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Abstract

Engineering distributed systems is an onerous task: the design goals of performance, cor-

rectness and reliability are intertwined in complex tradeoffs, which have been outlined by

multiple theoretical results. These tradeoffs have become increasingly important as computing

and storage have shifted towards distributed architectures. Additionally, the general lack of

systematic approaches to tackle distribution in modern programming tools, has worsened these

issues — especially as nowadays most programmers have to take on the challenges of distribu-

tion. As a result, there exists an evident divide between programming abstractions, application

requirements and storage semantics, which hinders the work of designers and developers.

This thesis presents a set of contributions towards the overarching goal of designing reliable

distributed storage systems, by examining these issues through the prism of consistency. We

begin by providing a uniform, declarative framework to formally define consistency semantics.

We use this framework to describe and compare over fifty non-transactional consistency seman-

tics proposed in previous literature. The declarative and composable nature of this framework

allows us to build a partial order of consistency models according to their semantic strength. We

show the practical benefits of composability by designing and implementing Hybris, a storage

system that leverages different models and semantics to improve over the weak consistency

generally offered by public cloud storage platforms. We demonstrate Hybris’ efficiency and

show that it can tolerate arbitrary faults of cloud stores at the cost of tolerating outages. Finally,

we propose a novel technique to verify the consistency guarantees offered by real-world stor-

age systems. This technique leverages our declarative approach to consistency: we consider

consistency semantics as invariants over graph representations of storage systems executions.

A preliminary implementation proves this approach practical and useful in improving over the

state-of-the-art on consistency verification.
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Résumé

La conception des systèmes distribués est une tâche onéreuse : les objectifs de performance,

d’exactitude et de fiabilité sont étroitement liés et ont donné naissance à des compromis com-

plexes décrits par de nombreux résultats théoriques. Ces compromis sont devenus de plus en

plus importants à mesure que le calcul et le stockage se sont déplacés vers des architectures

distribuées. De plus, l’absence d’approches systématiques de ces problèmes dans les outils de

programmation modernes les a aggravé — d’autant que de nos jours la plupart des program-

meurs doivent relever les défis liés aux applications distribués. En conséquence, il existe un écart

évident entre les abstractions de programmation, les exigences d’application et la sémantique

de stockage, ce qui entrave le travail des concepteurs et des développeurs.

Cette thèse présente un ensemble de contributions tourné vers la conception de systèmes

de stockage distribués fiables, en examinant ces questions à travers le prisme de la cohérence.

Nous commençons par fournir un cadre uniforme et déclarative pour définir formellement

les modèles de cohérence. Nous utilisons ce cadre pour décrire et comparer plus de cinquante

modèles de cohérence non transactionnelles proposés dans la littérature. La nature déclarative

et composite de ce cadre nous permet de construire un classement partiel des modèles de

cohérence en fonction de leur force sémantique. Nous montrons les avantages pratiques de

la composabilité en concevant et en implémentant Hybris, un système de stockage qui utilise

différents modèles pour améliorer la cohérence faible généralement offerte par les services de

stockage dans les nuages. Nous démontrons l’efficacité d’Hybris et montrons qu’il peut tolérer

les erreurs arbitraires des services du nuage au prix des pannes. Enfin, nous proposons une

nouvelle technique pour vérifier les garanties de cohérence offertes par les systèmes de stockage

du monde réel. Cette technique s’appuie sur notre approche déclarative de la cohérence : nous

considérons les modèles de cohérence comme invariants sur les représentations graphiques des

exécutions des systèmes de stockage. Une mise en œuvre préliminaire prouve cette approche

pratique et utile pour améliorer l’état de l’art sur la vérification de la cohérence.
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Chapter 1

Introduction

Over the past decade, the rise of cloud computing, as well as a steady decrease of the

cost of storage and computation [12, 152], have enabled the widespread adoption of Internet-

scale and mobile applications. As users of these pervasive services generate increasingly large

amounts of data (so-called “big data”), enterprises and governments strive to collect and analyze

them to extract profitable information [147]. In turn, the growing popularity of data-intensive

applications, together with the demise of Moore’s law [224] have prompted designers to resort

to scale-out, distributed architectures [223, 31] to boost performance and tolerate failures. The

data storage layer has a prominent role in the architecture of such systems, as it is commonly

charged with the crucial task of addressing the challenges of concurrency and distribution

[97, 197]. Distributed systems are indeed notoriously difficult to design and program because of

two inherent sources of uncertainty that plague their executions. First, due to communication

asynchrony, ordering and timing of messages delivery is subject to nondeterminism. Second,

failures of system components and communication attempts may lead to incomplete outcomes

or even corrupt application state.

To cope with these challenges, researchers have conceived a set of theoretical results

[111, 120] that shaped the design space by exposing a multifaceted tradeoff of correctness,

reliability and performance. Following and informing these studies, practitioners have developed

and commercialized different database systems. The design of the first generation of database

systems reflected an era in which computation was mostly centralized and vertical scaling was

still a viable option. In this setting, databases commonly offered strong, transactional semantics,

such as serializability [50]. In a nutshell, serializability guarantees that the concurrent execution

of bundles of operations (i.e. transactions), will be equivalent to some serial execution. However,

in the last decade, a new generation of database systems — often called “NoSQL” systems

— made its appearance. The common trait of this new, loosely defined family of systems is

their weak semantic guarantees about database state and query results. In effect, the NoSQL

stores forego transactional, strong semantics to provide greater scalability and performance

1



2 CHAPTER 1. Introduction

through distribution [96, 237]. In practice, the burden of checking and enforcing correctness

constraints is left, often ambiguously, to the programmer — frequently resulting in error-prone

distributed applications [33]. Hence, a new breed of research works and products have strived

to bridge the divide between correctness and scalability, by offering optimized implementations

of strong semantic abstractions [192, 257] or by exposing tradeoffs matching specific application

semantics [34, 125].

In this thesis, we deal with the design and engineering conundrum of building scalable and

correct distributed storage systems by framing it through the prism of consistency. Consistency

is a correctness semantic notion that lies at the heart of the intricate set of constraints and

requirements involved in the design of reliable distributed systems. Its outcomes directly affect

both user experience and the engineering aspects of a system, spanning across different stack

layers and domains. For this reason, consistency constitutes an ideal tool to represent and

analyze distributed systems. However, we currently lack a comprehensive theoretical foundation

to define and compare consistency semantics. In turn, the lack of a rigorous consistency

terminology and grammar prevents designers from uncovering and experimenting further

possible tradeoffs of correctness and performance. Furthermore, a practical framework of

elemental semantics would allow us to reason about the potential benefit of their compositions,

and would enable more accurate techniques to test the correctness of existing systems.

This dissertation presents an attempt to fill this void in the research literature. Specifically,

the contributions presented in this thesis can be summarized as follows:

— We devise a semantic model to describe consistency notions. Using such model we

provide formal definitions for the most popular semantics defined so far by researchers

and practitioners for non-transactional stores.

— We design and evaluate a key-value storage system that improves over the robustness

and consistency of public cloud storage, yet retains scalability and operational benefits.

Our design exploits the favorable composability of two different consistency semantics,

and make efficient use of public and private storage resources.

— We describe and evaluate a novel approach to consistency verification. Our approach

focuses on automatically verifying the validity of consistency semantics as declarative

invariants of storage systems executions.

In the remainder of this chapter, we expound on each of our key contributions and lay out

the dissertation outline.
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1.1 A semantic framework to express consistency

In spite of its relevance in the design of concurrent and distributed systems, the concept of

consistency has historically lacked a common frame of reference to describe its aspects across

communities of researchers and practitioners. In the past, some joint efforts between research

and industry have helped formalize, compare and even standardize transactional semantics

[21, 126, 8]. However, these works fall short of including the advances of the last decade of

research on databases, and they do not consider non-transactional semantics. Recently, non-

transactional consistency has enjoyed a resurgence due to the increasing popularity of NoSQL

stores. Hence, new models have been devised to account for various combinations of fault

tolerance concerns and application invariants. Researchers have been striving to formulate the

minimum requirements in terms of correctness and, therefore, coordination, to allow for the

design of fast yet functional distributed systems [34, 30]. Furthermore, an ongoing and exciting

research trend has been tackling this issue leveraging different tools and stack layers, spanning

from programming languages [16] to data structures [213] and application-level static checkers

[219, 125]. However, despite active recent research on different aspects of storage correctness,

we currently lack a sound and comprehensive model to reason about consistency.

As a first contribution of this thesis, we propose a framework to define and compare

non-transactional consistency semantics. This framework aims at capturing all the salient

aspects of consistency within a minimum set of declarative, composable properties. We use this

framework to provide a formal taxonomy of more than fifty consistency semantics introduced

in the previous three decades of research. Thanks to these new formal definitions, we are able

to compare and position them in a partially ordered hierarchy according to their semantic

“strength.” In addition, we map those semantics to corresponding implementations of prototypes

and full-fledged systems described in research literature.

We believe this contribution will serve as a first normalization step and bring about further

clarity in future debates over design of distributed systems. Moreover, we hope that this work

will help researchers engage in further explorations of compositions of elemental consistency

semantics. The second contribution of this thesis, which we summarize in the next section,

represents — among other things — a first step in this research direction.
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1.2 Robust hybrid cloud storage

The recent advent of highly available and scalable storage systems under the commercial

label of “cloud storage” has radically changed the way companies and end users deal with

data storage. Cloud storage offers unprecedented on-demand scalability, enhanced durability

leveraging planet-wide data replication, and the convenient offloading of operational tasks.

However, cloud storage also presents new challenges concerning data privacy, integrity and

availability [128]. Moreover, the lack of interoperability standards among different cloud

providers significantly increases switching costs [4]. Finally, cloud stores are notorious for

offering weak consistency guarantees [237].

To overcome these issues, researchers have conceived compound systems that use multiple

cloud stores to distribute trust and increase reliability — in the approach often referred to asmulti-

cloud. At the same time, cloud providers have started offering hybrid cloud services, leveraging

on-premises resources to store confidential data. Unfortunately, both the hybrid and the multi-

cloud approaches present substantial drawbacks. The multi-cloud approach suffers from severe

performance limitations inherent to its cross-cloud communication protocols. Besides, the

performance and monetary costs of tolerating arbitrary cloud failures are prohibitively high,

and the consistency guarantees only proportional to those of the underlying clouds [53]. On

the other hand, commercial hybrid cloud storage still presents security and reliability concerns

related to the use of a single cloud.

As the second contribution of this thesis, we present the design and evaluation of a hybrid

multi-cloud key-value store we called Hybris. Hybris combines the benefits of both hybrid and

multi-cloud storage through a composition of public clouds and private resources. It tolerates

arbitrary (e.g., malicious) cloud faults at the affordable price of tolerating outages. Interestingly,

Hybris’ design is a practical instance of composition of consistency semantics. Its resulting

consistency is the strongest of those offered by the individual subsystems. Namely, Hybris

provides strong consistency even when public clouds are weakly consistent.

Hybris is efficient and scalable as it stores lightweight metadata on private premises, while

replicating or erasure-coding bulk data on a few cloud stores. We implemented the Hybris

protocol and benchmarked it in different contexts including geo-replicated deployments and as

backend of a storage synchronization application. Our evaluation shows that Hybris outperforms

comparable state-of-the-art robust cloud storage systems and approaches the performance of

bare-bone commodity cloud stores.
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1.3 Automated declarative consistency verification

Although with Hybris we experimented the design of a storage system, most of real-world

engineering entails dealing with off-the-shelf commercial systems. Therefore, a crucial part of

software engineering consists in understanding what are the assumptions and guarantees that

each component of a given architecture brings about, and how they compose. Unfortunately,

those assumptions and guarantees are often poorly expressed — if at all — by the original

developers. Moreover, the terminology adopted in their specifications often does not use a

standard set of unambiguous concepts, further hindering the integration task. This is especially

true when it comes to storage systems and their consistency guarantees. Oftentimes, consistency

specifications are in fact expressed in an informal, hence imprecise way; they refer to specific

settings and their validity hinges on ad-hoc assumptions. As a result, they are incompatible and

incomparable, thus leading to convoluted and error-prone testing techniques.

Researchers have responded to this issue by suggesting different approaches. Some works

in the literature proposed and perfected algorithms to establish whether an execution respects

strong consistency semantics [191, 122]. Another popular approach consists in quantifying

eventual consistency by means of client-side staleness measurements [47, 169]. Finally, transac-

tional storage semantics have been traditionally verified by adopting a graph-based approach

[8, 254]. While all these techniques are valid and effective, they fail to encompass the entirety

of the consistency spectrum and the composition of the elemental consistency semantics.

As third contribution of this thesis, we propose an automated declarative approach to

consistency verification. In order to achieve this, we advocate the adoption of the declarative

semantic model to express consistency that we introduce in Chapter 2. Such an axiomatic

model allows to consider consistency as a mere invariant of storage system executions. In

turn, considering consistency as an invariant allows applying advanced verification techniques,

such as property-based testing [83]. Hence, we developed Cover, a prototype of a verification

framework that implements property-based consistency verification. Conver lets the user

select a set of consistency predicates that have to be respected during executions. Then, it

automatically generates random executions consisting of concurrent read and write operations,

possibly tailored to better verify specific consistency semantics. During each execution, Conver

verifies the validity of the chosen consistency predicates and, in case of inconsistency, it outputs

a visualization highlighting the sequence of operations that led to the anomaly. Moreover,

Conver can inject faults in the storage system by terminating processes and creating network

partitions. In summary, Conver relieves programmers from the burden of generating and

running accurate tests to verify the correctness of storage systems.
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1.4 Outline and previously published work

The remainder of this thesis proceeds as follows. Chapter 2 introduces a declarative semantic

framework to define consistency semantics and surveys various consistency models. Two

tables summarizing predicates expressing consistency semantics and their implementations

are presented in Appendices C and A. In Appendix B, we prove the strength relations between

consistency semantics, following the formal definitions we provide in Chapter 2. Chapter 3

discusses the challenges concerning cloud storage and presents Hybris. Hybris’ correctness

proofs and listings of algorithms are postponed to Appendix D. Chapter 4 considers the hurdles

of verifying databases correctness conditions and introduces a property-based approach. The

dissertation then concludes in Chapter 5 with a discussion of topics for future work.
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Chapter 2

Consistency in Non-Transactional

Distributed Storage Systems

In this chapter, we develop a formal framework to express non-transactional consistency

semantics. We use this framework to define consistency semantics described in the past decades

of research. These new, formal definitions, enable a structured and comprehensive view of the

consistency spectrum, which we illustrate by contrasting the “strength” and features of individual

semantics.

