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Abstract—Location-aided beam alignment has been proposed
recently as a potential approach for fast link establishment in
millimeter wave (mmWave) massive MIMO (mMIMO) commu-
nications. However, due to mobility and other imperfections in
the estimation process, the spatial information obtained at the
base station (BS) and the user (UE) is likely to be noisy, degrading
beam alignment performance. In this paper, we introduce a
robust beam alignment framework in order to exhibit resilience
with respect to this problem. We first recast beam alignment
as a decentralized coordination problem where BS and UE seek
coordination on the basis of correlated yet individual position
information. We formulate the optimum beam alignment solution
as the solution of a Bayesian team decision problem. We then
propose a suite of algorithms to approach optimality with reduced
complexity. The effectiveness of the robust beam alignment
procedure, compared with classical designs, is then verified on
simulation settings with varying location information accuracies.

I. INTRODUCTION

Millimeter wave communications are receiving significant
attention in 5G-related research, in the hope of unlocking the
capacity bottleneck existing at sub-6 GHz bands [1]. The use
of higher frequencies poses new implementation challenges, as
for example in terms of hardware constraints or architectural
features. Moreover, the propagation environment is adverse for
smaller wavelength signals: compared with lower bands char-
acteristics, diffraction tends to be lower while penetration or
blockage losses can be much greater [2]. Therefore, mmWave
signals experience a severe path loss which hinders the es-
tablishment of a reliable communication link and requires the
adoption of high-gain directional antennas.

On the upside, millimeter wavelengths allow to stack a
high number of antenna elements in a modest space [3],
thus making it possible to exploit the superior beamforming
performance stemming from mMIMO arrays [4].

Rather than adopting complex digital beamforming – which
might require unfeasible CSI-training in mMIMO settings [4]
– low cost mmWave architectures are suggested [5] where
beam design is selected from discrete beam sets and then im-
plemented in analog fashion. Another trend lies in the so-called
hybrid architectures which reduce the effective dimension of
the antenna space by concatenating a low-dimensional digital
precoder with an RF analog beamformer [6], [7]. In mMIMO
settings, all of these solutions require significant pilot and time
resources to search for the beam combinations at transmitter
and receiver which offer the best channel path, a problem
referred to as beam alignment in the literature [8].

One approach for reducing alignment overhead – without
compromising performance – has been proposed in [9]. It
consists in exploiting device location side information so as
to reduce the effective beam search space in the presence
of line of sight (LoS) propagation. Similar approaches are
found in [10], [11], where localization information has been
confirmed as a useful source of side information, capable of
assisting link establishment in mmWave communications.

In this paper, we consider important limitation factors
for location-aided beam alignment. First, user terminal and
infrastructure side equipment are unlikely to acquire location
information with the same degree of accuracy. Moreover, even
in the presence of LoS, practical propagation scenarios might
include significant reflected multipaths that could be exploited.

We propose a framework for utilizing location side-
information in a dual mMIMO setup while accounting for
unequal degrees of uncertainties on this information at the
BS and at the UE sides. Our contributions are multi-fold:
• Based on a probabilistic location information setting, we

formulate a robust (Bayesian style) beam pre-selection
problem. Because there are two devices (the BS and the
UE) involved in making a beam pre-selection decision,
we recast the problem as a decentralized team decision
framework. The strength of the proposed approach lies
in the fact that each device makes a beam pre-selection
that is weighed upon the quality of location information
it has at its disposal and simultaneously on the quality
level of location information expected at the other end.

• We propose a family of algorithms, exploring various
complexity-performance trade-off levels. We show how
the devices decide to keep or drop path directions as a
function of angle uncertainties (both locally and at the
other link end) and average path energy.

II. SYSTEM MODEL

A. Scenario

Consider the scenario in Fig. 1. A transmitter (TX) with
NTX � 1 antennas seeks to establish communication with a
single receiver (RX) with NRX � 1 antennas1. In order to
extract the best possible combined TX-RX beamforming gain,

1In the rest of this paper and for notation clarification only, we will assume
a downlink transmission, although all concepts and algorithms are readily
applicable to the uplink as well.



the TX and the RX respectively aim to select a precoding
vector g = [g1, . . . , gNTX

]T, and a receive-side combining
vector w = [w1, . . . , wNRX

]T from predefined codebooks. The
codebooks include MTX and MRX beamforming vectors – i.e.
beams – for the TX and the RX, respectively.

