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ABSTRACT

We address the problem of performing optimum spatio-
temporal processing when using adaptive antenna arrays at
base stations for multiuser downlink transmission, assuming
the knowledge of the channel related to each user. This as-
sumption typically holds in the context of time division du-
plex (TDD), time division multiple access (TDMA) based mo-
bile communication systems. For frequency division duplex
(FDD) based systems that assumption is still valid if the base
station is provided with feedback from each mobile about the
downlink channel. We consider the Spatial Division Multi-
ple Access (SDMA) strategy for using antenna arrays to gain
system capacity. In that case the interfering users are located
in the same cell and communicate with the same base station.
The base station performs transmission throughm channels
resulting from an array of antennas and/or oversampling of the
transmitted signals, towardsd co-channel users. The goal is
designing them � d transmission FIR filters at the base sta-
tion in order to maximize the minimum Matched Filter Bound
(MFB) among thed users.
We address Zero-Forcing (ZF), Minimum Mean Squared Error
(MMSE) and other approaches to solve that problem and we
provide the related solutions, under specified assumptions and
constraints concerning transmitter and receiver complexity.

1. INTRODUCTION

The use of adaptive antenna arrays at base stations can increase
the capacity of mobile radio networks by an improved spec-
trum efficiency, in the uplink as well as in the downlink.
The problem is performing optimum spatio-temporal process-
ing when using adaptive antenna arrays at base stations for
multiuser downlink transmission, in the context of time di-
vision duplex (TDD), time division multiple access (TDMA)
based mobile communication systems.
Note that in TDD based systems the uplink and the downlink
channels can be considered to be practically the same, assum-
ing the mobile velocity low enough and the receiver and trans-
mitter appropriately calibrated. In such circumstances since
the channel is known (or estimated) from the uplink, efficient
spatio-temporal processing can be performed at the base sta-
tion during transmission as well as during reception.
On the contrary the lack of channel knowledge represents a
strong limit inherent to frequency division duplex (FDD) based
systems. Indeed the base station has no direct knowledge of
the downlink channel, since it can not be directly observed and
therefore estimated. A solution to that problem consists in pro-
viding the base station with a feedback from the mobile station
about the downlink channel. Obviously such solution involves
a reduction in spectral efficiency. On the other hand, if such
feedback is not provided, the downlink channel characteriza-
tion can only be based on the estimates of those parameters

related to the uplink channel, which are relatively frequency
independent and whose changing rate is slow with respect to
the frame duration. Actually in FDD based mobile communi-
cation systems, in the absence of feedback, only the downlink
channel covariance matrix can be estimated, and not the chan-
nel itself. In addition even a robust and reliable estimation of
the channel covariance matrix represents a non trivial issue.
In spite of that complication, solutions to perform optimum
transmit array processing have been previously proposed only
for FDD based systems [2]–[9]. Moreover, in those solutions
only purely spatial filtering (i.e., beamforming) has been con-
sidered. At present we are not aware of any publication con-
sidering spatio-temporal array processing for FDD and TDD
based systems for downlink transmission.
Here we deal with the problem of the Matched Filter Bound
(MFB) optimization assuming a TDD mobile communication
system operating with SDMA frequency reuse technique to
gain system capacity. Then the interfering users are located
in the same cell while the interference coming from other cells
is neglected. The maximization of the MFB leads to the mini-
mum probability of error for an optimal receiver.
We assumethat reciprocity between up-link and downlink chan-
nels holds, i.e., the uplink and the downlink channels are the
same. The base station performs transmission throughm chan-
nels resulting from an array of antennas and/or oversampling
of the transmitted signals, towardsd co-channel users. Each
one of all thed mobile receivers is assumed to have one an-
tenna and to sample at the symbol rate (i.e., no oversampling
is provided at the receivers). The goal is designing them� d

transmission FIR filters in order to maximize the minimum
MFB among thed users.