2.1 Introduction

Faced with the inherent challenges of failures, communication asynchrony and concurrent

access to shared resources, distributed system designers have continuously sought to hide these

fundamental concerns from users by offering abstractions and semantic models of various

strength. The ultimate goal of a distributed system is seemingly simple, as, ideally, it should

just be a fault-tolerant and more scalable version of a centralized system. The ideal distributed

system should leverage distribution and replication to boost availability by masking failures,

provide scalability and/or reduce latency, yet maintain the simplicity of use of a centralized

system — and, notably, its consistency — providing the illusion of sequential access. Such strong

consistency criteria can be found in early works that paved the way of modern storage systems

[163], as well as in the subsequent advances in defining general, practical correctness conditions,

such as linearizability [138]. Unfortunately, the goals of high availability and strong consistency,

in particular linearizability, have been identified as mutually conflicting in many practical

circumstances. Negative theoretical results and lower bounds, such as the FLP impossibility

proof [111] and the CAP theorem [120], shaped the design space of distributed systems. As a

result, distributed system designers have either to give up the idealized goals of scalability and

availability, or relax consistency.

7
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In recent years, the rise of commercial Internet-scale computing has motivated system

designers to prefer availability over consistency, leading to the advent of weak and eventual

consistency [228, 210, 237]. Consequently, much research has been focusing on attaining a better

understanding of those weaker semantics [33], but also on adapting [38, 257, 246] or dismissing

and replacing stronger ones [135]. Along this line of research, tools have been conceived to

handle consistency at the level of programming languages [16], data objects [214, 66] or data

flows [19].

Today, however, despite roughly four decades of research on various flavors of consistency,

we lack a structured and comprehensive overview of different consistency notions that appeared

in distributed storage research. In this chapter, we aim to help fill this void by providing an

overview of over 50 different consistency notions. Our survey ranges from linearizability to

eventual andweak consistency, defining preciselymany of these, in particularwhere the previous

definitions were ambiguous. We further provide a partial order among different consistency

notions, ordering them by their semantic “strength”, which we believe will reveal useful in

further research. Finally, we map the consistency semantics to different practical systems

and research prototypes. The scope of this chapter is restricted to consistency models that

apply to any replicated object having a sequential specification and exposing non-transactional

operations. We focus on non-transactional storage systems as they have become increasingly

popular in recent years due to their simple implementations and good scalability. As such, this

chapter complements the existing survey works done in the context of transactional consistency

semantics [8].

This chapter is organized as follows. In Section 2.2 we define the model we use to represent

a distributed system and set up the framework for reasoning about different consistency se-

mantics. To ensure the broadest coverage and make our work faithfully reflect the features of

modern storage systems, we model distributed systems as asynchronous, i.e. without prede-

fined constraints on timing of computation and communication. Our framework, which we

derive from the work by Burckhardt [65], captures the dynamic aspects of a distributed system,

through histories and abstract executions of such systems. We define an execution as a set of

actions (i.e. operations) invoked by some processes on the storage objects through their interface.

To analyze executions we adopt the notion of history, i.e. the set of operations of a given

execution. Leveraging the information attached to histories, we are able to properly capture

the intrinsic complexity of executions. Namely, we can group and relate operations according

to their features (e.g., by the processes and objects they refer to, and by their timings), or by

the dynamic relationships established during executions (e.g., causality). Additionally, abstract

executions augment histories with orderings of operations that account for the resolution of

update conflicts and their propagation within the storage system.

Section 2.3 brings the main contribution of this chapter: a survey of more than 50 different

consistency semantics previously proposed in the context of non-transactional distributed
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storage systems.
1
We define many of these models employing the framework specified in

Section 2.2, i.e. using declarative compositions of logic predicates over graph entities. In turn,

these definitions enable us to establish a partial order of consistency semantics according to

their semantic strengths — which we illustrate in Figure 2.1. For sake of readability, we also

loosely classify consistency semantics into families, which group them by their common traits.

We discuss our work in the context of related surveys on consistency in Section 2.4. We

further complement our surveywith a summary of all consistency predicates defined in this work,

which we postpone to Appendix A. In Appendix B, we provide proofs of the relative strengths

of the consistency semantics formally specified in this chapter. In addition, for all consistency

models mentioned in this work, we provide references to their original, primary definitions,

as well as pointers to research papers that describe related implementations (Appendix C).

Specifically, we reference implementations that appeared in recent proceedings of the most

relevant venues. We believe that this is a useful contribution on its own, as it will allow scholars

to navigate more easily through the extensive body of literature that deals with the subtleties of

consistency.

1

Note that, while we focus on consistency semantics proposed in the context of distributed storage, our ap-

proach maintains generality as our consistency definitions are applicable to other replicated data structures beyond

distributed storage.
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2.2 System model

In this section, we specify the main concepts behind the reasoning about consistency

semantics carried out in the rest of this chapter. We rely on the concurrent object abstraction,

as presented by Lynch and Tuttle [183] and by Herlihy and Wing [138], for the definitions of

fundamental “static” elements of the system, such as objects and processes. Moreover, to describe

the dynamic behavior of the system (i.e. executions), we build upon the axiomatic mathematical

framework laid out by Burckhardt [65]. We decided to rely on an axiomatic framework since

operational specifications of consistency models — especially of weak consistency models —

can become unwieldy, overly complicated and hard to reason about. In comparison, axiomatic

specifications are more expressive and concise, and are amenable to static checking — as we

will see in Chapther 4.

2.2.1 Preliminaries

Objects and Processes We consider a distributed system consisting of a finite set of processes,

modeled as I/O automata [183], interacting through shared (or concurrent) objects via a fully-

connected, asynchronous communication network. Unless stated otherwise, processes and

shared objects (or, simply, objects) are correct, i.e. they do not fail. Processes and objects have

unique identifiers. We define ProcessIds as the set of all process identifiers and ObjectIds as

the set of all object identifiers.

Additionally, each object has a unique object type. Depending on its type, the object can

assume values belonging to a defined domain denoted by Values, 2 and it supports a set of

primitive non-transactional operation types (i.e. OpTypes = {rd, wr, inc, . . .}) that provide
the only means to manipulate the object. For simplicity, and without loss of generality, unless

specified otherwise, we further classify operations as either reads (rd) or writes (wr). Namely,

we model as a write (or update) any operation that modifies the value of the object. Conversely,

a read returns to the caller the current value held by the object’s replica without causing any

change to it. We adopt the term object replicas, or simply replicas, to refer to the different

copies of a same named shared object maintained in the storage system for fault tolerance or

performance enhancement. Ideally, replicas of the same shared object should hold the same

data at any time. The coordination protocols among replicas are however determined by the

implementation of the shared object.

Time Unless specified otherwise, we assume an asynchronous computation and communica-

tion model, namely, with no bounds on computation and communication latencies. However,

when describing certain consistency semantics, we will be using terms such as recency or

staleness. This terminology relates to the concept of real time, i.e. an ideal and global notion of

2

For readability, we adopt a notation in which Values is implicitly parametrized by the object type.
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time that we use to reason about histories a posteriori. However, this notion is not accessible

by processes during executions. We refer to the real time domain as Time , which we model as

the set of positive real numbers, i.e. R+
.

2.2.2 Operations, histories and abstract executions

Operations We describe an operation issued by a process on a shared object as the tuple

(proc, type, obj, ival, oval, stime, rtime), where:

— proc ∈ ProcessIds is the id of the process invoking the operation.

— type ∈ OpTypes is the operation type.

— obj ∈ ObjectIds is the id of the object on which the operation is invoked.

— ival ∈ Values is the operation input value.

— oval ∈ Values ∪ {∇} is the operation output value, or ∇ if the operation never returns.

— stime ∈ Time is the operation invocation real time.

— rtime ∈ Time∪{Ω} is the operation return real time, orΩ if the operation never returns.

By convention, we use the special value ⊔ ∈ Values to represent the input value (i.e. ival)

of reads and the return value (i.e. oval) of writes. For simplicity, given operation op, we will

use the notation op.par to access its parameter named par as expressed in the corresponding

tuple (e.g., op.type represents its type, and op.ival its input value).

Histories A history H is the set of all operations invoked in a given execution. We further

denote by H|wr (resp., H|rd) the set of write (resp., read) operations of a given history H (e.g.,

H|wr = {op ∈ H : op.type = wr}).
We further define the following relations on elements of a history:

3

— rb (returns-before) is a natural partial order onH based on real-time precedency. Formally:

rb ≜ {(a, b) : a, b ∈ H ∧ a.rtime < b.stime}.
— ss (same-session) is an equivalence relation on H that groups pairs of operations invoked

by the same process — we say such operations belong to the same session. Formally:

ss ≜ {(a, b) : a, b ∈ H ∧ a.proc = b.proc}.
— so (session order) is a partial order defined as: so ≜ rb ∩ ss. Since we assume that there

can be at most one operation pending per session at any given time, so totally orders

each session.

— ob (same-object) is an equivalence relation onH that groups pairs of operations invoked

on the same object. Formally: ob ≜ {(a, b) : a, b ∈ H ∧ a.obj = b.obj}.

3

For better readability, we implicitly assume relations are parametrized by a history.
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— concur as the symmetric binary relation designating all pairs of real-time concurrent

operations invoked on the same object. Formally: concur ≜ ob \ rb.

For (a, b) ∈ rel we may alternatively write a
rel−→ b. We further denote by rel−1

the inverse

relation of rel. Moreover, for the sake of a more compact notation, we use binary relation

projections. For instance, rel|wr→rd identifies all pairs of operations belonging to rel consisting

of a write and a read operation. Furthermore, if rel is an equivalence relation, we adopt the

notation a ≈rel b ≜ [a
rel−→ b]. We recall that an equivalence relation rel on set H partitions H

into equivalence classes [a]rel = {b ∈ H : b ≈rel a}. We write H/ ≈rel to denote the set of

equivalence classes determined by rel.

We complement the concur relation with the function Concur : H → 2H that denotes the

set of write operations concurrent with a given operation:

Concur(a) ≜ {b ∈ H|wr : (a, b) ∈ concur} (2.1)

Abstract executions We model system executions using the concept of abstract execution,

following Burckhardt [65]. An abstract execution is a multi-graph A = (H, vis, ar) built on

a given history H , which it complements with two relations on elements of H , i.e. vis and

ar. Whereas histories describe the observable outcomes of executions, vis and ar, intuitively,

capture the nondeterminism of the asynchronous environment (e.g., message delivery order),

as well as implementation-specific constraints (e.g., conflict-resolution policies). In other words,

vis and ar determine the relations between pairs of operations in a history that explain and

justify its outcomes. More specifically:

— vis (visibility) is an acyclic natural relation that accounts for the propagation of write

operations. Intuitively, a be visible to b (i.e. a
vis−→ b) means that the effects of a are visible

to the process invoking b (e.g., b may read a value written by a). Two write operations

are invisible to each other if they are not ordered by vis.

— ar (arbitration) is a total order on operations of a history that specifies how the system

resolves conflicts due to operations that are concurrent or invisible to each other. In

practice, such a total order can be achieved in various ways: through the adoption of a

distributed timestamping [160] or consensus protocol [56, 129, 159], using a centralized

serializer, or a deterministic conflict resolution policy.

Depending on constraints expressed by vis, during an execution processes may observe

different partial orderings of write operations, which we call serializations. We further define

the happens-before order (hb) as the transitive closure of the union of so and vis, denoted by:

hb ≜ (so ∪ vis)+ (2.2)
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2.2.3 Replicated data types and return value consistency

Rather than defining the system state at a given time as a set of values held by shared

objects, following Burckhardt [65], we employ a graph abstraction called (operation) context.

The operation context encodes the information of an abstract execution A taking a projection

on visibility (vis) with respect to a given operation op. Formally, we define as C the set of

contexts of all operations in a given abstract executionA, and the context of a specific operation

op as:

C = cxt(A, op) ≜ A|op,vis−1(op),vis,ar (2.3)

Furthermore, we adopt the concept of replicated data type [65] to define the type of shared

object implemented in the distributed system (e.g., read/write register, counter, set, queue, etc.).

For each replicated data type, a function F specifies the set of expected return values of an

operation op ∈ H in relation to its context, i.e. F(op, cxt(A, op)). Using F , we can define

return value consistency as:

RVal(F) ≜ ∀op ∈ H : op.oval ∈ F(op, cxt(A, op)) (2.4)

Essentially, return value consistency is a predicate on abstract executions that prescribes that

the return value of any given operation of that execution belongs to the set of its intended

return values.

Given operation b ∈ H and its context cxt(A, b), we let a = prec(b) be the (unique)

latest operation preceding b in ar, such that: a.oval ̸= ∇ ∧ a ∈ H|wr ∩ vis−1(b). In other

words, prec(b) is the last write visible to b according to the ordering specified by ar. If no such

preceding operation exists (e.g., if b is the first operation of the execution according to ar), by

convention prec(b).ival is a default value ⊥.

In this paper we adopt the replicated read/write register (i.e. read/write storage) as our

reference data type, which is defined by the following return value function:

Freg(op, cxt(A, op)) = prec(op).ival (2.5)

Note that, while the focus of this survey is on read/write storage, the consistency predicates

defined in this chapter take F as a parameter, and therefore directly extend to other replicated

data types.

2.2.4 Consistency semantics

Following Burckhardt [65], we define consistency semantics, sometimes also called consistency

guarantees, as conditions on attributes and relations of abstract executions, expressed as first-

order logic predicates. We write A |= P if the consistency predicate P is true for abstract

execution A. Hence, defining a consistency model amounts to collecting all the required
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consistency predicates and then specifying that histories must be justifiable by at least one

abstract execution that satisfies them all.

Formally, given history H and A as the set of all possible abstract executions on H , we say

that history H satisfies some consistency predicates P1, . . .Pn if it can be extended to some

abstract execution that satisfies them all:

H |= P1 ∧ · · · ∧ Pn ⇔ ∃A ∈ A : H(A) = H ∧A |= P1 ∧ · · · ∧ Pn (2.6)

In the notation above, given the abstract execution A = (H, vis, ar), H(A) denotes H .
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2.3 Non-transactional consistency semantics

In this section we analyze and survey the consistency semantics of systems which adopt

single operations as their primary operational constituent (i.e. non-transactional consistency

semantics). The consistency semantics described in the rest of the chapter are summarized in

Figure 2.1, which presents a partial ordering of consistency semantics according to their semantic

strength, as well as a more loosely defined clustering into families of consistency models. This

classification draws both from the relative strength of different consistency semantics, and from

the underlying common factors that underpin their definitions. In Appendix B, we provide

proofs for some of the strength relations between consistency semantics that we formally specify

in this section. The remaining relations showed in Fig. 2.1 reflect intuitive notions, claims or

formal proofs reported in peer-reviewed research literature.

In the remainder of this section, we examine each family of consistency semantics. Sec-

tion 2.3.1 introduces linearizability and other strong consistency models, while in Section 2.3.2

we consider eventual and weak consistency. Next we analyze PRAM and sequential consistency

(Section 2.3.3), and, in Section 2.3.4, the models based on the concept of session. Section 2.3.5

presents an overview of consistency semantics explicitly dealing with causality, while in Sec-

tion 2.3.6 we study staleness-based models. This is followed by an overview of fork-based

models (Section 2.3.7). Section 2.3.8 and 2.3.9 respectively deal with tunable and per-object

semantics. Finally, we survey the family of consistency models based on synchronization

primitives (Section 2.3.10).