Optimal beam alignment consists in pilot-training every
combination of TX and RX beams (out of MTXMRX ) and
selecting the pair which exhibits the highest signal to noise
ratio. In the mMIMO regime, this requires prohibitive pilot,
power and time resources. As a result, a method for pruning
out unlikely beam combinations is desirable. To this end, we
assume that the TX (resp. the RX) pre-selects a subset of
DTX � MTX (resp. DRX � MRX ) beams for subsequent
pilot training. When the pre-selection phase is over, the
TX trains the pre-selected beams by sending pilots of each
one of the DTX beams, while the RX is allowed to make
SNR measurements over each of its DRX beams. Classically,
communications can then take place over one (or more) of
the pre-selected TX-RX beam combinations. In this paper, we
are interested in deriving beam subset pre-selection strategies
that do not require any active channel sounding but can be
carried out on the basis of long term statistical information
including location-dependent information for the TX and the
RX as introduced in [9]. In contrast with [9], we consider
potential reflector location information and, in particular, we
place the emphasis on robustness with respect to location
uncertainties in a high-mobility scenario. Models for channels,
long term location-dependent information, and corresponding
uncertainties are introduced in the following sections.

BS
UE

R1

R2

Fig. 1: Scenario example for a given realization with L = 3
channel paths.

B. Channel Model

Based on recently reported data regarding the specular
behavior of mmWave propagation channels [2], we model
the space-time channel with a limited number L of dominant
propagation paths, consisting of one LoS path and L − 1
reflected paths.

The power-normalized NRX ×NTX channel matrix H can
thus be expressed as the sum of L components or contribu-
tions [7]:

H =
√
NTXNRX

( L∑
`=1

α`aRX(θ`)a
H
TX(φ`)

)
(1)

where α` ∼ CN (0, σ2
` ) denotes the instantaneous random

complex gain for the `-th path, having an average power
σ2
` , ` = 1, . . . , L such as

∑
σ2
` = 1.

The variables φ` ∈ [0, π) and θ` ∈ [0, π) are the angles of
departure (AoDs) and arrival (AoAs) for each path `, where
one angle pair corresponds to the LoS direction while other
might account for the presence of strong reflectors (buildings,
hills) in the environment. The reflectors are denoted by Ri, i =
1, . . . , L− 1 in the rest of the paper.

The vectors aTX(φ`) ∈ CNTX×1 and aRX(θ`) ∈ CNRX×1

denote the antenna response at the TX and the RX, respec-
tively. We will consider the popular example of critically-
spaced uniform linear arrays (ULAs), so that ∀` = 1, . . . , L:

aTX(φ`)=
1√
NTX

[
1, e−iπ cosφ` , . . . , e−iπ(NTX−1) cosφ`

]T
(2)

aRX(θ`)=
1√
NRX

[
1, e−iπ cos θ` , . . . , e−iπ(NRX−1) cos θ`

]T
(3)

C. Beam Codebook

We define the transmit and receive beam codebooks as:

VTX = {g1, . . . ,gMTX
}, VRX = {w1, . . . ,wMRX

}. (4)

For ULAs, a suitable design for the fixed beam vectors in the
codebook consists in selecting steering vectors over a discrete
grid of angles [5], [8], [10]:

gp = aTX(φ̄p), p ∈ {1, . . . ,MTX} (5)

wq = aRX(θ̄q), q ∈ {1, . . . ,MRX} (6)

where the angles φ̄p and θ̄q can be chosen according to
different strategies, including regular and non regular sampling
of the [0, π] range (see details in Section V-A).

III. INFORMATION MODEL

We are interested in the exploitation of long-term statistical
(including location-dependent) information, to perform beam
pre-selection (i.e choosing DTX and DRX ). In what follows
we introduce the information model emphasizing the decen-
tralized nature of information available at TX and RX sides.

A. Definition of the Model

In order to establish a reference case, we consider the setting
where the available information lets us exactly characterize the
average rate (i.e. knowing the SNR) that would be obtained
under any choice of TX and RX beams. To this end, we define
the average beam gain matrix.