2. MFB OPTIMIZATION PROBLEM FORMULATION

In order to provide a consistent problem formulation we start
consideringa base station that performs oversampled (OS) pre-
filtering before transmitting with only one antenna towards a
generic mobile user where a single antenna signal gets sam-
pled at the symbol rate. Then referring to figure 1 we denote
a(k) the transmitted symbols,h(t) = w(t) ? c(t) the con-
tinuous time impulse response of the convolution between the
transmit pulse shape filterw(t) and the physical channelc(t),
andH(zr) the discrete-time transfer function corresponding
to h(t) sampled at rater=T whereT is the symbol period
(when no OS is performed we denotez1 = z). The receive
filter is included inc(t). We assumeH(zr) to be identified by
the base station on the uplink, the base station uses the same
pulse shape filterw(t) as the mobile receiver and the clocks
between transmitter and receiver are synchronized both at the
base station and the mobile. On this basis, we can formulate
the problem for all thed users regardless of the OS factorr,
also considering an array of antennas at the base station as fol-
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Figure 1: Oversampled signal transmission chain to one mo-
bile with one antenna at the base station

lows. Actually theith user discrete-time received signal, for
i = 1 : : : ; d, is

yi(k) = H
T

i (q)
dX

j=1

Fj(q)aj(k) + vi(k) (1)

where theaj(k) are the transmitted symbols intended for the
jth user,q�1 is the unit sample delay operator (i.e.,q

�1
yi(k) =

yi(k�1)),HT

i (z) is the channel transfer function between the
base station and theith user,Fj(z) is the spatio-temporal fil-
ter for the transmitted symbolsaj(k), andvi(k) is the additive
noise at theith receiver. The superscriptT denotes transpose.
Note thatFj(z) is am � 1 column vector andHT

i (z) is a
1�m row vector. Note thatHi(z) is them�1 channel in the
uplink from theith user to them base station channels.
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Figure 2: Transmission filters and channels ford users

2.1. Frequency domain problem formulation

The frequency domain MFB definition for theith user, consid-
ering interferers as Gaussian noise, is

MFBi =
1

2�j

I
�
2
aG

y

ii
(z)Gii(z)

�2a

P
j 6=i

Gji(z)G
y

ji
(z) + �2vi

dz

z
(2)

whereGji(z) = H
T

i (z)Fj(z), �2a = Efjai(k)j2g, for i =
1; : : : ; d, �2vi is the variance of the additive noisevi(k), as-
sumed temporally and spatially white hereafter, and, in gen-
eral,Hy(z) = H

H(1=z�). The superscriptsH and� denote
Hermitian transpose and conjugate respectively. The symbols
are assumed i.i.d. and the symbol constellation is assumed cir-
cular (for a real constellation, the complex signals should be
split into in phase and in quadrature components).
The cost function is given by

max
fFj (z)g

min
i

fMFBig (3)

2.2. Burst processing time domain problem formulation

Consider theith user I/O transmission chain (see Fig. 2) re-
gardless of the contributions intended for the other users. The
channelhTi (t) and the filterf

i
(t) are assumed to be FIR fil-

ters with durationNiT andLT respectively (approximately),
whereT is the symbol period.

In the discrete-time representation we have

xi(k) =
P

L�1

l=0
f
i
(l)ai(k � l) = F iAi; L(k)

yi(k) =
P

Ni�1

n=0 hTi (n)xi(k� n) + vi(k)

=Ht

iXi; Ni (k) + vi(k)

Ht

i = [hTi (Ni � 1) : : : hTi (0)]

F i = [f
i
(L� 1) : : : f

i
(0)]

Xi; Ni(k) = [xHi (k�Ni + 1) : : : xHi (k)]
H

Ai; L(k) = [aHi (k � L+ 1) : : : aHi (k)]
H

(4)

where superscriptt denotes transposition of the blocks in a
block matrix. If we considerM consecutive samples

Yi; M(k) = TM (Ht

i)TM+Ni�1(F i)Ai; M+Ni+L�2(k)

+Vi; M (k)

whereYi; M(k) = [yHi (k�M+1) : : : yHi (k)]H and similarly
for Vi; M (k). TM (G) is in general a block Toeplitz matrix
with M block rows and[G 0p�q(M�1)] as first block row,
whereG is a matrix withp� q block entries.
Then, introducing also the contributions of all the other co-
channel users, for theith user we have

Yi; M (k) =
dX

j=1

TM (Ht

i)TM+Ni�1(F j)Aj;M+Ni+L�2(k)