2.3.1 Linearizability and related “strong” consistency semantics

The gold standard and the central consistency model for non-transactional systems is

linearizability, defined by Herlihy and Wing [138]. Roughly speaking, linearizability is a

correctness condition that establishes that each operation shall appear to be applied instan-

taneously at a certain point in time between its invocation and its response. Linearizability,

often informally dubbed strong consistency,
4
has long been regarded as the ideal correctness

condition. Linearizability features the locality property: a composition of linearizable objects is

itself linearizable — hence, linearizability enables modular design and verification.

Although very intuitive to understand, the strong semantics of linearizability makes it

challenging to implement. In this regard, Gilbert and Lynch [120], formally proved the CAP

theorem, an assertion informally presented in previous works [146, 95, 86, 61], that binds

linearizability to the ability of a system of maintaining a non-trivial level of availability when

confronted with network partitions. In a nutshell, the CAP theorem states that, in the presence

4

Note that the adjective “strong” has also been used in literature to identify indistinctly linearizability and

sequential consistency (which we define in Section 2.3.3), as they both entail single-copy-semantics and require that

a single ordering of operations be observed by all processes.
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Figure 2.1 – Hierarchy of non-transactional consistency models.

A directed edge from consistency semantics A to consistency semantics B means that any execution that satisfies B

also satisfies A. Underlined models explicitly deal with timing guarantees.
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of network partitions, availability or linearizability are mutually incompatible: the distributed

storage system must sacrifice one or the other (or both).

Burckhardt [65] breaks down linearizability into three components:

Linearizability(F) ≜ SingleOrder ∧ RealTime ∧ RVal(F) (2.7)

where:

SingleOrder ≜ ∃H ′ ⊆ {op ∈ H : op.oval = ∇} : vis = ar \ (H ′ ×H) (2.8)

and

RealTime ≜ rb ⊆ ar (2.9)

In other words, SingleOrder imposes a single global order that defines both vis and ar,

whereas RealTime constrains arbitration (ar) to comply to the returns-before partial ordering

(rb). Finally, RVal(F) specifies the return value consistency of a replicated data type. We recall

that, as per Eq. 2.5, in case of read/write storage this is the value written by the last write

(according to ar) visible to a given read operation rd.

A definition closely related to linearizability is Lamport’s atomic register semantics [164].

Lamport describes a single-writer, multi-reader (SWMR) shared register to be atomic iff each

read operation not overlapping in time with a write returns the last value written on the

register, and each operation appears to be applied on the shared register at a point in time (a

linearization point) between its invocation and its response.
5
It is easy to show that atomicity

and linearizability are equivalent for read-write registers. However, linearizability is a more

general condition designed for generic shared data structures that allow for a broader set of

operational semantics than those offered by registers.

Lamport [164] also defines two slightly weaker semantics for SWMR registers: safe and

regular. In the absence of read-write concurrency, they both guarantee that a read returns the

last written value, exactly like the atomic semantics. However, the set of return values differs for

a read operation concurrent with a write. For a safe register, a read concurrent with some write

may return any value. On the other hand, for a regular register, a read operation concurrent

with some writes may return either the value written by the most recent complete write, or a

value written by a concurrent write. This difference is illustrated in Figure 2.2.

Formally, regular and safe semantics can be defined as follows:

Regular(F) ≜ SingleOrder ∧ RealTimeWrites ∧ RVal(F) (2.10)

5

The existence of an instant at which each operation becomes atomically visible was originally postulated in

[162].
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READ( ) : x

READ( ) : 1

Figure 2.2 – An execution exhibiting read-write concurrency (real time flows from left to right). The

register is initialized to 0. Atomic (linearizable) semantics prescribes x to be 0 or 1. Regular semantics

allows x to be 0, 1 or 2. With safe semantics x may be any value.

Safe(F) ≜ SingleOrder ∧ RealTimeWrites ∧ SeqRVal(F) (2.11)

where

RealTimeWrites ≜ rb|wr→op ⊆ ar (2.12)

is a restriction of real-time ordering only for writes that precede a read or another write, and

SeqRVal(F) ≜ ∀op ∈ H : Concur(op) = ∅ ⇒ op.oval ∈ F(op, cxt(A, op)) (2.13)

restricts the return value consistency only to read operations that are not concurrent with any

write.

2.3.2 Weak and eventual consistency

At the opposite end of the consistency spectrum lies weak consistency. Although this term

has been frequently used in literature to refer to any consistency model weaker than sequential

consistency, recent works [237, 46] associate it to a more specific albeit rather vague definition:

a weakly consistent system does not guarantee that reads return the most recent value written,

and some (often underspecified) requirements have to be satisfied for a value to be returned. In

effect, weak consistency does not provide ordering guarantees — hence, no synchronization

protocol is actually required. This model is implemented in contexts in which a synchronization

protocol would be too costly, and a fortuitous exchange of information between replicas is good

enough. Typical examples of weak consistency are the relaxed caching policies that are applied

across various tiers of a web application, such as the cache implemented in web browsers.

Eventual consistency is a slightly stronger notion than weak consistency. Namely, under

eventual consistency, replicas converge towards identical copies after an undefined period of

quiescence. In other words, if no new write operations are invoked on the object, eventually

all reads will return the same value. Eventual consistency was first defined by Terry et al.

[228] and then further popularized more than a decade later by Vogels [237] with the advent

of highly available storage systems (i.e. AP systems in the CAP theorem parlance). Eventual

consistency is especially suited in contexts where coordination is not practical or too expensive,
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e.g., in mobile and wide area settings [210]. Eventual consistency leaves to the application

programmer the burden of dealing with anomalies — i.e., behaviors deviating from that of an

ideal linearizable execution. Hence, quite a large body of recent work aims to achieve a better

understanding of its subtle implications [47, 49, 33, 39]. Since eventual consistency constrains

only the convergence of replicas, it does not entail any guarantees about recency or ordering of

operations. Burckhardt [65] proposes the following formal definition of eventual consistency:

EventualConsistency(F) ≜

EventualVisibility ∧ NoCircularCausality ∧ RVal(F) (2.14)

where:

EventualVisibility ≜ ∀a ∈ H,∀[f ] ∈ H/ ≈ss:

|{b ∈ [f ] : (a
rb−→ b) ∧ (a

vis
b)}| < ∞ (2.15)

and

NoCircularCausality ≜ acyclic(hb) (2.16)

that is, the acyclic projection of hb, which we defined in Eq. 2.2. EventualVisibility man-

dates that, eventually, operation op will be visible to another operation op′ invoked after the

completion of op.

In an alternative attempt at clarifying the definition of eventual consistency, Shapiro et al.

[214] identify the following properties:

— Eventual delivery: if some correct replica applies a write operation op, op is eventually

applied by all correct replicas;

— Convergence: all correct replicas that have applied the same write operations eventually

reach an equivalent state;

— Termination: all operations complete.

To this definition of eventual consistency, Shapiro et al. [214] add the following constraint:

— Strong convergence: all correct replicas that have applied the same write operations have

equivalent state.

In other words, this last property guarantees that any two replicas that have applied the same

(possibly unordered) set of writes will hold the same data. A storage system enforcing both

eventual consistency and strong convergence is said to implement strong eventual consistency.
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We capture strong convergence from the perspective of read operations, by requiring that

reads which have the identical sets of visible writes return the same values.

StrongConvergence ≜ ∀a, b ∈ H|rd : vis−1(a)|wr = vis−1(b)|wr ⇒ a.oval = b.oval

(2.17)

Then, strong eventual consistency can be defined as:

StrongEventualConsistency(F) ≜

EventualConsistency(F) ∧ StrongConvergence (2.18)

Quiescent consistency [137] requires that if an object stops receiving updates (i.e. becomes

quiescent), then the execution is equivalent to some sequential execution containing only

complete operations. Although this definition resembles eventual consistency, it does not

guarantee termination: a system that does not stop receiving updates will not reach quiescence,

thus replicas convergence. Following Burckhardt [65], we formally define quiescent consistency

as:

QuiescentConsistency(F) ≜ |H|wr| < ∞ ⇒
∃C ∈ C : ∀[f ] ∈ H/ ≈ss: |{op ∈ [f ] : op.oval /∈ F(op, C)}| < ∞ (2.19)

2.3.3 PRAM and sequential consistency

Pipeline RAM (PRAM or FIFO) consistency [175] prescribes that all processes see write

operations issued by a given process in the same order as they were invoked by that process, as

if they were in a pipeline — hence the name. However, processes may observe writes issued

by different processes in different orders. Thus, no global total ordering is required. We define

PRAM consistency by requiring the visibility partial order to be a superset of session order:

PRAM ≜ so ⊆ vis (2.20)

As proved by Brzezinski et al. [63], PRAM consistency is ensured iff the system provides read-

your-write, monotonic reads and monotonic writes guarantees, which we will introduce in

Section 2.3.4.

In a storage system implementing sequential consistency all operations are serialized in

the same order at all replicas, and the ordering of operations determined by each process is

preserved. Formally:

SeqentialConsistency(F) ≜ SingleOrder ∧ PRAM ∧ RVal(F) (2.21)
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Thus, sequential consistency, first defined by Lamport [161], is a guarantee of ordering rather

than recency. Like linearizability, sequential consistency enforces a common global order of

operations. Unlike linearizability, sequential consistency does not require real-time ordering

of operations across different sessions: only the real-time ordering of operations invoked by

the same process is preserved (as in PRAM consistency).
6
A quantitative comparison of the

power and costs involved in the implementation of sequential consistency and linearizability is

presented by Attiya and Welch [28].
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Figure 2.3 – An execution with processes issuing write operations on a shared object.

Black spots are the chosen linearization points.

Figure 2.3 shows an execution with two processes issuing write operations on a shared

object. Let us suppose that the two processes also continuously perform read operations. Each

process will observe a certain serialization of the write operations. If we were to assume that

the system respects PRAM consistency, those two processes might observe, for instance, the

following two serializations:

SPA
: W1 W2 W3 W5 W4 W7 W6 W8 (S.1)

SPB
: W1 W3 W5 W7 W2 W4 W6 W8 (S.2)

If the system implemented sequential consistency, then SPA
would be equal to SPB

and it would

respect the ordering of operations imposed by each writing process. Thus, any of (S.1) or (S.2)

would be acceptable. On the other hand, assuming the system implements linearizability, and

assigning linearization points as indicated by the points in Figure 2.3, (S.3) would be the only

allowed serialization:

SLin : W1 W3 W2 W4 W5 W6 W8 W7 (S.3)

2.3.4 Session guarantees

Although originally defined by Terry et al. [228] in connection to client sessions, session

guarantees may as well apply to situations in which the concept of session is more loosely

defined and it just refers to a specific process’ point of view on the execution. We note that

previous works in literature have classified session guarantees as client-centric models [226].

6

In Section 2.3.10 we present processor consistency, a model whose semantic strength stands between those of

PRAM and sequential consistency.
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Monotonic reads states that successive reads must reflect a non-decreasing set of writes.

Namely, if a process has read a certain value v from an object, any successive read operation

will not return any value written before v. Intuitively, a read operation can be served only by

those replicas that have executed all write operations whose effects have already been observed

by the requesting process. In effect, we can represent this by saying that, given three operations

a, b, c ∈ H , if a
vis−→ b and b

so−→ c, where b and c are read operations, then a
vis−→ c, i.e. the

transitive closure of vis and so is included in vis.

MonotonicReads ≜ ∀a ∈ H,∀b, c ∈ H|rd : a
vis−→ b ∧ b

so−→ c ⇒ a
vis−→ c

≜ (vis; so|rd→rd) ⊆ vis (2.22)

The read-your-writes guarantee, later renamed read-my-writes [230, 65], requires that

a read operation invoked by a process can only be carried out by replicas that have already

applied all writes previously invoked by the same process.

ReadMyWrites ≜ ∀a ∈ H|wr, ∀b ∈ H|rd : a
so−→ b ⇒ a

vis−→ b

≜ so|wr→rd ⊆ vis (2.23)

Let us assume that two processes issue read and write operations on a shared object as in

Figure 2.4.
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Figure 2.4 – An execution with processes issuing read and write operations on a shared object.

Given this execution, PA and PB could observe the following serializations, which satisfy the

read-your-write guarantee but not PRAM consistency:

SPA
: W1 W3 W4 W2 (S.4)

SPB
: W2 W4 W3 W1 (S.5)

We note that some works in literature refer to session consistency as a special case of read-

your-writes consistency that can be attained through sticky client sessions, i.e. those sessions

in which the process always invokes operations on a given replica.

In a system that ensuresmonotonic writes a write is only performed on a replica if the

replica has already applied all previous writes of the same session. In other words, replicas must
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apply all writes belonging to the same session according to the order in which they were issued.

MonotonicWrites ≜ ∀a, b ∈ H|wr : a
so−→ b ⇒ a

vis−→ b ≜ so|wr→wr ⊆ vis (2.24)

Writes-follow-reads, sometimes called session causality, is somewhat the converse concept

of read-your-write guarantee as it ensures that writes made during the session are ordered after

any writes made by any process on any object whose effects were seen by previous reads in the

same session.

WritesFollowReads ≜ ∀a, c ∈ H|wr,∀b ∈ H|rd : a
vis−→ b ∧ b

so−→ c ⇒ a
ar−→ c

≜ (vis; so|rd→wr) ⊆ ar (2.25)

We note that some of the session guarantees embed specific notions of causality, and that in

fact, as proved by Brzezinski et al. [64], causal consistency — which we describe next — requires

and includes them all.

2.3.5 Causal models

The commonly accepted notion of potential causality in distributed systems is enclosed in the

definition of happened-before relation introduced by Lamport [160]. According to this relation,

two operations a and b are ordered if (a) they are both part of the same thread of execution,

(b) b reads a value written by a, or (c) they are related by a transitive closure leveraging (a)

and/or (b). This notion, originally defined in the context of message passing systems, has been

translated to a consistency condition for shared-memory systems by Hutto and Ahamad [143].

The potential causality relation establishes a partial order over operations which we represent

as hb in Eq. 2.2. Hence, while operations that are potentially causally
7
related must be seen by

all processes in the same order, operations that are not causally related (i.e. causally concurrent)

may be observed in different orders by different processes. In other words, causal consistency

dictates that all replicas agree on the ordering of causally related operations [143, 11, 185]. This

can be expressed as the conjunction of two predicates [65]:

— CausalVisibility ≜ hb ⊆ vis

— CausalArbitration ≜ hb ⊆ ar

Hence, causal consistency is defined as:

Causality(F) ≜ CausalVisibility ∧ CausalArbitration ∧ RVal(F) (2.26)

7

While the most appropriate terminology would be “potential causality”, for simplicity, hereafter we will use

“causality”.
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Figure 2.5 represents an execution with two processes writing and reading the value of a

shared object, with arrows indicating the causal relationships between operations.
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Figure 2.5 – An execution with two processes issuing operations on a shared object.

