and
driving rules, the relative vehicles’ geometry is rather poorly
conditioned in this very context. Specifically, the VANET
topology is usually somehow distorted along the direction
colinear to the road due to the huge disparity between the
longitudinal safety distances (e.g., 20–150 m8) and the lateral
lane width (e.g., 2.25–3.5 m). Accordingly, the GDoP is

7We consider in this paper 10-Hz tracking. Otherwise, at the speed of
110 km/h (30 m/s), 1-Hz tracking gives single position estimate per 30 m.

8The two-second (or three-second) rule is applied to maintain a safe
following distance.
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Fig. 2. Example of expected CLoc localization performance in a 4-node
VANET. The top subfigure shows the true vehicles positions. The left bottom
subfigure illustrates how a single range-based cooperative transaction mostly
increases information (i.e., decreases confidence ellipse) in the direction
formed by the two involved nodes’ positions. The right bottom subfigure
shows the impact of each link separately and of all links on the final “ego”
localization performance. Main parameters include a prior 1-σ uncertainty of
1 [m] on both x- and y-coordinates independently and a ranging standard
deviation σUWB = 0.2 [m].

likely poor in the direction orthogonal to the road; there-
fore, the cross-track location error remains high. The CLoc
performance is illustrated for a given VANET on Fig. 2,
where the expected positioning error level before (prior) and
after cooperation is theoretically predicted using the Bayesian
Cramér-Rao Lower Bound (BCRLB) [3] and represented as
95%-confidence ellipses. Fig. 2 (right bottom) also shows that
vehicles maintaining safety distances to the “ego” (regardless
of their lane occupancy) mainly improve “ego” along-track
positioning whereas vehicles at closer range (obviously on dif-
ferent lanes) generally improve “ego” cross-track positioning.
The latter are tightly constrained due to the limited number
of lanes (2 or 3 in each direction for most common European
roadways), regardless of V2V communication range. Hence,
additional information having beneficial impact on the cross-
track error must be fused in the GNSS+UWB CLoc.

B. IMU Heading Integration in Modified EKF-based Fusion

Intuitively, a high-quality gyroscope improves the heading
error as well as the cross-track positioning error which CLoc
cannot fully resolve. Thus we first propose to incorporate
the vehicle’s heading information measured by a gyroscope
in the fusion-based CLoc. As aforementioned, the heading
measurement error is modeled as a random walk process,
whose overall variance grows linearly with time (see (7)).
Thus this error must be estimated to get reliable filtering/fusion
results. Said differently, we augment the state of the “ego”
vehicle i as Xa

i,k := (X†i,k, b
θ
i,k)†. We then combine (2) and (7)

to obtain an augmented prediction model as follow

Xa
i,k+1 =

(
F̃(∆T ) 0

0 1

)
︸ ︷︷ ︸

F̃a(∆T )

Xa
i,k +

(
G̃(∆T ) 0

0 1

)
︸ ︷︷ ︸

G̃a(∆T )

w̃a
i,k, (8)



where w̃a
i,k = (w̃†i,k, n

θ
i,k)†, whose covariance matrix is

Q̃a
i (∆T ) =

(
Q̃i(∆T ) 0

0 (σωi )2∆T/Bωi

)
. (9)

Note that we consider EKF-based CLoc with mobile “virtual
anchors”, whose positions are not perfectly known, and a IR-
UWB V2V range measurement model that depends on the
positions of both “ego” and cooperative vehicles (See (4)).
The “ego” state must be augmented once again to account for
the states of the “virtual anchors” so that the corresponding
augmented state covariance now includes the uncertainties of
these “virtual anchors”. Such state augmentation is vital to
compute the adequate correction (i.e., to reduce the Kalman
gain according to anchor’s uncertainty) for each V2V range
measurement. Otherwise, the EKF treats “virtual anchors”
as real anchors, and estimation biases in the neighboring
estimates are propagated to the “ego” estimate, leading to
significant accuracy degradation9.