+Vi; M (k)
(5)

and in the corresponding burst covariance matrix

R
(M)

i
=

dX
j=1

R
(M)

ji
+ �

2
vi
IM

we can distinguish the following contributions

R
(M)

ii
= �

2
aTM (Ht

i)TM+Ni�1(F i)T H

M+Ni�1
(F i)T H

M (Ht

i)

R
(M)

ji
= �

2
aTM (Ht

i)TM+Ni�1(F j)T H

M+Ni�1
(F j)T H

M (Ht

i)
(6)

whereR(M)

ii
andR(M)

ji
are the contributions of theith andjth

transmitted signals respectively at theith receiver, forj 6= i.
Note that

P
j 6=iR

(M)

ji
represents the burst covariance matrix

of the whole Inter-User-Interference (IUI) at theith receiver.
Then the burst processing MFB is defined as

MFB(M)

i
=

1

M
trfR(M)

ii
[
X
j 6=i

R
(M)

ji
+ �

2
vi
IM ]�1g (7)

where trf�g denotes the trace operator. Remark that asM !
1, MFB(M)

i
! MFBi in (2).

Similarly to the frequency domain formulation (3) the opti-
mization criterion results in

max
fF jg

min
i

fMFB(M)

i
g (8)

2.3. Further assumptions

Both problem formulations (3), (8) are too complicated to al-
low any analytical approach to fined the optimum solution.
Nevertheless analytical solutions can be found under the fol-
lowing assumption that the optimal solution corresponds to a
low Interference-to-Noise Ratio (INR) for all the users, i.e., for
all thei’s we have

INRi =
�
2
a

2�j�2vi

X
j 6=i

I
G
y

ji
(z)Gji(z)

dz

z
� 1 (9)



In that case, it is easy to see that maximizing the MFB is ap-
proximately equivalent to maximizing the Signal-to-Interference-
plus-Noise Ratio (SINR) and vice versa. Hence, referring to
the burst processing problem formulation, the SINR definition
for theith user is

SINRi =
trfR(M)

ii
g

trf
P

j 6=iR
(M)

ji
+ �2viIMg

(10)

By introducingF t

i = [fT
i
(L�1) : : : fT

i
(0)], it can be written

as

SINRi =
�
2
aF

t

iRiF
tH

i

�2a

P
j 6=i F

t

jRiF
tH

j + �2vi

(11)

whereRi is a properly defined covariance matrix related to
the channelHt

i, whose derivation is straightforward. In the
continuous-processingcase, we haveR i = TL(Hi)T H

L (Hi),
whereH i = [h(Ni � 1) : : : h(0)].
According to the definition (11) we denoteSINRi = 
i in the
sequel. Then letF t

i =
p
piU

t

i, whereU t

i is a vector with
unit norm (e.g.,kUt

ik2 = 1 orU t

iRiU
tH

i = 1), the vector of
the inverse SINR’s
�1 = [
�11 : : : 


�1
d

]T and the vector of
the transmit powersp = [p1; : : : ; pd]

T . In addition we need
to constrain the overall power transmitted by the base station
to be less that or equal topmax. Given that, the optimization
criterion is

min
p; fU ig

k
�1k1 s.t. g
T
p � pmax (12)

where1 g = [kU t

1k22 : : : kU t

dk22]T . In the rest of this paper
we shall consider the SINR optimization criterion (12), regard-
less of its relationship to the MFB criterion in (3). In that case
�
2
vi

can account for the variance of the inter-cell interference
also. Then we define the normalized power delivered by the
jth transmission filterF j to theith user as

cji = U
t

jRiU
tH

j

For anyi it results



�1
i picii =

X
j 6=i

pjcji + �i (13)

where we introduced�i = �
2
vi
=�

2
a for all the i’s. In order

to account for all the users we introduce the matrixDc =
diag(c11; : : : ; cdd), the matrixCT defined as

[CT ]ij =

�
cji for j 6= i

0 for j = i

the vector� = [�1 : : : �d]
T and the matrixP = diag(p).