Arrows express causal relationships between operations.

Assuming the execution respects PRAM but not causal consistency, we might have the following

serializations:

SPA
: W1 W2 W4 W5 W3 W6 (S.6)

SPB
: W3 W6 W1 W2 W4 W5 (S.7)

With causal consistency (which implies PRAM), we could have obtained these serializations:

SPA
: W1 W3 W2 W4 W5 W6 (S.8)

SPB
: W1 W2 W3 W4 W6 W5 (S.9)

Recent work by Bailis et al. [34] promotes the use of explicit application-level causality,

which is a subset of potential causality,
8
for building highly available distributed systems that

would entail less overhead in terms of coordination and metadata maintenance. Furthermore,

an increasing body of research has been drawing attention to causal consistency, considered an

optimal tradeoff between user-perceived correctness and coordination overhead, especially in

mobile or geo-replicated applications [177, 36, 252].

Causal+ (or convergent causal) consistency [177] mandates, in addition to causal consis-

tency, that all replicas eventually and independently agree on the ordering of write operations.

In fact, causally concurrent write operations may generate conflicting outcomes which in

convergent causally consistent systems are handled in the same way by commutative and

associative functions. Essentially, causal+ strengthens causal consistency with strong conver-

gence (see Equation (2.17)), which mandates that all correct replicas that have applied the same

write operations have equivalent state. In other words, causal+ consistency augments causal

consistency with strong convergence in the same vein as strong eventual consistency [214]

strengthens eventual consistency. Hence, causal+ consistency can be expressed as:

Causal+(F) ≜ Causality(F) ∧ StrongConvergence (2.27)

8

As argued in [34], the application-level causality graph would be smaller in fanout and depth with respect to

the traditional causal one, because it would only enclose relevant causal relationships, hinging on application-level

knowledge and user-facing outcomes.
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Real-time causal consistency has been defined in [185] as a stricter condition than causal

consistency that enforces an additional condition: causally concurrent write operations that do

not overlap in real-time must be applied according to their real-time order.

RealTimeCausality(F) ≜ Causality(F) ∧ RealTime (2.28)

where RealTime is defined as in Eq. E.1.

We note that although Lloyd et al. [177] classify real-time causal consistency as stronger

than causal+ consistency, they are actually incomparable, as real-time causality — as defined by

Mahajan et al. [185] — does not imply strong convergence. Of course, one can devise a variant

of real-time causality that respects strong convergence as well.

Attiya et al. [30] define observable causal consistency as a strengthening of causal consis-

tency for multi-value registers (MVR) that exposes the concurrency between operations when

this concurrency may be inferred by processes from their observations. Observable causal

consistency has also been proved to be the strongest consistency model satisfiable for a certain

class of highly-available data stores implementing MVRs.

2.3.6 Staleness-based models

Intuitively, consistency models based on the notion of staleness allow reads to return old,

stale written values. They provide stronger guarantees than eventually consistent semantics,

but weak enough to allow for more efficient implementations than linearizability. In literature,

two common metrics are employed to measure staleness: (real) time and data (object) versions.

To the best of our knowledge, the first definition of a consistency model explicitly dealing

with time-based staleness is proposed by Singla et al. [218] as delta consistency. According

to delta consistency, a write is guaranteed to become visible at most after delta time units.

Moreover, delta consistency is defined in conjunction with an ordering criterion (which is

reminiscent of the slow memory consistency model, which we postpone to Section 2.3.9): writes

to a given object by the same process are observed in the same order by all processes, but no

global ordering is enforced for writes to a given object by different processes.

In an analogous way, timed consistency models, as defined by Torres-Rojas et al. [233],

restrict the sets of values that read operations may return by the amount of time elapsed since

the preceding writes. Specifically, in a timed serialization all reads occur on time, i.e. they do

not return stale values when there are more recent ones that have been available for more than

∆ units of time — ∆ being a parameter of the execution. In other words, similarly to delta

consistency, if a write operation is performed at time t, the value written by this operation must

be visible by all processes by time t+∆.

Mahajan et al. [184] define a consistency condition named bounded staleness which is

very similar to timed and delta semantics: a write operation of a given process becomes visible
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to other processes no later than a fixed amount of time. However, this definition is also related

to the use of a periodic message (i.e. a beacon) which allows each process to keep up with

updates from other processes or to suspect of missing updates.

The differences among delta consistency, timed reads and bounded staleness are just a matter

of subtle operational details that derive from the diverse contexts and practical purposes for

which those models were developed. Thus, we can capture in formal terms the core semantics

expressed by delta consistency, timed consistencymodels and bounded staleness as the following

condition:

TimedVisibility(∆) ≜ ∀a ∈ H|wr,∀b ∈ H,∀t ∈ Time :

a.rtime = t ∧ b.stime ≥ t+∆ ⇒ a
vis−→ b (2.29)

Timed causal consistency [232] guarantees that each execution respects the partial ordering

of causal consistency and that all reads are on time, with tolerance∆:

TimedCausality(F ,∆) ≜ Causality(F) ∧ TimedVisibility(∆) (2.30)

As depicted in Figure 2.1, due to the timed visibility term, timed causal is stronger than causal

consistency.

Similarly, timed serial consistency [232] combines the real-time global ordering guarantee

with the timed serialization constraint. A timed serially consistent execution with ∆ = 0 is

linearizable. Golab et al. [122] describe ∆-atomicity, a condition which is equivalent to timed

serial consistency. Indeed, according to ∆-atomicity, read operations may return either the

value written by the last preceding write, or the value of a write operation returned up to ∆

time units ago. In a follow-up work, Golab et al. [123] propose a novel metric called Γ, which

entails fewer assumptions and is more robust than ∆ against clock skew. The corresponding

consistency semantics, Γ-atomicity, expresses, like ∆-atomicity, a deviation in time of a given

execution from a linearizable one having the same operations’ outcomes. We formalize the core

notion of ∆-atomicity, Γ-atomicity and timed serial consistency with the following predicate:

TimedLinearizability(F ,∆) ≜

SingleOrder ∧ TimedVisibility(∆) ∧ RVal(F) (2.31)

Figure 2.6 illustrates an execution featuring read operations whose outcomes depend on a fixed

timing parameter∆.

If we were to assume that, despite the timing parameter, PA and PB observed the following

serialization:

SPA,B
: W2 W6 W1 W3 W4 W5 (S.10)
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Figure 2.6 – An execution with processes issuing operations on a shared object.

Hatched rectangles highlight the ∆ parameter of staleness-based read operations.

then such execution would be sequentially consistent but it would not satisfy the timed serial

consistency requirements. Thus, this execution serves as hint of the relative strengths of the

sequential and timed serial consistency models, as illustrated in Fig. 2.1.

Prefix consistency [229, 227], also called timeline consistency [90], guarantees that readers

observe an ordered sequence of writes, which may not be the most recent ones. It expresses an

ordering rather than a recency constraint on writes: the read value is the result of a specific

sequence of writes in an order agreed by all replicas. This pre-established order is supposedly

reminiscent of that one imposed by sequential consistency. Thus, we could rename prefix con-

sistency as prefix sequential consistency, whereas a version abiding real-time constraints would

be called prefix linearizable consistency. Formally, we describe prefix sequential consistency as:

PrefixSeqential(F) ≜ SingleOrder ∧MonotonicWrites ∧ RVal(F) (2.32)

where the term named MonotonicWrites implies that the ordering of writes belonging to

the same session is respected, as defined in Eq. 2.24. Similarly, we express prefix linearizable

consistency as:

PrefixLinearizable(F) ≜ SingleOrder ∧ RealTimeWW ∧ RVal(F) (2.33)

where

RealTimeWW ≜ rb|wr→wr ⊆ ar (2.34)

In a study on quorum-based replicated systems with malicious faults, Aiyer et al. [13]

formalize relaxed semantics that tolerate limited version-based staleness. Substantially, K-

safe, K-regular and K-atomic (or K-linearizability) generalize the register consistency

conditions previously introduced in [163] and described in Section 2.3.1, by permitting reads

non-overlapping concurrent writes to return one of the latestK values written. For instance

K-linearizability can be formalized as:
9

K-Linearizable(F ,K) ≜

SingleOrder ∧ RealTimeWW ∧ K-RealTimeReads(K) ∧ RVal(F) (2.35)

9

Strictly speaking, K-linearizability implicitly assumesK initial writes (i.e. writes with input value ⊥) [13].
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where

K-RealTimeReads(K) ≜ ∀a ∈ H|wr,∀b ∈ H|rd,∀PW ⊆ H|wr, ∀pw ∈ PW :

|PW | < K ∧ a
ar−→ pw ∧ pw

rb−→ b ∧ a
rb−→ b ⇒ a

ar−→ b (2.36)

Upon these results, Bailis et al. [35] built a probabilistic model to predict the staleness of

reads performed on eventually consistent quorum-based stores. They define Probabilistically

Bounded Staleness (PBS) in terms of k-staleness and t-visibility. The former describes a

probabilistic model that restricts the staleness of values returned by read operations. The latter

probabilistically limits the time before a write becomes visible. The combination of these two

models is named PBS ⟨k, t⟩-staleness. In a sense, PBS k-staleness is a probabilistic weakening

ofK-atomicity, i.e. the one that with probability equal to 1 becomesK-linearizability. Similarly,

PBS t-visibility is a probabilistic weakening of timed visibility.

2.3.7 Fork-based models

The trust limitations that arise in the context of outsourced storage and computation

[71, 238] have revamped the research on algorithms and protocols that deal with Byzantine

faults [165]. In the Byzantine fault model, faulty processes and replicas may tamper with data or

perform other arbitrary operations (within the limits of cryptography) in order to deliberately

disrupt executions.

Consequently, new consistency models were defined to reshape the correctness goals in

accordance to what is attainable when coping with such strong fault assumptions. When dealing

with several untrusted storage repositories, Byzantine fault tolerance can be applied to mask

certain fault patterns [238, 53] and even provide strong consistency semantics (e.g., [54] or see

Chapter 3). However, when dealing with a single untrusted store, the situation is different and

the consistency semantics needs to be relaxed [71]. Feasible consistency semantics for correct

clients that interact with untrusted storage have been captured within the family of fork-based

consistency models. In a nutshell, systems dealing with untrusted storage aim at providing

linearizability when the storage is correct, while (gracefully) degrading to weaker consistency

models — specifically, fork-based models — when the storage exhibits Byzantine faults.

The forefather of this family of models is fork (or fork-linearizable) consistency, introduced

by Mazières and Shasha [189]. In short, a fork-linearizable system guarantees that if the storage

system causes the visible histories of two processes to differ even for a single operation, they

may never again observe each other’s writes after that without the server being exposed as

faulty. Any divergence in the histories observed by different groups of correct processes can

be easily spotted by using any available communication protocol between them (e.g., out-of-

band communication, gossip protocols, etc.). Fork-linearizability respects session order (PRAM
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semantics) and real-time arbitration, thus it can be expressed as follows:

ForkLinearizability(F) ≜ PRAM ∧ RealTime ∧ NoJoin ∧ RVal(F) (2.37)

where the NoJoin predicate stipulates that clients whose sequences of visible operations (also

called views) have been forked by an adversary, cannot be joined again:

NoJoin ≜ ∀ai, bi, aj , bj ∈ H : ai ̸≈ss aj ∧ (ai, aj) ∈ ar \ vis ∧ ai ⪯so bi ∧ aj ⪯so bj

⇒ (bi, bj), (bj , bi) /∈ vis (2.38)

The weaker fork* consistency model was defined by Li and Mazières [173] to allow for

better performance and liveness guarantees. Fork* consistency allows forked groups of processes

to observe at most one common operation issued by a certain correct process.

Fork*(F) ≜ ReadYourWrites ∧ RealTime ∧ AtMostOneJoin ∧ RVal(F) (2.39)

where

AtMostOneJoin ≜∀ai, aj ∈ H : ai ̸≈ss aj ∧ (ai, aj) ∈ ar \ vis ⇒

∧ |{bi ∈ H : ai ⪯so bi ∧ (∃bj ∈ H : aj ⪯so bj ∧ bi
vis−→ bj}| ≤ 1

∧ |{bj ∈ H : aj ⪯so bj ∧ (∃bi ∈ H : ai ⪯so bi ∧ bj
vis−→ bi}| ≤ 1

(2.40)

Notice that, unlike fork-linearizability, fork* does not respect the monotonicity of reads (and

hence PRAM) [73].

Fork-sequential consistency [196, 72] requires that whenever an operation becomes visible

to multiple processes, all these processes share the same history of operations occurring before

that operation. Therefore, whenever a process reads a certain value written by another process,

the reader is guaranteed to share with the writer process the set of visible operations that

precede that write operation. Essentially, similarly to sequential consistency, a global order of

operations is ensured, up to a common visible operation. Formally:

ForkSeqential(F) ≜ PRAM ∧ NoJoin ∧ RVal(F) (2.41)

Mahajan et al. [184] define fork-join causal consistency (FJC) as a weaker variant of causal

consistency that can preserve safeness and availability in spite of Byzantine faults. In a fork-join

causal consistent storage system if a write operation op issued by a correct process depends

on a write operation op′ issued by any process, then, at every correct process, op′ becomes

visible before op. In other words, FJC enforces causal consistency among correct processes, and

allows partitioned groups of processes to reconcile their histories through merging policies.

Furthermore, inconsistent writes by a Byzantine process are treated as concurrent writes by



30 CHAPTER 2. Consistency in Non-Transactional Distributed Storage Systems

multiple virtual processes. Bounded fork-join causal [185] refines this by limiting the number

of forks accepted from a faulty node, thus bounding the number of virtual nodes needed to

represent a faulty node.

Finally, weak fork-linearizability [73] relaxes fork-linearizability in two ways: (1) after

being partitioned, two processes may share the visibility of one more operation (i.e. at-most-

one-join, as in fork* consistency), and (2) the real-time order of the last visible operation by

each process might not be preserved (i.e. weak real-time order). This enables improved liveness

guarantees (i.e. wait freedom). Weak fork-linearizability can be expressed as:

WeakForkLin(F) ≜ PRAM ∧ K-RealTime(2) ∧ AtMostOneJoin ∧ RVal(F) (2.42)

where K-RealTime(2) predicate is similar to K-RealTimeReads(2) defined in Equation 2.36,

but generalized to all operations (i.e. with quantifier ∀op ∈ H). We note that weak fork-

linearizability and fork* consistency are incomparable [73].

2.3.8 Composite and tunable semantics

To bridge the gap between strongly consistent and efficient implementations, several works

propose consistency models that use different semantics in an adaptive fashion according to the

tradeoffs between performance and correctness.
10

The idea of distinguishing operations’ consistency requirements by their semantics dates

back to the shared-memory systems era. In that context, consistency models that employed

different ordering constraints depending on operation type (e.g., acquire and release, rather than

read/write data accesses) were called hybrid, whereas those that did not were referred to as

uniform [193, 103, 116].