We introduce the following set of notations to gather
different vehicles’ variables: stacked states of “virtual an-
chors” XS→i,k = {Xj,ki |∀j ∈ S→i,k}; new augmented state
Xi∪S,k = (X†i,k,X

†
S→i,k)†; V2V ranges vector d̃S→i,k =

{d̃j→i,k|∀j ∈ S→i,k}; and full measurements vector

zi,k =
(
p†i,k, θ̃i,k, d̃S→i,k

)†
= hi,k(Xi∪S,k) + ni,k, (10)

where hi,k(·) and ni,k represent the mixed linear/nonlinear
dependency of filter observation on the new augmented state
and the measurement noise respectively (by combining (3), (6),
and (4)). Assume various measurement noises are independent,
the new noise covariance matrix is given as

Ri,k =

σ2
GNSSI2 0 0
0 (σθi,0)2 0
0 0 σ2

UWBI|S→i,k|

 . (11)

The overall proposed EKF-based fusion scheme integrating
GNSS, IR-UWB and IMU, is described in Algorithm 1.

C. Lane Constraints (LC) Integration

As already mentioned, the mobility of land vehicles is
tightly constrained by the road and lane boundaries. Thus, such
contextual information can be contributed into the localization
problem [11]. We assume in this paper that lane allocation
can be performed at each vehicle using for instance a vision-
based system (e.g., monocular camera) and a digital map [17].
The latest filtered/fused estimate is cross-checked with the side
digital map to identify the current road occupancy and its as-
sociated attributes (e.g., lanes number and width). In addition,
the camera system scans the road, detects the lanes and the
land markers [17]. As a result, the absolute positions of the
lane boundaries can be determined and used to constrain the
filtered/fused outputs. Contrarily to most common map match-
ing approaches, which simply project the vehicle’s position on
the center of the road or lane [18], we consider a more realistic

9In this case, the Kalman gain depends on the uncertainties of the “ego”
predicted state and V2V range measurements.

Algorithm 1 Modified EKF (iteration k, “ego” vehicle i)
1: CAM Collection: Receive CAMs from the set N→i,k of perceived

neighbors, exact the Gaussian beliefs {X̂j,k,Pj,k}, the timestamps tj,k
and (optionally) mobility parameters like Q̃j , j ∈ N→i,k .

2: Prediction and Data Synchronization: Perform prediction of both
“ego” and neighboring beliefs based on mobility prediction models at
the “ego” estimation instant ti,k

X̂a
i,k|k−1 = F̃a(∆T )X̂a

i,k−1,

Pa
i,k|k−1 = F̃a(∆T )Pa

i,k−1F̃
a(∆T )† + G̃a(∆T )Q̃a

i G̃
a(∆T )†,

X̂j,ki|k = F̃(∆T i,j
k )X̂j,k,

Pj,ki|k = F̃(∆T i,j
k )Pj,kF̃(∆T i,j

k )† + G̃(∆T i,j
k )Q̃jG̃(∆T i,j

k )†,

∆T i,j
k = ti,k − tj,k, j ∈ N→i,k.

3: Correction: Select the subset S→i,k ⊂ N→i,k of paired “virtual
anchors” and aggregate the predicted states X̂j,ki|k and covariance
matrices Pj,ki|k , j ∈ S→i,k (by constructing block diagonal matrix)
to obtain X̂S→i,k|k− and PS→i,k|k− respectively then

X̂i∪S,k|k− = (X̂a†
i,k|k−1

, X̂†S→i,k|k− )†,

Pi∪S,k|k− =

(
Pa

i,k|k−1
0

0 PS→i,k|k−

)
,

νi,k = zi,k − hi,k(X̂i∪S,k|k− ),

Hi,k =
∂hi,k

∂Xi∪S,k

∣∣∣∣
Xi∪S,k=X̂

i∪S,k|k−

,

Si,k = Hi,kPi∪S,k|k−1H
†
i,k + Ri,k,

Ki,k = Pi∪S,k|k−H
†
i,kS

−1
i,k ,

X̂i∪S,k = X̂i∪S,k|k− + Ki,kνi,k,

Pi∪S,k = (I−Ki,kHi,k)Pi∪S,k|k− ,

X̂i,k = [X̂i∪S,k]1:4, Pi,k = [Pi∪S,k]1:4,1:4.