Then we have the following equation



�1 = D

�1
c P

�1(CT
p+ �) : (14)

So the criterion (12) generally leads to a set of coupled prob-
lems which cannot be solved analytically. It can be shown
however that the optimum (12) leads to the same
 for all the
users. Indeed if some
i’s are not the same, then we can scale
thefpig to improve
min (refer to [1] for a detailed proof).

3. MFB OPTIMIZATION PROBLEM SOLUTIONS

Generally the optimization problem cannot be solved analyt-
ically for bothp andfU t

ig at the same time. Nevertheless
under certain assumptions the optimization can be carried out
in a decoupled way forp andfU t

ig allowing analytical ap-
proaches to find the optimum.

1Actually, the proper norm for theU t

i
’s in g isUt

i
WU tH

i
, where

W depends on the pulse shape filter, but we shall ignore this issue in
this paper.

3.1. Normalized transmit filters optimization for m > d

3.1.1. Zero-Forcing (ZF) solution

In the noiseless case or assuming the assumption (9) holds, the
MFB optimization becomes

max
kUt

ik2=1
fU t

iRiU
tH

i g s.t.
X
j 6=i

pjU
t

jRiU
tH

j = 0 (15)

Note that the condition
P

j 6=i pjU
tH

j RiU
t

j = 0 is equivalent

to a set of Zero-Forcing (ZF) conditions in the formUt

iRjU
tH

i =
0, for j 6= i. Then the optimization problem reduces to

max
kU t

ik2=1

kU t

iTL(Hi)k22 s.t.Ut

iTL(Hj) = 0 for j 6= i

(16)
DefiningBi = [TL(Hj)]j 6=i, which is a block Toeplitz ma-
trix accounting for all the channels but the channelH i, the
solution of the problem (16) isUtH

i = Vmax(P
?

Bi
RiP

?

Bi
).

In order for a non trivial solution to this problem to exist, the
constraints should not fix all the available degrees of freedom
and we require

L >

P
j 6=iNj � (d� 1)

m� (d� 1)
(17)

The constraints present in the optimization problem (16) lead
to perfect IUI cancelation. This is obtained at the expense of
increased ISI at the receiver. In order to consider the ISI as
well as the IUI rejection in the optimization problem we rely
on the ZF pre-equalization conditions.

3.1.2. ZF conditions for IUI and ISI rejection

In order to ensure ZF conditions for IUI and ISI for theith user
the set of constraints to be considered is

U t

i[TL(H1) : : :TL(Hd)]

= [0 : : : 0 : : :

ith userz }| {
j 0 : : : 0� 0 : : : 0 j : : : 0 : : : 0]

(18)

where� 6= 0 is an arbitrary constant to be fixed in order to
satisfy the constraint on the norm ofU t

i. To be able to sat-
isfy all the constraints (18) we need to choose the length of
each filterU i, L, such that the previous system is exactly or
underdetermined. Hence

L � L =

�
N � d� 1

m� d

�
(19)

whereN =
P

d

j=1Nj.
Then assumingL � L we can consider two limiting set of
constraints:

� IUI rejection, no ISI rejection, as in section 3.1.1.

� IUI and ISI rejection: in this case the set of constraints
is (18), i.e., we haveNi + L� 1 more constraints.

The goal is to maximize the MFB which, in absence of IUI
(equal to zero due to ZF), is proportional to the energy in the
prefilter-channel cascade. This MFB decreases if all the en-
ergy is constrained in one tap.
Hence if no ISI rejection is provided the best performance will
be achieved, for a specifiedL, due to the larger number of de-
grees of freedom. However, in that case theith receiver needs
to equalize a delay spread of up toNi+L�1 symbol periods,
corresponding to the whole delay spread due to the convolu-
tion between the channel and the transmission filter. We may
prefer that the introduction of the prefilter is done without the
consequential increase in delay spread. Or we may want to



limit the delay spread seen by the mobile to limit the complex-
ity for the equalization task in the mobile. In those cases ad-
ditional constraints in order to obtain at least partial ISI rejec-
tion, i.e., limited delay spread, can be added, leading to inter-
mediate solutions between the previous two limiting cases. In
general to have complete IUI and partial ISI rejection we add
(Ni + L� 1) � LISI constraints (coefficients of the prefilter-
channel cascade being zero), with1 � L ISI � (Ni + L� 1),
whereLISI corresponds to the residual delay spread, i.e., resid-
ual ISI. Actually that means to trade between performance and
receiver complexity. This optimization problem has to be car-
ried out for all possible positions of the nonzero part of length
LISI of the prefilter-channel cascade, and the best position
should be chosen. Finally, note that asL increases the MFB
increases as well. So, we shall choose the actual length of the
transmission filtersL according to a trade-off between perfor-
mance and transmitter complexity.