A similar approach was used by Attiya and Friedman [27] for consistency of shared-memory

multiprocessors. Hybrid consistency is defined as a model requiring a concerted adoption of

weak and strong consistency semantics. In a hybrid consistent system, strong operations are

guaranteed to be seen in some sequential order by all processes (as in sequential consistency),

whereas weak operations are designed to be fast, and they eventually become visible by all

processes (much like in eventual consistency). Weak operations, however, are ordered with

respect to strong operations: if two operations belong to the same session and one of them is

strong, then their relative order is the same for all processes.

In a similar manner, Ladin et al. [156] assign an ordering type to each operation: causal

operations respect causality ordering among them; forced operations are delivered in the same

order at all relicas; immediate operations are performed as they return and they are delivered

by each replica in same order with respect to all other operations.

10

We do not formulate formal definitions for tunable semantics considering that they can be expressed by

combining the logical predicates reported in the rest of the paper.
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Eventual serializability
11
is described by Fekete et al. [109]. It requires a partial ordering

of operations that is gradually strengthened, and eventually settles to a total order. A given

operation is strict or non-strict. A strict operation is required to be stable as soon as it returns,

whereas non-strict ones may be reordered afterwards. An operation is said to be stable if the

prefix of operations preceding it has reached its final total order. Fekete et al. [109] envision an

implementation in which a process attaches to an invoked operation the list of identifiers of

operations that must be ordered before such operation, and a flag that indicates its type (i.e.

strict or non-strict). The final global and total order of operations is similar to the sequential

consistency ordering as no notion of real-time is involved.

Similarly, Serafini et al. [212] distinguish strong and weak operations. While strong opera-

tions are immediately linearized, weak ones are linearized only eventually. Weak operations

are thus said to respect eventual linearizability. Weak operations are designed to terminate

despite failures, and therefore they can be temporarily ordered in an arbitrary manner, thus

violating linearizability. Ultimately, all operations gravitate towards a total order that satisfies

real-time constraints.

Krishnamurthy et al. [155] propose a QoS model that allows client applications of a dis-

tributed storage system to express their consistency requirements. Accordingly, a client is

directed towards a specific group of replicas implementing synchronous or lazy replication

schemes, thus applying strong or weak consistency semantics. This system is said to provide

tunable consistency.

In the same vein, Li et al. [170] propose RedBlue consistency. With RedBlue consistency

operations are flagged as blue or red depending on several conditions such as their commuta-

tivity and the respect of invariants. According to such classification, operations are executed

locally and lazily replicated, or serialized through synchronous coordination. Furthermore, all

operations respect causal consistency and operations marked as red follow a total order among

themselves. In a follow-up work, Li et al. [171] implement and evaluate a system that relieves

the programmer from having to choose the right consistency for each operation, by exploiting

static and dynamic code analysis.

Yu and Vahdat [249] propose a consistency spectrum based on three metrics: staleness,

order error and numerical error. These metrics are embedded in a conit (portmanteau of

“consistency unit”), which is a three-dimensional vector that quantifies the divergence from an

ideal linearizable execution. Numerical error accounts for the number of writes that are already

globally applied but not yet propagated to a given replica. Order error quantifies the number of

writes at any replica that are subject to reordering, while staleness bounds the real-time delay

of writes propagation. These metrics aim to capture the fundamental dimensions of consistency

on the general requirement of agreement on state and update ordering. Note that, according

11

We remark that, despite its name, eventual serializability is defined for non-transactional storage systems.



32 CHAPTER 2. Consistency in Non-Transactional Distributed Storage Systems

to this model, and unlike timed consistency (see Section 2.3.6), time-based staleness is defined

from replicas’ viewpoint rather than with respect to the timing of individual operations.

Similarly, Santos et al. [211] quantify the divergence of data object replicas by using a

three-dimensional consistency vector. Originally designed for distributed multiplayer games,

vector-field consistencymandates for each object a vector κ = [θ, σ, ν] that bounds its staleness

in a particular view of the virtual world. In particular, the vector establishes the maximum

divergence of replicas in time (θ), number of updates (σ), and object value (ν). Unlike conit, this

model brings about a notion of locality-awareness as it describes consistency as a vector field

deployed throughout a virtual environment.

Later works put forward tunable consistency as a suitable model for cloud storage, since

it enables more flexible quality of service (QoS) policies and service-level agreements (SLAs).

Kraska et al. [154] propose consistency rationing, which entails adapting the consistency

level at runtime by considering economic concerns. Similarly, Chihoub et al. [79] explore

the possibility of a self-adaptive protocol that dynamically adjusts consistency to meet the

application needs. In a sequent work, Chihoub et al. [80] add the monetary cost to the equation

and study its tradeoffs with consistency in cloud settings. Terry et al. [230] advocate the use

of declarative consistency-based SLAs that allows users of cloud key-value stores to attain an

improved awareness of the inherent performance-correctness tensions. A similar approach has

been subsequently implemented as a declarative programming model for tunable consistency

by Sivaramakrishnan et al. [219].

In an attempt at proposing stronger semantics for geo-replicated storage, Balegas et al. [41]

introduce explicit consistency. Besides providing eventual consistency, explicit consistency

ensures that application-specific correctness rules (i.e. invariants) be respected during executions.

In a follow-up work, Gotsman et al. [125] propose a proof rule to assign fine-grained restrictions

on operations in order to respect data integrity invariants.

Finally, in the context of composite consistency models, it is worth mentioning systems

that turn eventual consistency of data (offered by modern cloud storage services) into stronger

semantics, by relying on small volumes of metadata kept in a separate linearizable store. In

independent efforts, this technique was recently proposed under the names of consistency

anchoring [54] and consistency hardening [98] — a full-fledged system implementing the latter

is described in Chapter 3.

2.3.9 Per-object semantics

Per-object (or per-key) semantics have been defined to express consistency constraints on a

per-object basis. Intuitively, per-object ordering semantics allow for more efficient implementa-

tions than global ordering semantics, by taking advantage of techniques such as sharding and

state partitioning.
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Slow memory, defined by Hutto and Ahamad [143], is a weaker variant of PRAM consis-

tency. It requires that all processes observe the writes of a given process to a given object in the

same order. In other words, slow memory is a per-object weakening of PRAM consistency:

PerObjectPRAM ≜ (so ∩ ob) ⊆ vis (2.43)

An important concept in the family of per-object semantics is coherence [116] (or cache

consistency [124]), which was first introduced as correctness condition of memory hierarchies in

shared-memory multiprocessor systems [103]. Coherence ensures that what has been written to

a specific memory location becomes visible in some sequential order by all processors, possibly

through their local caches. In other words, coherence requires operations to be globally ordered

on a per-object basis. A very similar concept has been adopted in recent work [90, 177] as

per-record timeline consistency. This condition, described in relation to replicated storage,

ensures that for each individual key (or object), all processes observe the same ordering of

operations. Formally, we capture such condition with the following predicate:

PerObjectSingleOrder ≜

∃H ′ ⊆ {op ∈ H : op.oval = ∇} : ar ∩ ob = vis ∩ ob \ (H ′ ×H) (2.44)

A system in which executions respect ordering of operations by a certain process on each

object, and a global ordering of operations invoked on each object implements a semantics that

we could name per-object sequential consistency:

PerObjectSeqential(F) ≜

PerObjectSingleOrder ∧ PerObjectPRAM ∧ RVal(F) (2.45)

Processor consistency, defined by Goodman [124] and formalized by Ahamad et al. [10],

is expressed by two conditions: (a) writes issued by a process must be observed in the order

in which they were issued, and (b) if there are two write operations to the same object, all

processes observe these operations in the same order. These two conditions are in fact PRAM

and per-record timeline consistency, thus:

ProcessorConsistency(F) ≜ PerObjectSingleOrder ∧ PRAM ∧ RVal(F) (2.46)

Finally, some works [192] mention per-object linearizability, which is in fact equivalent to

linearizability on a per-object basis,due to its locality property [138].

We further note that one could compose other arbitrary consistency models by refining some

of the predicates mentioned in this work to match only operations performed on individual
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objects. As a case in point, Burckhardt et al. [68] describe per-object causal as: hbo ≜
((so ∩ ob) ∪ vis)+.

2.3.10 Synchronized models

For completeness, in this section we overview semantics defined in the ’80s and early ’90s in

order to establish correctness conditions of multiprocessor shared-memory systems. In order to

exploit the computational parallelism of these systems, and, at the same time, to cope with the

different performance of their components (e.g., memories, interconnections, processors, etc.),

buffering and caching layers were adopted. A fundamental challenge of this kind of architecture

is making sure that all memories reflect a common, consistent view of shared data. Thus, system

designers employed synchronization variables, i.e. special shared objects that only expose two

operations, named acquire and release. The synchronization variables are used as a generic

abstraction to implement logical fences meant to coordinate concurrent accesses to shared data

objects. In other words, synchronization variables protect the access to shared data through

mutual exclusion by means of low level primitives (e.g., locks) or high-level language constructs

(e.g., critical sections). While the burden of using these tools is left to the programmer, the

system is supposed to distinguish the shared data accesses from those to the synchronization

variables, possibly by implementing and exposing specific low level instructions. We note that

some of the semantics defined in this section have inspired the models in use in modern CPUs

to describe instruction reorderings that can be applied for throughput optimization.

Sequential consistency [161] (which we defined in Section 2.3.3) was originally adopted as

ideal correctness condition for multiprocessors shared-memory systems. Weak ordering
12
as

described by Dubois et al. [103], represents a convenient weakening of sequential consistency

that introduces performance improvements. In a system that implements weak ordering: (a) all

accesses to synchronization variables must be strongly ordered, (b) no access to a synchronization

variable is allowed before all previous reads have been completed, and (c) processes cannot

perform reads before issuing an access to a synchronization variable. In particular, Dubois

et al. [103] define operations as strongly ordered if they comply with two specific criteria about

session ordering and relatively to some special instructions supported by pipelined cache-based

systems. Weak ordering has been subsequently redefined in terms of coordination requirements

between software and hardware. Namely, Adve and Hill [5] define a synchronization model as

a set of constraints on memory accesses that specify how and when synchronization needs

to be enforced. Given this definition, “a hardware is weakly ordered with respect to a given

synchronization model if and only if it appears sequentially consistent to all software that obey the

synchronization model.”

12

Some works in literature refer to weak ordering as to “weak consistency.” We chose to avoid this equivocation

by adopting its original nomenclature.
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Release consistency [116] is a weaker extension of weak ordering that exploits detailed

information about synchronization operations and non-synchronization accesses. Operations

have to be labeled before execution by the programmer (or the compiler) as strong or weak.

Hence, this widens the classification operated by weak ordering, which included just synchro-

nization and non-synchronization labels. Similarly to hybrid consistency (see Section 2.3.8),

strong operations are ordered according to processor or sequential consistency, whereas weak

operations are restricted by the relative ordering of strong operations invoked by the same

process.

Subsequently, several algorithms that slightly alter the original implementation of release

consistency have been proposed. For instance, lazy release consistency [150] relaxes release

consistency by postponing the enforcing of consistency from the release to the next acquire

operation. The rationale of lazy release consistency is reducing the number of messages and

the amount of data exchanged for coordination. Along the same lines, the protocol called

automatic update release consistency [144] aims at improving performance over software-only

implementations of lazy release consistency, by using a virtual memory mapped network

interface.

Bershad and Zekauskas [51] define entry consistency by strengthening the relation between

synchronization objects and the data which they guard. According to entry consistency, every

object has to be guarded by a synchronization variable. Thus, in a sense, this model is a location-

relative weakening of a consistency semantic, similarly to the models surveyed in Section 2.3.9.

Moreover, entry consistency operates a further distinction of the synchronization operations in

exclusive and non-exclusive. Thanks to these features, reads can occur with a greater degree of

concurrency, thus enabling better performance.

Scope consistency [145] claims to offer most of the potential performance advantages of

entry consistency, without requiring explicit binding of data to synchronization variables. The

key intuition of scope consistency is the use of an abstraction called scope to implicitly capture

the relationship between data and synchronization operations. Consistency scopes can be

derived automatically from the use of synchronization variables in the program, thus easing the

work of programmers.

With the definition of location consistency, Gao and Sarkar [115] forwent the basic as-

sumption of memory coherence [116], i.e. the property that ensures that all writes to the same

object are observed in the same order by all processes (see Section 2.3.9). Thus, they explored

the possibility of executing multithreaded programs by just enforcing a partial order on writes

to shared data. Similarly to entry consistency, in location consistency each object is associated

to a synchronization variable. However, thanks to the relaxed ordering constraint, Gao and

Sarkar [115] prove that location consistency is more efficient and equivalently strong when it is

applied to settings with low data contention between processes.
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2.4 Related work

Several works in literature have provided overviews of consistency models. In this section,

we discuss these works and classify them according to their different perspectives.

Shared-memory systems Gharachorloo et al. [116] proposed a classification of shared mem-

ory access policies, specifically regarding their concurrency control semantics (e.g., the use

of synchronization operations versus read/write accesses). Mosberger [193] adopted this clas-

sification to conduct a study on the memory consistency models popular at that time and

their implementation tradeoffs. Adve and Gharachorloo [6] summarized in a practical tutorial

the informal definitions and related issues of consistency models most commonly adopted in

shared-memory multiprocessor systems.

Several subsequent works developed uniform frameworks and notations to represent consis-

tency semantics defined in literature [7, 205, 43]. Most notably, Steinke and Nutt [222] provide

a unified theory of consistency models for shared memory systems based on the composition of

few fundamental declarative properties. In turn, this declarative and compositional approach

outlines a partial ordering over consistency semantics. Similarly, a treatment of composability

of consistency conditions has been proposed in [112]. On this subject, in Chapter 3 we illustrate

the design and evaluation of Hybris, a storage system that takes advantage of a composition of

different semantics.

While all these works proved to be valuable and formally sound, they represent only a

limited portion of the consistency semantics relevant to modern non-transactional storage

systems.

Distributed database systems In more recent years, researchers have proposed catego-

rizations of the most influential consistency models for modern storage systems. Namely,

Tanenbaum and van Steen [226] proposed the client-centric versus data-centric classification,

while Bermbach and Kuhlenkamp [46], expanded such classification and provided descriptions

for the most popular models. While practical and instrumental in attaining a good under-

standing of the consistency spectrum, these works propose informal treatments based on a

simple dichotomous categorization which falls short of capturing some important consistency

semantics. With the survey presented in this chapter, we aim at improving over these works,

as we adopt a formal model based on first-order logic predicates and graph theory. We derive

this model from the one proposed by Burckhardt [65], which we refined and expanded in order

to enable the definition of a wider and richer range of consistency semantics. In particular,

whereas Burckhardt [65] focuses mostly on session and eventual semantics, we cover a broader

ground, including more than 50 different consistency semantics. We further note that some of

our definitions — notably, those of sequential consistency, causal consistency and the session
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guarantees — differ from those provided by Burckhardt, as we strived to provide a more accurate

correspondence with the original definitions.