Definition 1. The average beam gain matrix G ∈
RMRX×MTX contains the power level associated with each



combined choice of transmit-receive beam pair after averaging
over small scale fading. It is defined as:

Gq,p = Eα

[
|wH

q Hgp|2
]

(7)

where the expectation is carried out over the channel coeffi-
cients α = [α1, α2, . . . , αL] and with Gq,p denoting the (q, p)-
element of G.

Definition 2. The position matrix P ∈ R2×(L+1) contains the
two-dimensional location coordinates pu = [pux

puy
]T for

node u, where u indifferently refers to either the TX (or BS),
the RX (or UE) or one of the reflectors Ri, i = 1, . . . , L− 1.
It is defined as:

P =
[
pTX pR1

. . . pRL−1
pRX

]
(8)

The following lemma characterizes the gain matrix G as
a function of the position matrix P in the configuration
considered above.

Lemma 1. We can write the average beam gain matrix as
follows:

Gq,p(P) =

L∑
`=1

σ2
` |LRX(∆`,q)|2|LTX(∆`,p)|2 (9)

where we remind the reader that σ2
` denotes the variance of

the channel coefficients α` and we have defined:

LTX(∆`,p) =
1√
NTX

sin((π/2)NTX∆`,p)

sin((π/2)∆`,p)
(10)

LRX(∆`,q) =
1√
NRX

sin((π/2)NRX∆`,q)

sin((π/2)∆`,q)
(11)

and
∆`,p = (cos(φ̄p)− cos(φ`)) (12)

∆`,q = (cos(θ`)− cos(θ̄q)) (13)

with the angles φ` and θ`, ` = 1, . . . , L obtained from the
position matrix P using simple algebra (the detailed steps are
relegated to the extended version [12] due to limited space).

B. Distributed Noisy Information Model

In a realistic setting where both BS and UE separately
acquire location information via a process of GNSS-based
estimation, angle of arrival estimation (for reflector position
estimation) and latency-prone BS-UE feedback, a distributed
noisy position information model ensues whereby positioning
accuracy is device dependent, i.e. different at BS and UE.

Noisy information model at the TX: The noisy position
matrix P̂(TX) available at the TX is modeled as:

P̂(TX) = P + E(TX) (14)

where E(TX) denotes the following matrix:

E(TX) =
[
e
(TX)
TX e

(TX)
R1

. . . e
(TX)
RL−1

e
(TX)
RX

]
(15)

containing the random position estimation error made by
TX on pu, with an arbitrary, yet known, probability density
function f

e
(TX)
u

.

Noisy information model at RX: Akin to the TX side, the
receiver obtains the estimate P̂(RX), where:

P̂(RX) = P + E(RX) (16)

where E(RX) is defined as E(TX) in (15), but containing the
random position estimation error made by RX on pu, with a
known distribution f

e
(RX)
u

.

Note that we assume e
(TX)
TX = e

(RX)
TX = 0, which indicates

that the position information of the static BS is known per-
fectly by all.

C. Shared Information
In what follows the number of dominant path L, and their

average path powers σ2
l , l = 1, . . . , L are assumed to be known

by both BS and UE based on prior averaged measurements.
Similarly, statistical distributions f

e
(TX)
U

, f
e
(RX)
U

are supposed
to be quasi-static and as such are supposed to be available (or
estimated) to both BS and UE. In other words, the BS (resp.
the UE) is aware of the quality for position estimates which
it and the UE (resp. BS) have at their disposal. For instance,
typically, the BS might know less about the UE location than
the UE itself, e.g. due to latency in communicating UE position
to the BS in a highly mobile scenario or due to the use of
different position technologies (GPS at the UE, LTE TDOA
localization at the BS). In contrast, the BS might have greater
capabilities to estimate the position of the reflectors accurately
compared to the UE, due to a larger number of antennas at
the BS or due to interactions with multiple UEs. Both the BS
and UE are aware of this situation and might wish to exploit
it for greater coordination performance. The central question
of this paper is “how?”.

IV. COORDINATED BEAM ALIGNMENT METHODS

In this section, we present strategies for coordinated beam
alignment which aim at restoring robustness in the beam
pre-selection phase in the face of an arbitrary amount of
uncertainty (noise) as shown in equations (14) and (16).

Let DTX (resp. DRX ) be the set of DTX = |DTX | (resp.
DRX = |DRX |) pre-selected beams at the TX (resp. the RX).