3.2. Normalized transmit filters optimization for m � d

Whenm � d, IUI and ISI cancelation with FIR filters cannot
be obtained. Also whenm � d we cannot specify a priori any
constraint on the length of the transmission filters for the IUI
rejection. However, solutions are possible to get at least a par-
tial IUI rejection in those circumstances also. Unfortunately,
even if the assumption (9) holds, analytical approaches are not
possible in the presence of noise whenm � d. Direct MFB
optimization will again be analytically intractable in this case.
Then we propose to consider the Signal-to-Interference Ratio
(SIR) instead. The SIR for theith user is defined as

SIRi =
F t

iRiF
tH

iP
d

j=1; j 6=i
F t

jRiF
tH

j

(20)

The equation (14) in the absence of noise reduces to



�1 = D

�1
c P

�1
C

T
p (21)

where now
i = SIRi for any i. Considering the criterion
(12) and the definition (20) it is straightforward to see that the
optimum is achieved when all the inter-user-interference (IUI)
is zero so that
�1

i
= 0 for all i’s. Then, ifm > d the optimum

approach in the absence of noise would lead to the ZF solution
(16). Sincem � dwe shall considerother non-ZF approaches.
Note that since the optimum still involves
i = 
 for anyi, the
equation (21) reduces to



�1
p = A

T
p (22)

whereAT = D�1
c CT is a non-negative matrix. Moreoverp

has to be a non-negative vector and

�1 has to be non-negative

as well. On the basis of the following theorems ([10],[1])

Theorem 1
For a non-negative matrix, the eigenvalue of the largest norm
is positive, and its correspondingeigenvectorcan be chosen to
be non-negative.

Theorem 2
For a non-negative matrixAT , the non-negative eigenvector
correspondingto the eigenvalueof the largestnorm is positive.

Theorem 3
Given the matrixAT there exists only one solution to equation
(22).

we can say that for a given set of unit norm vectorsfU t

ig then
the optimum yields
�1 = �max(AT ) andp = Vmax(AT ).

Having an estimate ofp, we can optimizefU t

ig. Indeed the
optimization criterion is given by

min
fUt

ig

�max(A
T ) (23)

In order to simplify the problem formulation without loss of
generality, we considerU t

i ’s normalized such thatU t

iRiU
tH

i =
1, so thatDc = Id andAT = CT . Then the criterion (23)
becomes

min
fUt

ig

q
T
A

T
p s.t. U

t

iRiU
tH

i = 1 (24)

whereq = Vmax(A). The criterion (24) leads to a set of
d decoupled problems whose solution is given byU tH

i =
eiq

eH
i
Riei

, whereei = Vmax(Ri;
P

d

j 6=i qjRj) for any i.

The new set of vectorsfU t

ig can be used to re-optimize the
powersp according to (22).

3.2.1. kAT k1 minimization based solution

As sub-optimal approach or initialization we can use the fol-
lowing criterion

min
fUt

ig

kAT k1 s.t. U
t

iRiU
tH

i = 1 (25)

This approach has the advantage of optimizing the direction
vectorsfU t

ig independently from the powersp. In that sense
it is suitable to initialize an iterative procedure to find the global
optimum. Indeed it leads to a set ofd decoupled minimiza-
tion problems whose solution is given byU tH

i = eiq
eH
i
Riei

,

where, in this case,ei = Vmax(Ri;
P

d

j=1Rj) for anyi.
Note that the criterion (25) correspondsto minimizing the power
delivered to the undesired users while maximizing the power
delivered to the desired user, by each each filterF t

i.
A similar criterion was already proposed in [4, 5] to optimize
the weight vectors for transmit beamforming in a non-SDMA
context.