Measuring consistency In a concurrent trend, researchers have been straining to design

uniform and rigorous frameworks to measure consistency in both shared memory systems and,

more recently, in distributed database systems. Namely, while someworks have proposedmetrics

to assess consistency [249, 123], others have devised methods to verify, given an execution,

whether it satisfies a certain consistency model [191, 118, 23]. Finally, due to the loose definitions

and opaque implementations of eventual consistency, recent research has tried to quantify its

inherent anomalies as perceived from a client-side perspective [239, 198, 47, 203, 181]. In this

regard, our work provides a more comprehensive and structured overview of the metrics that

can be adopted to evaluate consistency. As an example, in Chapter 4 we describe a principled

approach to consistency verification based on this framework.

Transactional systems Readers interested in pursuing a formal treatment of consistency

models for transactional storage systems may refer to [8]. Similarly, other works by Harris

et al. [134] and by Dziuma et al. [105] complement this survey with overviews on semantics

specifically designed for transactional memory systems. Finally, some recent research [67, 77, 78]

adopted variants of the same framework used in this chapter to propose axiomatic specifications

of transactional consistency models.
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2.5 Summary

In this chapter, we presented a comprehensive overview of the consistency models for non-

transactional storage systems. Thanks to our principled approach, we were able to highlight

subtle yet meaningful differences among consistency models, which will help scholars and

practitioners attain a better understanding of the tradeoffs involved.

In order to describe consistency semantics, we adopted a mathematical framework based

on graph theory and first-order logic. We developed such formal framework as an extension

and refinement of the one proposed by Burckhardt [65]. The framework elements aptly capture

the interplay of different factors involved in the executions of distributed storage systems.

We used this framework to propose formal definitions for the most popular of the over 50

consistency semantics we analyzed. For the rest of them, we presented informal descriptions

which provide insights about their feature and relative strengths. Moreover, we clustered

semantics according to criteria which account for their natures and common traits. In turn, both

the clustering and the formal definitions helped us building a partial ordering of consistency

models (see Figure 2.1). We believe this partial ordering of semantics will prove convenient both

in designing more precise and coherent models, and in evaluating and comparing the correctness

of systems already in place. In this regard, in Chapter 4 we will introduce a declarative approach

to consistency verification based on the model just described.

As further contribution, we provide in Appendix C an ordered list of all semantics analyzed

in this work, along with references to articles containing their definitions or describing their

implementations in research literature. Finally, Appendix A conveniently lists all the logic

predicates formulated in this section.



Chapter 3

Robust and Strongly Consistent

Hybrid Cloud Storage

In this chapter, we present Hybris: a hybrid cloud storage system that improves over the

reliability of modern cloud storage, and offers stronger consistency semantics (i.e. linearizability —

which we formally defined in Sec. 2.3.1). We illustrate Hybris’ design and evaluate its performance

in different contexts and with respect to state-of-the-art prototypes. In Appendix D we detail the

correctness proofs and algorithms of Hybris.

3.1 Introduction

Hybrid cloud storage entails storing data on private premises as well as on one (or more)

remote, public cloud storage platforms. To enterprises, such hybrid design brings the best of

both worlds: the benefits of public cloud storage (e.g., elasticity, flexible payment schemes

and disaster-safe durability), in addition to a fine-grained control over confidential data. For

example, an enterprise can keep private data on premises while storing less sensitive data at

potentially untrusted public clouds. In a sense, the hybrid cloud approach eliminates to a large

extent various security concerns that companies have with entrusting their data to commercial

clouds [236]. As a result, enterprise-class hybrid cloud storage solutions are booming, with all

leading storage providers, such as Dell EMC,
1
IBM,

2
NetApp,

3
Microsoft

4
and others, offering

proprietary solutions.

Besides security and trust concerns, storing data on a single cloud presents issues related to

reliability [128], performance, vendor lock-in [26, 4], as well as consistency, since cloud storage

1https://www.emc.com/en-us/cloud/hybrid-cloud-computing/index.htm.

2https://www.ibm.com/cloud-computing/bluemix/hybrid.
3http://www.netapp.com/us/solutions/cloud/hybrid-cloud/index.aspx.
4https://www.microsoft.com/en-us/cloud-platform/hybrid-cloud.
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services are notorious for typically providing only eventual consistency [237, 48]. To address

these concerns, several research works considered storing data robustly in public clouds, by

leveraging multiple cloud providers [26, 238]. In short, these multi-cloud storage systems, such

as DepSky [53], ICStore [42], SPANStore [245] and SCFS [52], leverage multiple public cloud

providers to distribute trust, increase reliability, availability and consistency guarantees. A

significant advantage of the multi-cloud approach is that it is implemented on the client side

and as such, it demands no big investments into additional storage solutions.

However, existing robust multi-cloud storage systems suffer from serious limitations. Often,

the robustness of these systems is limited to tolerating cloud outages, but not arbitrary or

malicious behavior in clouds (e.g., data corruptions) [42, 245]. Other multi-cloud systems that do

address arbitrary faults [53, 52] require prohibitive costs, as they rely on 3f + 1 clouds to mask

f faulty ones. This is a significant overhead with respect to tolerating only cloud outages, which

makes these systems expensive to use in practice. Moreover, all existing multi-cloud storage

systems scatter metadata across public clouds, increasing the difficulty of storage management,

and impacting performance and costs.

In this chapter, we unify the hybrid and the multi-cloud approaches, and present Hybris,
5

the first robust hybrid cloud storage system. By combining the hybrid cloud with the multi-

cloud, Hybris effectively brings together the benefits of both paradigms, thereby increasing

security, reliability and consistency. Additionally, the design of Hybris allows to withstand

arbitrary cloud faults at the same price of tolerating only outages. Hybris exposes the de facto

standard key-value store API, and is designed to seamlessly replace popular storage services

such as Amazon S3 as backend of modern cloud applications. The key idea behind Hybris is to

keep the metadata on private premises, including metadata related to data outsourced to public

clouds. This approach not only grants more control over the data scattered across different

public clouds, but also allows Hybris to significantly outperform existing multi-cloud storage

systems, both in terms of system performance (e.g., latency) and storage cost, while providing

strong consistency guarantees.

In summary, the salient features of Hybris are the following:

Tolerating cloud malice at the price of outages Hybris puts no trust in any public cloud

provider. Namely, Hybris can mask arbitrary (including malicious) faults of up to f

public clouds by replicating data on as few as f + 1 clouds in the common case (when

the system is synchronous and without faults). In the worst case, that is, to cope with

network partitions, cloud inconsistencies and faults, Hybris uses up to f additional clouds.

This is in sharp contrast with existing multi-cloud storage systems that require up to

3f +1 clouds to mask f malicious ones [53, 52]. Additionally, Hybris uses symmetric-key

5

Hybris, sometimes also transliterated from ancient Greek as ‘hubris’, means extreme pride or arrogance. In

Greek mythology, Hybris describes heroic mortals striving to surpass the boundaries of their mortal nature, and/or

defy the authority of gods.
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encryption to preserve the confidentiality of outsourced data. The required cryptographic

keys are stored on trusted premises and shared through the metadata service.

Efficiency Hybris is efficient and incurs low cost. In the common case, a Hybris write involves

as few as f +1 public clouds, whereas a read involves only a single cloud, even though all

clouds are untrusted. Hybris achieves this using cryptographic hashes, andwithout relying

on expensive cryptographic primitives. By storing metadata on local premises, Hybris

avoids the expensive round-trips for lightweight operations that plagued previous multi-

cloud systems. Finally, Hybris optionally reduces storage requirements by supporting

erasure coding [208], at the expense of increasing the number of clouds involved.

Scalability The potential pitfall of adopting such a compound architecture is that private

resources may represent a scalability bottleneck. Hybris avoids this issue by keeping

the metadata footprint very small. As an illustration, the replicated variant of Hybris

maintains about 50 bytes of metadata per key, which is an order of magnitude smaller than

comparable systems [53]. As a result, the Hybris metadata service, residing on trusted

premises, can easily support up to 30k write ops/s and nearly 200k read ops/s, despite

being fully replicated for fault tolerance. Moreover, Hybris offers per-key multi-writer

multi-reader capabilities thanks to wait-free [136] concurrency control, further boosting

the scalability of Hybris compared to lock-based systems [245, 53, 52].

Strong consistency Hybris guarantees linearizability (i.e. atomic consistency) [139] of reads

and writes even though public clouds may guarantee no more than eventual consistency

[237, 48]. Weak consistency is an artifact of the high availability requirements of cloud

platforms [120, 60], and is often cited as a major impediment to cloud adoption, since

eventually consistent stores are notoriously difficult to program and reason about [33].

Even though some cloud stores have recently started offering strongly consistent APIs,

this offer usually comes with significantly higher monetary costs (for instance, Amazon

charges twice the price for strong consistency compared to weak [20]). In contrast, Hybris

is cost-effective as it relies on strongly consistent metadata within a private cloud, which

is sufficient to mask inconsistencies of the public clouds. In fact, Hybris treats a cloud

inconsistency simply as an arbitrary fault. In this regard, Hybris implements one of

the few known ways of composing consistency semantics in a practical and meaningful

fashion.

We implemented Hybris as a Java application library.
6
To maintain its code base small and

facilitate adoption, we chose to reliably replicate metadata by layering Hybris on top of the

Apache ZooKeeper coordination service [142]. Hybris clients act simply as ZooKeeper clients —

our system does not entail any modifications to ZooKeeper, hence easing its deployment. In

6

The Hybris prototype is released as open source software [106].
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addition, we designed Hybris metadata service to be easily portable from ZooKeeper to any

SQL-based replicated RDBMS as well as NoSQL data store that exports a conditional update

operation. As an example, we implemented an alternative metadata service using the Consul

coordination service [87]. We evaluated Hybris using both micro-benchmarks and the YCSB

[91] benchmarking framework. Our evaluation shows that Hybris significantly outperforms

state-of-the-art robust multi-cloud storage systems, with a fraction of the cost and stronger

consistency guarantees.

The rest of this chapter is organized as follows. In Section 3.2, we present the Hybris

architecture and system model. Then, in Section 3.3, we provide the algorithmic details of the

Hybris protocol. In Section 3.4 we discuss Hybris implementation and optimizations, on whose

performance we report in Section 3.5. We provide a discussion on related work in Section 3.6.

Pseudocode of algorithms and correctness arguments are postponed to Appendix D.
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3.2 Hybris overview

The high-level design of Hybris is presented in Figure 3.1. Hybris mixes two types of

resources: 1) private, trusted resources that provide computation and limited storage capabilities

and 2) virtually unlimited untrusted storage resources in outsourced clouds. We designed Hybris

to leverage commodity cloud storage APIs that do not offer computation services, e.g., key-value

stores like Amazon S3.

Zookeeper (ZK)

Hybris
Reliable MetaData Service

(RMDS)

Hybris  client

ZK client

Distributed cache
(e.g., memcached)

Hybris  client

ZK client

Hybris  client

ZK client

trust
boundary

trusted
private cloud

untrusted 
public clouds 

data

data

metadata

Figure 3.1 – Hybris architecture. Reused (open-source) components are depicted in grey.

Hybris stores data and metadata separately. Metadata is stored within the key component

of Hybris called Reliable MetaData Service (RMDS). RMDS has no single point of failure and is

assumed to reside on private premises.
7

On the other hand, data is stored on untrusted public clouds. Hybris distributes data across

multiple cloud storage providers for robustness, i.e. to mask cloud outages and malicious faults.

In addition, Hybris caches data locally on private premises. While different caching solutions

exist, our reference implementation uses Memcached [190], an open source distributed caching

system. Finally, at the heart of the system is the Hybris client, whose library orchestrates

the interactions with public clouds, RMDS and the caching service. The Hybris client is also

responsible for encrypting and decrypting data, leveraging RMDS in order to share encryption

keys (see Sec. 3.3.8).

In the following sections, we first specify our system model and assumptions. Then we

define the Hybris data model and specify its consistency and liveness semantics.

3.2.1 System model

Fault model We assume a distributed system where any of the components might fail. In

particular, we assume a dual fault model, where: (i) the processes on private premises (i.e. in

7

We discuss and evaluate the deployment of RMDS across geographically distributed (yet trusted) data centers in

Section 3.5.4.
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the private cloud) can fail by crashing,
8
and (ii) we model public clouds as prone to arbitrary

failures, including malicious faults [199]. Processes that do not fail are called correct.

Processes on private premises are clients and metadata servers. We assume that any number

of clients and any minority of metadata servers can be (crash) faulty. Moreover, to guarantee

availability despite up to f (arbitrary) faulty public clouds, Hybris requires at least 2f +1 public

clouds in total. However, Hybris consistency (i.e. safety) is maintained regardless of the number

of faulty public clouds.

For simplicity, we assume an adversary that can coordinate malicious processes as well as

process crashes. However, the adversary cannot subvert the cryptographic hash (e.g., SHA-2),

and it cannot spoof communication among non-malicious processes.

Timing assumptions Similarly to our fault model, our communication model is dual, with its

boundary coinciding with the trust boundary (see Fig. 3.1). Namely, we assume communication

within the private portion of the system as partially synchronous [104] (i.e. with arbitrary but

finite periods of asynchrony), whereas communication between clients and public clouds is

entirely asynchronous (i.e. does not rely on any timing assumption) yet reliable, with messages

between correct clients and clouds being eventually delivered.

We believe that our dual fault and timing assumptions reasonably reflect typical hybrid

cloud deployment scenarios. In particular, the accuracy of this model finds confirmations in

recent studies about performance and faults of public clouds [128] and on-premise clusters [76].

Consistency Our consistency model is also dual. We model processes on private premises as

classical state machines, with their computation proceeding in indivisible, atomic steps. On

the other hand, we model clouds as eventually consistent stores [48] (see Sec. 2.3.2). Roughly

speaking, eventual consistency guarantees that, if no new updates are made to a given data

item, eventually all accesses to that item will return the last updated value [237].

3.2.2 Hybris data model and semantics

Similarly to commodity public cloud storage services, Hybris exposes a key-value store

(KVS) API. In particular, the Hybris address space consists of flat containers, each holding

multiple keys. The KVS API consists of four main operations: (i) put(cont, key, value),

to put value under key in container cont; (ii) get(cont, key), to retrieve the value associ-

ated with key; (iii) delete(cont, key) to remove the key entry and (iv) list(cont) to list the

keys present in container cont. Moreover, Hybris supports transactional writes through the

tput(cont, ⟨keylst⟩, ⟨valuelst⟩) API. We collectively refer to operations that modify storage

8

We relax this assumption by discussing the suitability of the cross fault tolerance (XFT) model [176] in §3.4.3. In

§3.5.3 we evaluate the performance of both crash fault and cross fault tolerant replication protocols.
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state (e.g., put, tput and delete) as write operations, whereas the other operations (e.g., get

and list) are called read operations.