To evaluate the chosen beams, we will use the following
figure of merit E[R(DTX ,DRX ,P)], where:

R(DTX ,DRX ,P) = max
p∈DTX ,q∈DRX

log2

(
1 +

Gq,p(P)

N0

)
(17)

where N0 is the thermal noise power2 and the average gain is
obtained from the position matrix P as shown in Lemma 1.

A. Beam Alignment under Perfect Information
Before introducing the distributed approaches to this prob-

lem, we focus on the idealized benchmark where both the TX
and the RX obtain the perfect position matrix P. The beam
sets (Dup

TX ,D
up
RX) that maximize the transmission rate are then

found as follows:

(Dup
TX ,D

up
RX) = argmax

DTX⊂VTX ,DRX⊂VRX

R
(
DTX ,DRX ,P

)
. (18)

2Assume for simplification an interference-free network. Refer to the
extended version [12] for more details concerning the multi-user case.



B. Optimal Bayesian Beam Alignment
Let us now consider the core of this work whereby the

TX and the RX must make beam pre-selection decisions in
a decentralized manner, based on their respective location
information in (14) and (16). Interestingly, this problem can
be recast as a so-called team decision theoretic problem [13]
where team members (here TX and RX) seek to coordinate
their actions so as to maximize overall system performance,
while not being able to accurately predict each other deci-
sion due to noisy observations. For instance in Fig. 1, with
DTX = DRX = 2, the TX might decide to beam in the
direction of the RX and Reflector 1, while the RX might decide
to beam in the direction of the TX but also Reflector 2 (for
example, if its information on the position of Reflector 1 is
not accurate enough). As a result, a strong mismatch would
be obtained for one of the pre-selected beam pairs. The goal
of the robust decentralized algorithm is hence to avoid such
inefficient behavior.

Beam pre-selection at the TX is equivalent to a mapping:

dTX : R2×(L+1) → VTX
P̂(TX) 7→ dTX(P̂(TX))

(19)

while at the RX, we have:

dRX : R2×(L+1) → VRX
P̂(RX) 7→ dRX(P̂(RX))

(20)

Let S denote the space containing all possible choices of pairs
of such functions. The optimally-robust team decision strategy
(d∗TX , d

∗
RX) ∈ S maximizing the expected rate is as follows:

(d∗TX , d
∗
RX) =

argmax
(dTX ,dRX)∈S

E
[
R
(
dTX(P̂(TX)), dRX(P̂(RX)),P

)]
(21)

where the expectation operator is carried out over the joint
probability density function fP,P̂(TX),P̂(RX) .

The optimization in (21) is a stochastic functional optimiza-
tion problem which is notoriously difficult to solve [14]. In
order to circumvent this problem, we now examine strategies
offering trade-offs between the optimal robustness of (21) and
the implementation complexity.

C. Naive Beam Alignment
A simple, yet naive, implementation of decentralized coor-

dination mechanisms consists in having each side making its
decision by treating (mistaking) local information as perfect
and global. Thus, TX and RX solve for (18), where the TX
naively assumes P̂TX = P and the RX considers P̂RX = P.
We denote the resulting mappings as (dnaive

TX , dnaive
RX ) ∈ S, found

as follows:

dnaive
TX (P̂(TX)) =

argmax
DTX⊂VTX

max
DRX⊂VRX

R
(
DTX ,DRX , P̂(TX)

)
(22)

dnaive
RX (P̂(RX)) =

argmax
DRX⊂VRX

max
DTX⊂VTX

R
(
DTX ,DRX , P̂(RX)

)
(23)

which can be solved by exhaustive set search or a lower
complexity greedy approach (see details later). The basic
limitation of the naive approach in (22) and (23) is that it
fails to account for either (i) the noise in the gain matrix
estimate at the decision maker, or (ii) the differences in
location information quality between the TX and the RX.