3.2.2. �max(A
T ) minimization based algorithm

According to the previous arguments, we propose the iterative
procedure summarized in table 3.2.2 to find the global opti-
mum in the absence of noise.

Table 1:�max(A
T ) minimization based algorithm

(i) Initialize Ut

i using (25) fori = 1; : : : ; d;
(ii) Computeq = Vmax(A);
(iii) Computeei = Vmax(Ri;

P
j 6=i

qjRj);
(iv) ComputeUtH

i = eiq
eH
i
Riei

;

(v) Go back to (ii) until convergence;
(vi) Computep = Vmax(AT );
(vi) ComputeF t

i =
p
piU

t

i.

3.3. ZF conditions for ISI rejection

The problem of the ISI rejection remains the same as in the
case of the ZF solution form > d, i.e., we can add constraints
in order to limit the whole delay spread as it was previously
explained. In general, to reject ISI at theith mobile receiver
we need to designU t

i such that

Li � L
i
=

�
Ni � 2

m� 1

�



so that perfect ISI rejection (pre-equalization) for theith user
is achieved when

U
t

iTLi(Hi) = [0 : : : 0� 0 : : : 0] (26)

where� has to be fixed in order to satisfy the constraint on the
norm ofUt

i. That set of constraints can be added to (24), (25).
For a partial ISI rejection the same arguments in section 3.1.2
hold.
However we shall choseLi large enough to allow also a par-
tial IUI rejection at least. In case we want to design all the
transmission filters with the same lengthL for all the users, to
obtain perfect ISI rejection we need

L �
�
Nmax � 2

m� 1

�

whereNmax = maxifNig. Once again, the actual length of
the transmission filterL has to be chosen according to a trade-
off between performance and transmitter complexity.

3.4. Minimum-mean-square-error (MMSE) solution

The MMSE criterion for theith user is given by

min
fF jg

max
i

Ekyi(k)� ai(k � n)k22 (27)

wheren is a properly chosen delay to minimize the MMSE
and

yi(k) =
dX

j=1

F
t

jTL(Hi)Aj;Ni+L�1(k) + vi(k)

Then the criterion (27) can be written as

min
pj ; kUjk2=1

max
i

fEkpiU t

iTL(Hi)Ai;Ni+L�1(k)� ai(k � n)k22
+�2a

P
j 6=i pjU

t

jTL(Hi)T H

L (Hi)U
tH

j + �
2
vi
g

(28)
where the first term corresponds to the ISI and the second one
to the IUI. Hence it is straightforward to see that the MMSE
corresponds to ZF on ISI and IUI when ZF conditions (18)
can be applied. Otherwise, MMSE leads to a set of coupled
problems which in general cannot be solved analytically.
Finally we point out that MMSE problem has been formulated
for purely spatial processing in [2] but no solution has been
provided in that paper.

3.5. Power assignment optimization

Assuming a given setfU ig, since the optimum involves all
the
i’s to be the same, the expression (14) can be arranged
in order to include the constraint on the transmitted power as
follows

Q~p = 

�1
S~p (29)

where~p = [pT 1]T ,

Q =

�
AT �

01�d 0

�
S =

�
Id 0d�1

gT �pmax

�

where� = D�1
c � andgT p = pmax. Then similarly to [1]

sinceS is invertible we have

E~p = 

�1~p; E = S�1Q =

2
4 AT �

gTAT

pmax

gT�
pmax

3
5 (30)

which is a non-negative matrix. Relying on theorems 1–3 we
can say that
�1 = �max(E

T ) and~p = Vmax(E). Further,
note that we can always re-scale~p in order to make its last
element equal to one.

3.6. Implementation issues

The presence of the noise makes the optimization of the filters
fU t

ig involve a set of coupled problems that does not allow
any analytical approach to find a solution. Therefore, we sug-
gest to compute the vectorsfU t

ig applying ZF conditions (16)
or MMSE criterion (27) whenm > d, or using the algorithm
described in table 3.2.2 whenm � d. Then, givenfU t

ig opti-
mize the power assignment according to the criterion (30).
When the noise is present, since the base station cannot esti-
mate the noise variance�2vi at each receiver, unless such an
estimate is provided by the mobile, the vector� cannot be es-
timated. To remedy this drawback we shall properly define the
SNR at the receiver. A possible definition is given by