Hybris implements a multi-writer multi-reader key-value storage, and is strongly consistent,

i.e. it implements linearizable [139] semantics (see Sec. 2.3.1). Linearizability (also known as

atomic consistency) provides the illusion that the effect of a complete operation op takes place

instantly at some point in time between its invocation and response. An operation invoked by

a faulty client might appear either as complete or not invoked at all. Optionally, Hybris can

be set to support weaker consistency semantics, which may enable better performance (see

Sec. 3.3.10).

Although it provides strong consistency, Hybris is highly available. Hybris writes are wait-

free, i.e. writes by a correct client are guaranteed to eventually complete [136]. On the other

hand, a Hybris read operation by a correct client will always complete, except in the corner case

where an infinite number of writes to the same key is concurrent with the read operation (this is

called finite-write termination [3]). Hence, in Hybris, we trade read wait-freedom for finite-write

termination and better performance. In fact, guaranteeing read wait-freedom reveals very costly

in KVS-based multi-cloud storage systems [42] and significantly impacts storage complexity.

We feel that our choice will not be limiting in practice, since FW-termination essentially offers

the same guarantees as wait-freedom for a large number of workloads.



46 CHAPTER 3. Robust and Strongly Consistent Hybrid Cloud Storage

3.3 Hybris Protocol

In this section we present the Hybris protocol. We describe in detail how data and meta-

data are accessed by clients in the common case, and how consistency and availability are

preserved despite failures, asynchrony and concurrency. We postpone the correctness proofs to

Appendix D.

3.3.1 Overview

The key part of Hybris is the Reliable MetaData Store (RMDS), which maintains metadata

associated with each key-value pair. Each metadata entry consists of the following elements:

(i) a logical timestamp, (ii) a list of at least f + 1 pointers to clouds that store value v, (iii) a

cryptographic hash of v (H(v)), and (iv) the size of value v.

Despite being lightweight, the metadata is powerful enough to allow tolerating arbitrary

cloud failures. Intuitively, the cryptographic hash within a trusted and consistent RMDS enables

end-to-end integrity protection: neither corrupted nor stale data produced by malicious or

inconsistent clouds are ever returned to the application. Additionally, the data size entry helps

prevent certain denial-of-service attack vectors by a malicious cloud (see Sec. 3.4.4).

Furthermore, Hybris metadata acts as a directory pointing to f + 1 clouds, thus enabling

a client to retrieve the correct value despite f of them being arbitrarily faulty. In fact, with

Hybris, as few as f + 1 clouds are sufficient to ensure both consistency and availability of read

operations (namely get; see Sec. 3.3.3). Additional f clouds (totaling 2f + 1 clouds) are only

needed to guarantee that writes (i.e. put) are available as well in the presence of f cloud outages

(see Sec. 3.3.2).

Finally, besides cryptographic hash and pointers to clouds, a metadata entry includes a

timestamp that induces a total order on operations which captures their real-time precedence

ordering, as required by linearizability. Timestamps are managed by the Hybris client, and

consist of a classical multi-writer tag [182] comprising a monotonically increasing sequence

number sn and a client id cid serving as tiebreaker.
9
The subtlety of Hybris lies in the way

it combines timestamp-based lock-free multi-writer concurrency control within RMDS with

garbage collection (Sec. 3.3.4) of stale values from public clouds (see Sec. 3.3.5 for details).

In the following we detail each Hybris operation. We assume that a given Hybris client

never invokes multiple concurrent operations on the same key.

9

We decided against leveraging server-managed timestamps (e.g., provided by ZooKeeper) to avoid constraining

RMDS to a specific implementation. More details about RMDS implementations can be found in Sec. 3.4.
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Figure 3.2 – Hybris put and get protocol (f = 1).
Common-case is depicted in solid lines.

3.3.2 put protocol

Hybris put protocol consists of the steps illustrated in Figure 3.2(a). To write a value v under

key k, the client first fetches the metadata associated with key k from RMDS. The metadata

contains timestamp ts = (sn, cidi) of the latest authoritative write to k. The client computes a

new timestamp tsnew = (sn+ 1, cid). Next, the client combines key k and timestamp tsnew to

a new key knew = k|tsnew and invokes put(knew, v) on f + 1 clouds in parallel. Concurrently,

the clients starts a timer, set to the observed upload latency for an object of the same size. In

the common case, the f +1 clouds reply before the timer expires. Otherwise, the client invokes

put(knew, v) on up to f secondary clouds (dashed arrows in Fig. 3.2(a)). Once the client has

received an ack from f +1 different clouds, it is assured that the put is durable and can proceed

to the final stage of the operation.

In the final step, the client attempts to store in RMDS the metadata associated with key

k, consisting of timestamp tsnew, cryptographic hash H(v), size of value v size(v), and the

list (cloudList) of pointers to those f + 1 clouds that have acknowledged storage of value v.

This final step constitutes the linearization point of put, therefore it has to be performed in a

specific way. Namely, if the client performs a straightforward update of metadata in RMDS,

then this metadata might be overwritten by metadata with a lower timestamp (i.e. the so-called

old-new inversion happens), breaking the timestamp ordering of operations and thus, violating

linearizability.
10

In order to prevent this, we require RMDS to export an atomic conditional

update operation. Hence, in the final step of Hybris put, the client issues a conditional update

to RMDS, which updates the metadata for key k only if the written timestamp tsnew is greater

than the one that RMDS already stores. In Section 3.4 we describe how we implemented

this functionality over Apache ZooKeeper API and, alternatively, in the Consul-based RMDS

instance. We note that any other NoSQL and SQL DBMS that supports conditional updates can

be adopted to implement the RMDS functionality.

10

Note that, since garbage collection (detailed in Sec. 3.3.4) relies on timestamp-based ordering to tell old values

from new ones, old-new inversions could even lead to data loss.
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3.3.3 get in the common case

The Hybris get protocol is illustrated in Figure 3.2(b). To read a value stored under key k,

the client first obtains from RMDS the latest metadata for k, consisting of timestamp ts, crypto-

graphic hash h, value size s, as well a list cloudList of pointers to f + 1 clouds that store the

corresponding value. The client selects the first cloud c1 from cloudList and invokes get(k|ts)
on c1, where k|ts denotes the key under which the value is stored. The client concurrently

starts a timer set to the typically observed download latency from c1 (given the value size s).

In the common case, the client is able to download the value v from the first cloud c1 before

expiration of its timer. Once it receives value v, the client checks that v matches the hash h

included in the metadata bundle (i.e. ifH(v) = h). If the value passes this check, then the client

returns it to the application and the get completes.

In case the timer expires, or if the value downloaded from the first cloud does not pass

the hash check, the client sequentially proceeds to downloading the data from another cloud

from cloudList (see dashed arrows in Fig. 3.2(b)) and so on, until it exhausts all f + 1 clouds

from cloudList. 11 In some corner cases, caused by concurrent garbage collection (described in

Sec. 3.3.4), failures, repeated timeouts (asynchrony), or clouds’ inconsistency, the client must

take additional actions, which we describe in Sec. 3.3.5.

3.3.4 Garbage collection

The purpose of garbage collection is to reclaim storage space by deleting obsolete versions of

objects from clouds while allowing read and write operations to execute concurrently. Garbage

collection in Hybris is performed by the client asynchronously in the background. Therefore,

the put operation can return control to the application without waiting for the completion of

garbage collection.

To perform garbage collection for key k, the client retrieves the list of keys prefixed by k

from each cloud as well as the latest authoritative timestamp ts. This involves invoking list(k|∗)
on every cloud and fetching the metadata associated with key k from RMDS. Then for each key

kold, where kold < k|ts, the client invokes delete(kold) on every cloud.

3.3.5 get in the worst-case

In the context of cloud storage, there are known issues with weak (e.g., eventual [237])

consistency — see Sec. 2.3.2. With eventual consistency, even a correct, non-malicious cloud

might deviate from linearizable semantics and return an unexpected value, typically a stale one.

11

As we discuss in details in Sec. 3.4, in our implementation, clouds in cloudList are ranked by the client by

their typical latency in ascending order. Hence, when reading, the client will first read from the “fastest” cloud from

cloudList and then proceed to slower clouds.
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In this case, the sequential common-case reading from f +1 clouds as described in Section 3.3.3

might not return the correct value, since the hash verification might fail at all f + 1 clouds. In

addition to the case of inconsistent clouds, this anomaly might also occur if: (i) the timers set by

the client for otherwise non-faulty clouds expire (i.e. in case of asynchrony or network outages),

and/or (ii) the values read by the client were concurrently garbage collected (see Sec. 3.3.4).

To address this issues, Hybris levereges strong metadata consistency to mask data inconsis-

tencies in the clouds, effectively allowing availability to be traded off for consistency. To this

end, the Hybris client indulgently reissues a get to all clouds in parallel, and waits to receive

at least one value matching the required hash. However, due to possible concurrent garbage

collection (Sec. 3.3.4), the client needs to make sure it always compares the values received

from clouds to the most recent key’s metadata. This can be achieved in two ways: (i) by simply

iterating over the entire get including metadata retrieval from RMDS, or (ii) by only repeating

the get operations at f + 1 clouds while fetching metadata from RMDS only when it actually

changes.

In Hybris, we adopt the latter approach. Notice that this implies that RMDS must be able to

inform the client proactively about metadata changes. This can be achieved by having a RMDS

that supports subscriptions to metadata updates, which is possible to achieve by using, e.g.,

Apache ZooKeeper and Consul (through the concept of watch, see Sec. 3.4 for details). This

worst-case protocol is executed only if the common-case get fails (Sec. 3.3.3), and it proceeds

as follows:

1. The client first reads the metadata for key k from RMDS (i.e. timestamp ts, hash h, size s

and cloud list cloudList) and subscribes for updates related to key k metadata.

2. The client issues a parallel get(k|ts) to all f + 1 clouds from cloudList.

3. When a cloud c ∈cloudList responds with value vc, the client verifies H(vc) against h.
12

(a) If the hash verification succeeds, the get returns vc.

(b) Otherwise, the client discards vc and reissues get(k|ts) to cloud c.

(*) At any point in time, if the client receives a metadata update notification for key k from

RMDS, it cancels all pending downloads, and repeats the procedure from step 1.

The completeHybris get, as described above, ensures finite-write termination [3] in presence

of eventually consistent clouds. Namely, a get may fail to return a value only theoretically,

i.e. in case of an infinite number of concurrent writes to the same key, in which case, garbage

collection might systematically and indefinitely often remove every written value before the

client manages to retrieve it.
13

We believe that this exceptional corner case is of marginal

importance for the vast majority of applications.

12

For simplicity, we model the absence of a value as a special NULL value that can be hashed.

13

Notice that it is straightforward to modify Hybris to guarantee read availability even in case of an infinite

number of concurrent writes, by switching off the garbage collection.
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3.3.6 Transactional put

Hybris supports a transactional put operation that writes atomically to multiple keys. The

steps associated with the transactional put operation are depicted in Figure 3.3.

Similarly to the normal put, the client first fetches the latest authoritative timestamps

[ts0...tsn] by issuing parallel requests to the RMDS for metadata of the concerned keys [k0...kn].

Each timestamp tsi is a tuple consisting of a sequence number sni and a client id cidi. Based

on timestamp tsi, the client computes a new timestamp tsi_new for each key, whose value is

(sni + 1, cidi). Next, the client combines each key ki and timestamp tsi_new to a new key

ki_new = ki|tsi_new and invokes put (ki_new, vi) on f + 1 clouds in parallel. This operation is

executed in parallel for each key to be written. Concurrently, the client starts a set of timers as

for the normal put. In the common case, the f + 1 clouds reply to the client for each key in a

timely fashion, before the timer expires. Otherwise, the client invokes put (ki_new, vi) to up to

f secondary clouds. Once the client has received acknowledgments from f + 1 different clouds

for each key, it is assured that the transactional put is durable and can thus proceed to the final

stage of the operation.

In the final step, the client stores in RMDS the updated metadata associated with each key

ki, consisting of the timestamp tsi_new, the cryptographic hash H(vi), and the list of pointers

to the f + 1 clouds that have correctly stored vi. As for the normal put operation, to avoid the

so-called old-new inversion anomaly, we employ the conditional update exposed by RMDS. The

metadata update succeeds only if, for each key ki the written timestamp tsi_new is greater than

the timestamp currently stored for key ki. In order to implement transactional atomicity, we

wrap the metadata updates into an RMDS transaction. Specifically, we employ the multi API

exposed by Apache ZooKeeper and the corresponding API in Consul. Thanks to this, if any

of the single write to RMDS fails, the whole transactional put aborts. In this case, the objects

written to the cloud stores are eventually erased by the normal garbage collection background

task.

In summary, this approach implements an optimistic transactional concurrency control that,

in line with the other parts of Hybris protocol, eschews locks to provide wait-freedom [136].
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3.3.7 delete and list

The Hybris delete and list operations are local to RMDS, and do not access public clouds.

In order to delete a value, the client performs the put protocol with the special cloudList

value ⊥ denoting the deletion. Deleting a value creates a metadata tombstone in RMDS, i.e.

metadata that lack corresponding values in the cloud stores. Metadata tombstones are necessary

to keep record of the latest authoritative timestamp associated with a given key, and to preserve

per-key timestamp monotonicity. Deleted values are eventually removed from cloud stores by

the normal garbage collection. On the other hand, the list operation simply retrieves from

RMDS all the keys in the container cont that are not associated with tombstone metadata.

3.3.8 Confidentiality

Ensuring data confidentiality
14

in Hybris is straightforward. During a put, just before

uploading data to f+1 public clouds, the client encrypts the data with a symmetric cryptographic

key kenc which is then added to the metadata bundle. The hash is then computed on the

ciphertext (rather than plaintext). The rest of put protocol remains unchanged. Notice that

the client may generate a new encryption key at each put, or reuse the key stored in RMDS by

previous put operations.

In order to decrypt data, a client uses the encryption key kenc retrieved with the metadata

bundle. Then, as the ciphertext downloaded from some cloud successfully passes the hash test,

the client decrypts the data using kenc.

3.3.9 Erasure coding

In the interest of minimizing bandwidth and storage space requirements, Hybris supports

erasure coding. Erasure codes have been shown to provide resilience to failures through

redundancy schemes which are significantly more efficient than replication [241]. Erasure

codes entail partitioning data into k > 1 blocks withm additional parity blocks. Each of the

k + m blocks takes approximately 1/k of the original storage space. If the erasure code is

information-optimal, the data can be reconstructed from any k blocks despite up to m erasures.

In the context of cloud storage, blocks can be stored on different clouds and erasures correspond

to arbitrary failures (e.g., network outages, data corruption, etc.). For simplicity, in Hybris we

fix m to equal f .