D. 1-Step Robust Beam Alignment

Making one step towards robustness requires from the TX
and the RX to account for their own local information noise
statistics. As a first approximation, each device might then
assume that its local estimate, while not perfect, is at least
globally shared, i.e. that P̂(TX) = P̂(RX) for the purpose
of algorithm derivation. We denote the resulting beam pre-
selection as 1-step robust3 – obtained through the following
mappings (d1-s

TX , d
1-s
RX) ∈ S:

d1-s
TX(P̂(TX)) =

argmax
DTX⊂VTX

max
DRX⊂VRX

EP|P̂(TX)

[
R
(
DTX ,DRX ,P

)]
(24)

d1-s
RX(P̂(RX)) =

argmax
DRX⊂VRX

max
DTX⊂VTX

EP|P̂(RX)

[
R
(
DTX ,DRX ,P

)]
(25)

Optimization (21) is therefore replaced with a more standard
stochastic optimization problem for which a vast literature is
available (see [15] for a nice overview). Considering w.l.o.g.
the optimization at the TX, one standard approach consists in
approximating the expectation by Monte-Carlo runs according
to the probability density function fP|P̂(TX) . Once the expec-
tation operator has been replaced by a discrete summation, the
optimal solution of the discrete optimization problem can be
simply again obtained by greedy search. Indeed, the nature of
the problem is such that it is possible to split (24) and (25)
in multiple maximizations – over the single beams in VTX
and VRX – without loosing optimality. The greedy approach
has far less complexity than the exhaustive search, which
requires to search over beam sets whose size is the number of
combinations resulting from picking DTX (resp. DRX ) beams
at a time among MTX (resp. MRX ). The detailed algorithm
is given in the extended version [12].

Note that the approach above provides robustness with
respect to the local noise at the decision maker; it however fails
to account for discrepancies in location information quality
across TX and RX. Indeed, the true distribution of the position
knowledge has been approximated by considering that both the
TX and the RX share the same information.

E. 2-Step Robust Beam Alignment

A necessary optimality condition for the optimal Bayesian
beam alignment in (21) is that it is person-by-person optimal,
i.e. each node takes the best strategy given the strategy at the
other node [14].

3In retrospect, the naive algorithm in the previous section could be
interpreted as a 0-step robust approach.



The person-by-person optimal solution (dPP
TX , d

PP
RX) ∈ S

satisfies the following system of fixed point equations:

dPP
TX(P̂(TX)) =

argmax
DTX⊂VTX

EP,P̂(RX)|P̂(TX)

[
R
(
DTX , dPP

RX ,P
)]

(26)

dPP
RX(P̂(RX)) =

argmax
DRX⊂VRX

EP,P̂(TX)|P̂(RX)

[
R
(
dPP
TX ,DRX ,P

)]
(27)

where we used the short-hand notation dPP
TX and dPP

RX for
dPP
TX(P̂(TX)) and dPP

RX(P̂(RX)), respectively. Still, the inter-
dependence between (26) and (27) makes solving this system
of equations challenging. Thus, we propose an approximate
solution in which this dependence is removed by replacing
the person-by-person mapping inside the expectation operator
with the 1-step robust mapping described in Section IV-D.

Intuitively, the TX (resp. the RX) finds its strategy by
using the belief that the RX (resp. the TX) is using the
1-step robust strategy (which can be separately computed
thanks to (24), (25)) and seeking to be (2-step) robust with
respect to remaining uncertainties. In the 2-step algorithm,
both local noise statistics and differences between information
quality at TX and RX are thus exploited. Let us denote by
(d2-s
TX , d

2-s
RX) ∈ S the 2-step robust approach, which reads as:

d2-s
TX(P̂(TX)) =

argmax
DTX⊂VTX

EP,P̂(RX)|P̂(TX)

[
R
(
DTX , d1-s

RX ,P
)]

(28)

d2-s
RX(P̂(RX)) =

argmax
DRX⊂VRX

EP,P̂(TX)|P̂(RX)

[
R
(
d1-s
TX ,DRX ,P

)]
(29)

where we used the short-hand notation d1-s
TX and d1-s

RX as
before. This approach could then be extended by inserting the
2-step robust mapping inside the expectation, so as to get the
3-step robust approach, and so forth. Of course, it comes with
an increased computational cost.

V. SIMULATION RESULTS

In this section, numerical results are presented so as to
compare the performance of the proposed beam alignment
algorithms. We consider the scenario in Fig. 1, with L = 3
multipath components. A distance of 100 m is assumed
from the TX to the RX. Both TX and RX are equipped
with NTX = NRX = 64 antennas (ULA). The devices
have to choose DTX , DRX beamforming vectors among the
MTX = MRX = 64 in the codebooks. The results are
averaged over 10000 independent Monte-Carlo iterations.