SNRi =
pi

�i
�max(Ri)

for anyi. In practice we need

min
i

fSNRig � SNRmin (31)

whereSNRmin is a value necessary for the mobile receiver
to work with an outage probability below a specified max-
imum. Assuming all the users using the same receiver the
worst case for theith user occurs whenpi = pmax while
�i = �max = k�k1. Therefore a sufficient condition to sat-
isfy the requirement (31) is given by setting

SNRmin =
pmax

�max

min
i

f�max(Ri)g (32)

GivenSNRmin andpmax, �max can be derived. Then setting
�i = �max for all thei’s the condition (31) is satisfied. Finally,
note that forpmax !1 the optimum solution is the one in the
absence of noise, for any�max > 0.

4. SIMULATIONS

The following simulation is provided to illustrate a practical
implementation of the proposed solutions. Here we consider
an SDMA scenario in the presence of three co-channel users
(d = 3) which receive signals transmitted from a base station.
The channelsH i (for i = 1; : : : d) are assumed known (or
estimated from the uplink) and they are characterized by four
paths for the first and the seconduser and six paths for the third
user respectively, resulting inN1 = N2 = 9 andN3 = 11
symbol periods.
For the first set of simulations the base station is equipped with
a four elements antenna array and it is assumed performing
oversampling by a factor two, so thatm = 8. In that case,
sincem > d ZF conditions (18) can be applied. By setting
the length of all the transmit filters equal toL = L = 6 sym-
bol periods we obtain the performances plotted in figure 3, in
terms of SINR at each receiver versus the minimum SNR.
For the second set of simulations the base station is equipped
with a two elements antenna array and it does not perform
oversampling, so thatm = 2. Then, sincem < d, ZF con-
ditions (18) cannot be applied and the algorithm described in
Table 3.2.2 is used instead. Figure 4 shows the performances
in terms of SINR at each receiver versus the minimum SNR, in
the presence of the same user scenario as above, having cho-
sen the length of the transmitted filters equal toL = 14 symbol
periods for all the users.
Note that increasingL better performances can be obtained
in both cases of ZF and non-ZF solutions, as it is shown in
figures 5 and 6, where we setL = 10 andL = 20 symbol
periods respectively.
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Figure 3: Optimum SINR vs. SNRmin, ZF solution for differ-
ent values ofLISI andL = 6
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Figure 4: Optimum SINR vs. SNRmin, non-ZF solution for
different values ofLISI andL = 14

5. CONCLUSIONS

We addressed the problem of the optimization of the MFB
with respect to the transmit filters at a base station performing
spatio-temporal processing. A general problem formulation
yielded the proper cost function to be minimized. We showed
that the ZF solution allows independent optimization of the
transmit filtersF i, for i = 1; : : : ; d, and under certain as-
sumptions it is optimal for the MFB maximization. We showed
that MMSE leads to the same solution as ZF conditions ap-
plied to both ISI and IUI, in those cases where ZF (conditions
(18) can be achieved. We proposed also a non-ZF solution for
those cases where ZF conditions (18)) cannot be applied. We
showed that when the number of users is greater than or equal
to the number of the channels available at the base station only
a partial IUI rejection can be achieved in general. An algo-
rithm was derived for such cases to optimize the MFB. Simu-
lations have shown the performances of both ZF and non-ZF
solutions for different values of the transmit filter length and
different introduced delay spreads due to the prefilter-channel
cascade.
The criteria and the algorithms proposed here can also be ap-
plied to perform only purely spatial processing. Although we
shall observe that purely spatial processing, i.e., beamforming,
is intrinsically sub-optimal since it requires a larger number of
array antennas to perform like spatio-temporal processing. For
instance, to achieve the ZF solution in the purely spatial case
we needm > d andm � N . Such conditions are hard to sat-
isfy in most applications (e.g., in the previous simulated sce-
nario with purely spatial processing, the ZF solution requires
m � 29).
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Figure 5: Optimum SINR vs. SNRmin, ZF solution for differ-
ent values ofLISI andL = 10
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Figure 6: Optimum SINR vs. SNRmin, non-ZF solution for
different values ofLISI andL = 20
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