4: Belief Encapsulation and Broadcast: Encapsulate the fused belief
{X̂i,k,Pi,k} and its timestamp ti,k in a CAM and broadcast.

approach called density truncation. In this method, the EKF
posterior density is truncated at the lane boundaries considered
as state constraints. It can be done either analytically [18] or
making numerical approximations [9]. Following by the latter
approach (due to analytic tractability in our context), we first
draw samples from the EKF posterior density. Then samples
outside a drivable area are removed. Finally, the constrained
density (still assumed Gaussian) is constructed based on the
valid samples on the occupied lane, as illustrated in Fig. 3.
This truncated density is used to calculate the filter output and
reinjected into the next filter iteration. Note that this technique
is not entirely appropriate when vehicle changes lanes and the
new lane has not been updated yet shortly after the transition.
In other words, the error may increase during the short period.

IV. PERFORMANCE EVALUATION

A. Simulation Scenarios

In our MATLAB-based evaluations, we model a horizontal
two-lane highway, where 7 ITS-G5 connected vehicles en-
dowed with IR-UWB ranging capabilities are driving steadily
in a common direction at the average speed of 110 km/h (i.e.,
about 30 m/s) for 60 seconds, as shown in Fig. 4. In this
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Fig. 4. Evaluated VANET and related attributes in highway scenario.

TABLE I
MAIN SIMULATION PARAMETERS

Parameter Value

Memory level α 0.95
Along-track acceleration noise (1σ) 1 [m/s2]
Cross-track acceleration noise (1σ) 0.1 [m/s2]
Sampling period ∆T 0.1 [s]
Process noises (prediction) 2 [m/s2]
GNSS position noises (1σ) 3.6 [m] (SPSa) [19]
GNSS refresh rate 10 [Hz]
CAM rate 10 [Hz] (critical)
IR-UWB ranging rate 5 [Hz] (hypothesis)
IR-UWB ranging noise (1σ) 0.2 [m]
Gyroscope bandwidth 50 [Hz] [17]
Gyroscope signal noise at 50-Hz bandwidth (1σ) 0.1 [deg/s] [17]
Integrated time span (angle random walk) 0.1 [s]
Lane width 3.5 [m]

a Standard Positioning Service.

scenario, along-track and cross-track directions coincide with
x- and y-axes respectively. The main simulation parameters
are summarized in Table I.

B. Simulation Results

Figure 5 compares the errors along x- and y-axes for
different fusion strategies by means of empirical Cumulative
Distribution Functions (CDFs). Regarding x-axis location er-
rors on Fig. 5(a), as expected, using the IMU or LCs has
no or only little impact on the along-track positioning error.
Specifically, GNSS, GNSS+IMU, and GNSS+LC schemes
yield comparable error levels. Besides, GNSS+UWB+IMU,
GNSS+UWB+LC, and all-in-one (GNSS+UWB+IMU+LC)
schemes surprisingly suffer from slight accuracy degrada-
tion in comparison with GNSS+UWB. This observation can

Fig. 5. Empirical CDF of x-axis (along-track/left) and y-axis (cross-
track/right) errors for different fusion schemes.
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be explained by considering the effect of y-axis errors on
Fig. 5(b). More particularly, due to large y-axis errors within
the GNSS+UWB scheme, i.e., 0.35 m and 0.94 m of median
and worst-case (WC) (defined for a CDF of 90%) errors
respectively, an “ego” vehicle may suffer from singular GDoP.
In this case, there exist several neighbors whose relative
vectors from an “ego” vehicle are nearly aligned with the road.
Accordingly, these misplaced anchors accidentally contribute
to improve performance on the along-track axis, whereas they
tend to increase the error along the cross-track direction (See
again Section III-A or Fig. 2). Fig. 5(a) also reveals that the
all-in-one solution is slightly worse than GNSS+UWB+IMU
in the large error region. Because the latter is already rather
accurate along both x- and y-axes, the density truncation may
slightly alter the posterior and be counterproductive.