A. Beam Codebook Design

Since ULAs produce unequal beamwidths according to the
pointing direction – as it can be seen in Fig. 1 – we separate

the grid angles φ̄p and θ̄q in equations (5) and (6) according
to the inverse cosine function, as follows [9]:

φ̄p = arccos
(

1− 2(p− 1)

MTX − 1

)
, p ∈ {1, . . . ,MTX} (30)

θ̄q = arccos
(

1− 2(q − 1)

MRX − 1

)
, q ∈ {1, . . . ,MRX} (31)

As a result, and in order to guarantee equal gain losses among
the adjacent angles, more of the latter are considered as the
broadside direction is reached.

B. Location Information Model
In the simulations, we use a uniform bounded error model

for location information [9]. In particular, we assume that all
the estimates lie somewhere inside disks centered in the actual
positions pu, u ∈ {TX,RX,Ri}, i = 1, . . . , L − 1. Let S(r)
be the two-dimensional closed ball centered at the origin and
of radius r, i.e. S(r) = {p ∈ R2 : ‖p‖ ≤ r}. We model the
random estimation errors as follows:
• e

(TX)
u uniformly distributed in S(r

(TX)
u )

• e
(RX)
u uniformly distributed in S(r

(RX)
u )

such that r(TX)
u and r(RX)

u are the maximum positioning error
for node u as seen from the TX and the RX, respectively.

C. Results and Discussion
According to measurement campaigns [2], LoS propagation

is the prominent propagation driver in mmWave bands. We
consider as a consequence a stronger (on average) LoS path,
with respect to the reflected paths. The latter are assumed
to have the same average power. Moreover, we consider the
following degrees of precision for localization information:
• r

(TX)
RX = 13 m, r(RX)

RX = 7 m

• r
(TX)
R1

= 11 m, r(RX)
R1

= 18 m

• r
(TX)
R2

= 15 m, r(RX)
R2

= 17 m

• r
(TX)
TX = 0 m, r(RX)

TX = 0 m
Given that 5G devices are expected to access position infor-
mation with a guaranteed precision of about 1 m in open
areas [16], those settings are robust with respect to the mobility
of the devices or to possible discontinuous location awareness.

Fig. 2 compares the proposed algorithms in the settings
described above. It can be seen that the 2-step robust beam
alignment outperforms the other distributed solutions, being
able to consider statistical information at both ends. Some
additional sets of degrees of precision are considered in [12].

In Fig. 3, we consider the performance of the proposed
algorithms as a function of the number of pre-selected beams
– assuming a fixed SNR of 10 dB, and the same parameters
as considered for Fig. 2. As expected, a higher number of pre-
selectable beams leads to increased performance. Simulations
show that the 2-step robust algorithm almost reaches the
idealized upper bound with already DTX = DRX = 5. In
addition, Fig. 3 confirms that exploiting position information
allows to reduce alignment overhead while impacting only
slightly on the performance if the sets of pre-selectable beams
are sufficiently large with respect to the degrees of precision.
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Fig. 2: Rate vs SNR, stronger LoS path, DTX = DRX = 4.
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Fig. 3: Rate vs number of pre-selected beams at TX and RX
(among MTX = MRX = 64), for a given SNR = 10 dB.

VI. CONCLUSIONS

Localization information has an important role in reducing
alignment overhead in mmWave communications. Dealing
with the imperfect position knowledge is challenging due to
the fact that the information is not shared between the TX and
the RX, leading to disagreements affecting the performance.
In this work, we introduced an algorithm which takes into
account the imperfect information at both ends and improves
the coordination between the TX and the RX by exploiting
their shared statistical knowledge of localization errors.

We proposed a so-called 2-step robust approach which
enforce coordination by letting one node assume a given
strategy for the other one, thus strongly reducing complexity.

Numerical experiments have shown that good performance
can be achieved with the 2-step robust algorithm, which almost
reaches the idealized upper bound – obtained with perfect
information – even with small values of pre-selectable beams.

Future directions include the extension of the proposed
algorithms, in order to exceed the 2-step algorithm, with the
purpose of reaching the person-by-person optimum. Finding
closed forms of the proposed algorithms is an interesting and
challenging research problem which is still open as well.
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