The performance along the critical y-axis is summarized
in Fig. 5(b). As expected, IMU-based heading measurement
and LC integration both contribute to dramatically decrease
the error. It also confirms the limited impact of range-based
CLoc on the cross-track error in poor GDoP VANETs i.e.,



TABLE II
OVERALL PERFORMANCE COMPARISON OF DIFFERENT FUSION SCHEMES

Fusion scheme
x-axis (along-track) error y-axis (cross-track) error localization error

Med. [m] WC [m] CDF(0.2 m) Gainb Med. [m] WC [m] CDF(0.2 m) Gaina Med. [m] WC [m] Gaina

GNSS 0.68 1.65 16% – 0.61 1.55 18% – 1.11 2.09 –
GNSS+IMU 0.68 1.65 16% 0% 0.23 0.56 44% 62.3% 0.77 1.68 30.6%
GNSS+LC 0.67 1.63 16% 1.5% 0.22 0.53 46% 63.9% 0.76 1.66 31.5%

GNSS+UWB 0.12 0.28 73% 82.4% 0.35 0.94 31% 42.6% 0.40 0.96 64.0%
GNSS+UWB+IMU 0.16 0.40 61% 76.5% 0.17 0.43 58% 72.1% 0.28 0.51 74.8%
GNSS+UWB+LC 0.13 0.37 65% 80.9% 0.23 0.56 44% 62.3% 0.33 0.61 70.3%

All-in-one 0.16 0.43 61% 76.5% 0.19 0.44 52% 68.9% 0.28 0.56 74.8%
a Relative gain w.r.t. standalone GNSS solution in median error (i.e., CDF = 50%).

with a relative drop by only 42.6% in terms of median error
(compared to GNSS) versus 62.3% and 63.9% with non-CLoc
schemes such as GNSS+IMU and GNSS+LC respectively. The
GNSS+UWB+IMU scheme provides better y-axis accuracy
than GNSS+IMU (with relative decreases of 62.3% and 72.1%
in terms of median errors respectively) due to the cooperation
with several neighbors on the different lanes. The integration
of IMU and LC yields comparable accuracy levels when con-
sidered in non-CLoc schemes (with relative drops by 62.3%
and 63.9% in terms of median error respectively) whereas IMU
outperforms LC within CLoc schemes (with relative drops
by 72.1% and 62.3% respectively). The first observation is
mainly due to the settings e.g., the gyroscope signal noise,
the integrated timespan, the lane width, etc. For the second
remark, the cross-track error in CLoc is partly improved by
some neighbors on other lanes as aforementioned. Thus, the
density truncation becomes slightly less effective. Note that
the all-in-one option remains still slightly less accurate than
GNSS+UWB+IMU in terms of y-axis error.

Finally, Fig. 6 compares the performance of different
schemes in terms of 2-D localization (distance) error and
confirms the significant accuracy gains offered by the IMU
and the LC information. The overall performance comparison
is also summarized in Table II for critical error regimes.

V. CONCLUSION AND FUTURE WORK

We studied the problem of range-based CLoc in VANETs
in the presence of poor cross-track GDoP caused by con-
strained vehicular mobility. Simulation results clearly indicate
that cross-track positioning errors cannot be fully mitigated
through conventional range-based cooperation. We solve this
problem by additionally integrating the vehicle’s heading
information issued at IMUs or contextual information such
as lane occupancy and boundaries. The proposed EKF-based
data fusion framework is shown to remove unbounded noise
(at gyroscopes) and can incorporate inequality constraints onto
posterior densities to achieve robust and accurate location esti-
mation. Future works will investigate the case of GNSS-denied
environments and road side units. Experimental validations
should also be conducted based on real hardware platforms.
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