Deriving an erasure coding variant of Hybris from its replicated counterpart is relatively

straightforward. Namely, in a put operation, the client encodes original data into f + k erasure-

14

Oblivious RAM algorithms can provide further confidentiality guarantees by masking data access patterns

[221]. However, we decided not to integrate those algorithms in Hybris since they require performing additional

operations and using further storage space, which could hinder performance and significantly increase monetary

costs.
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coded blocks, and stores one block per cloud. Hence, with erasure coding, put involves f + k

clouds in the common case (instead of f + 1 with replication). Then, the client computes f + k

hashes (instead of a single hash as with replication) that are stored in the RMDS as part of the

metadata. Finally, the erasure-coded get fetches blocks from k clouds in the common case,

with block hashes verified against those stored in RMDS. In the worst case, Hybris with erasure

coding uses up to 2f + k (resp., f + k) clouds in put (resp., get) operations.

Finally, it is worth noting that in Hybris the parameters f and k are independent. This

offers more flexibility with respect to prior solutions which mandated k ≥ f + 1.

3.3.10 Weaker consistency semantics

A number of today’s cloud applications may benefit from improved performance in exchange

for weaker consistency guarantees. Over the years, researchers and practitioners have defined

these weaker consistency guarantees in a wide spectrum of semantics that we described in

Chapter 2. Hybris exposes this consistency vs performance tradeoff to the application developers

through an optional API. Specifically, Hybris implements two weaker consistency semantics:

read-my-writes and bounded staleness consistency.

Read-my-writes In read-my-writes consistency [228] a read operation invoked by some

client can be serviced only by replicas that have already applied all previous write operations

by the same client. E-commerce shopping carts are typical examples of applications that would

benefit from this consistency semantics. Indeed, customers only write and read their own cart

object, and are generally sensitive to the latency of their operations [131].

This semantics is implemented in Hybris by leveraging caching. Essentially, a write-through

caching policy is enabled in order to cache all the data written by each client. After a successful

put, a client stores the written data in Memcached, under the compound key used for the

clouds (i.e. ⟨k|tsnew⟩, see Sec. 3.3.2). Additionally, the client stores the compound key in a local

in-memory hash table along with the original one (i.e. k). Later reads will fetch the data from

the cache using the compound key cached locally. In this way, clients may obtaining previously

written values without incurring the monetary and performance costs entailed by strongly

consistent reads. In case of a cache miss, the client falls back to a normal read from the clouds

as discussed in Sec. 3.3.3 and 3.3.5.

Bounded staleness According to the bounded staleness semantics, the data read from a

storage system must be fresher than a certain threshold. This threshold can be defined in terms

of data versions [122], or real-time [233]. Web search applications are a typical use case of this

semantics, as they are latency-sensitive, yet they tolerate a certain bounded inconsistency.

Our bounded staleness protocol also makes use of the cache layer. In particular, to implement

time-based bounded staleness we cache the written object on Memcached under the original
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key k — instead of using, as for read-your-write, the compound key. Additionally, we instruct

the caching layer to evict all objects older than a certain expiration period ∆.
15

Hence, all

objects read from cache will abide the staleness restriction.

To implement version-based bounded staleness, we add a counter field to the metadata

stored on RMDS, accounting for the number of versions written since the last caching operation.

During a put, the client fetches the metadata from RMDS (as specified in Sec. 3.3.2) and reads

this caching counter. In case of successful writes to the clouds, the client increments the counter.

If the counter exceeds a predefined threshold η, the object is cached under its original key (i.e.

k) and the counter is reset. When reading, clients will first try to read the value from the cache,

thus obtaining, in the worst case, a value that is η versions older than the most recent one.

15

Similarly to Memcached, most modern off-the-shelf caching systems implement this functionality.
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3.4 Implementation

We implemented Hybris as an application library [106]. The implementation pertains solely

to the Hybris client side since the entire functionality of the metadata service (RMDS) is layered

on top of the Apache ZooKeeper client. Namely, Hybris does not entail any modification to the

ZooKeeper server side. Our Hybris client is lightweight and consists of about 3800 lines of Java

code. Hybris client interactions with public clouds are implemented by wrapping individual

native Java SDK clients (drivers) for each cloud storage provider into a common lightweight

interface that masks the small differences across the various storage APIs.
16

In the following, we first discuss in detail our RMDS implementation with ZooKeeper

and the alternative one using Consul; then we describe several Hybris optimizations that we

implemented.

3.4.1 ZooKeeper-based RMDS

We layered our referenceHybris implementation over Apache ZooKeeper [142]. In particular,

we durably store Hybris metadata as ZooKeeper znodes. In ZooKeeper, znodes are data objects

addressed by paths in a hierarchical namespace. For each instance of Hybris we generate a root

znode. Then, the metadata pertaining to Hybris container cont is stored under ZooKeeper path

⟨root⟩/cont. In principle, for each Hybris key k in container cont, we store a znode with path

pathk = ⟨root⟩/cont/k.
ZooKeeper offers a fairly modest API. The ZooKeeper API calls relevant to Hybris are the

following:

— create/setData(p, data) creates/updates a znode identified by path p with data.

— getData(p) is used to retrieve data stored under znode p.

— sync() synchronizes the ZooKeeper replica that maintains the client’s session with the

ZooKeeper leader, thus making sure that the read data contains the latest updates.

— getChildren(p) (only used in Hybris list) returns the list of znodes whose paths are

prefixed by p.

Finally, ZooKeeper allows several operations to be wrapped into a transaction, which is then

executed atomically. We used this API to implement the tput (transactional put) operation.

Besides data, znodes are associated to some specific ZooKeeper metadata (not be confused

with Hybris metadata, which we store as znodes data). In particular, our implementation

uses znode version number vn, that can be supplied as an additional parameter to the setData

16

Initially, our implementation relied on the Apache JClouds library [25], which roughly serves the main purpose

as our custom wrappers, yet covers dozens of cloud providers. However, JClouds introduces its own performance

overhead that prompted us to implement the cloud driver library wrapper ourselves.
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operation. In this way, setData becomes a conditional update operation, that updates a znode

only if its version number exactly matches the one given as parameter.

ZooKeeper linearizable reads In ZooKeeper, only write operations are linearizable [142].

In order to get the latest updates through the getData calls, the recommended technique consists

in performing a sync operation beforehand. While this normally results in a linearizable read,

there exists a corner case scenario in which another quorum member takes over as leader, while

the old leader, unaware of the new configuration due to a network partition, still services read

operations with possibly stale data. In such case, the read data would still reflect the update order

of the various clients but may fail to include recent completed updates. Hence, the “sync+read”

schema would result in a sequentially consistent read [161]. This scenario would only occur in

presence of network partitions (which are arguably rare on private premises), and in practice it

is effectively avoided through the use of heartbeats and timeouts mechanisms between replicas

[142]. Nonetheless, in principle, the correctness of a distributed algorithm should not depend

on timing assumptions. Therefore we implemented an alternative, linearizable read operation

through the use of a dummy write preceding the actual read. This dummy write, being a normal

quorum-based operation, synchronizes the state among replicas and ensures that the following

read operation reflects the latest updates seen by the current leader. With this approach, we trade

performance for a stronger consistency semantics (i.e. linearizability [139]). We implemented

this scheme as an alternative set of API calls for the ZooKeeper-based RMDS, and benchmarked

it in a geo-replicated setting (see Sec. 3.5.4) — as it represents the typical scenario in which this

kind of tradeoffs are most conspicuous. However, for simplicity of presentation, in the following

we only refer to the sync+read schema for getting data from the ZooKeeper-based RMDS.

Hybris put At the beginning of put(k, v), when the client fetches the latest timestamp ts

for k, the Hybris client issues a sync() followed by getData(pathk). This getData call returns,

besides Hybris timestamp ts, the internal version number vn of the znode pathk. In the final

step of put, the client issues setData(pathk,md, vn) which succeeds only if the version of znode

pathk is still vn. If the ZooKeeper version of pathk has changed, the client retrieves the new

authoritative Hybris timestamp tslast and compares it to ts. If tslast > ts, the client simply

completes a put (which appears as immediately overwritten by a later put with tslast). In case

tslast < ts, the client retries the last step of put with ZooKeeper version number vnlast that

corresponds to tslast. This scheme (inspired by [81]) is wait-free [136], thus always terminates,

as only a finite number of concurrent put operations use a timestamp smaller than ts.

Hybris get During get, the Hybris client reads metadata from RMDS in a strongly consistent

fashion. To this end, a client always issues a sync() followed by getData(pathk), just like in the

put protocol. In addition, to subscribe for metadata updates in get we use ZooKeeper watches
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(set by, e.g., getData calls). In particular, we make use of these notifications in the algorithm

described in Section 3.3.5.

3.4.2 Consul-based RMDS

In order to further study Hybris performance, we implemented an alternative version

of RMDS using Consul [87]. Like ZooKeeper, Consul is a distributed coordination service,

which exposes a simple key-value API to store data addressed in a URL-like fashion. Consul is

written in Go and implements the Raft consensus algorithm [195]. Unlike ZooKeeper, Consul

offers a service discovery functionality and has been designed to support cross-data center

deployments.
17

The implementation of the Consul RMDS client is straightforward, as it closely mimics

the logic described in Sec. 3.4.1 for ZooKeeper. Among the few relevant differences we note

that the Consul client is stateless and uses HTTP rather than a binary protocol. Furthermore,

Consul reads can be linearizable without the need for additional client operations to synchronize

replicas.

3.4.3 Cross fault tolerant RMDS

The recent widespread adoption of portable connected devices has blurred the ideal se-

curity boundary between trusted and untrusted settings. Additionally, partial failures due to

misconfigurations, software bugs and hardware failures in trusted premises have a record of

causing major outages in productions systems [94]. Recent research by Ganesan et al. [113]

has highlighted how in real-world crash fault tolerant stores even minimal data corruptions

can go undetected or cause disastrous cluster-wide effects. For all these reasons, it is arguably

sensible to adopt replication protocols robust enough to tolerate faults beyond crashes even in

trusted premises. Byzantine fault tolerant (BFT) replication protocols are an attractive solution

for dealing with these issues. However, BFT protocols are designed to handle failure modes

which are unreasonable for systems running in trusted premises, as they assume active and

even malicious adversaries. Besides, handling such powerful adversaries takes a high toll on

performance. Hence, several recent research works have proposed fault models that stand

somewhere in-between the crash and the Byzantine fault models. A prominent example of

this line of research is cross fault tolerance (XFT) [176], which decouples faults due to network

disruptions from arbitrary machine faults. Basically, this model excludes the possibility of an

adversary that controls both the network and the faulty machines at the same time. Thus,

it fittingly applies to systems deployed in private premises. Therefore, we implemented an

instance of RMDS that guarantees cross fault tolerance. We omit implementation details because,

17

Currently, the recommended way of deploying Consul across data centers is by using separate consensus

instances through partitioning of application data (see https://www.consul.io/docs/internals/consensus.html).

https://www.consul.io/docs/internals/consensus.html
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as the server side code is based on ZooKeeper [176], the client side logic closely mimics the one

implemented for the ZooKeeper-based RMDS.

3.4.4 Optimizations

Cloud latency ranking In our Hybris implementation, clients rank clouds by latency and

prioritize those that present lower latency. Hybris client then uses these cloud latency rankings

in common case to: (i) write to f + 1 clouds with the lowest latency in put, and (ii) to select

from cloudList the cloud with the lowest latency as preferred to retrieve objects in get. Initially,

we implemented the cloud latency ranking by reading once (i.e. upon initialization of the Hybris

client) a default, fixed-size (e.g., 100kB) object from each of the public clouds. Interestingly,

during our experiments, we observed that the cloud latency rank significantly varies with object

size as well as the type of the operation (put vs. get). Hence, our implementation establishes

several cloud latency rankings depending on the file size and the type of operation. In addition,

the Hybris client can be instructed to refresh these latency ranks when necessary.

Erasure coding Hybris integrates an optimally efficient Reed-Solomon codes implementation,

using the Jerasure library [202], by means of its JNI bindings. The cloud latency ranking

optimization remains in place with erasure coding. When performing a put, f + k erasure

coded blocks are stores in f + k clouds with lowest latency, whereas with get, k > 1 clouds

with lowest latency are selected (out of f + k clouds storing data chunks).

Preventing “Big File” DoS attacks A malicious preferred cloud might mount a DoS attack

against an Hybris client during a read by sending, instead of the correct object, an object of

arbitrary large size. In this way, a client would not detect a malicious fault until computing

a hash of the received file. To cope with this attack, the Hybris client saves object size s as

metadata on RMDS and cancels the downloads whose payload length exceeds s.

Caching Our Hybris implementation enables object caching on private portions of the system.

We implemented simple write-through cache and caching-on-read policies. With write-through

caching enabled, the Hybris client simply writes to cache in parallel to writing to the clouds.

On the other hand, with caching-on-read enabled, the Hybris client asynchronously writes

the get object to cache, upon returning it to the application. In our implementation, we use

Memcached distributed cache, which exports a key-value API just like public clouds. Hence, all

Hybris writes to the cache use exactly the same addressing as writes to public clouds (i.e. using

put(k|ts, v)). To leverage cache within a get, the Hybris client, after fetching metadata from

RMDS, always tries first to read data from the cache (i.e. by issuing get(k|ts) to Memcached).

Only in case of a cache miss, it proceeds normally with a get, as described in Sections 3.3.3
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and 3.3.5. Furthermore, Hybris can be instructed to use the caching layer to provide specific

consistency semantics weaker than linearizability, as described in Sec. 3.3.10.



3.5. Evaluation 59

3.5 Evaluation

In this section we evaluate Hybris performance, costs and scalability in various settings. In

detail, we present the following experiments:

1. An evaluation of common-case latency of Hybris compared to a a state-of-the-art multi-

cloud storage system [53], as well as to the latency of individual cloud providers (§3.5.1).

2. An evaluation of the get latency with one malicious fault in a public cloud (§3.5.2).

3. A scalability benchmark of the Hybris RMDS component in its crash fault and cross fault

tolerant implementations (§3.5.3).

4. A benchmark of RMDS scalability in a wide area deployment (§3.5.4).

5. An evaluation of Hybris caching performance using YCSB cloud serving benchmark [91]

(§3.5.5).

6. An assessment of Hybris as backend of a personal storage and synchronization application

(§3.5.6).

7. An estimate of the monetary costs of Hybris compared to alternatives (§3.5.7).

In all the following experiments, unless specified otherwise, caching is disabled. We focus

on the arguably most common and interesting case where f = 1 [92], i.e. where at most one

public cloud may exhibit arbitrary faults. Furthermore, we set the erasure coding reconstruction

threshold k to 2. Hybris clients interact with four cloud providers: Amazon S3, Rackspace

CloudFiles, Microsoft Azure and Google Cloud Storage. For each provider, we only used cloud

storage data centers located in Europe.

3.5.1 Experiment 1: common-case latency

In this experiment, we benchmark the common-case latency of Hybris and Hybris-EC

(i.e. Hybris using erasure coding instead of replication) with respect to those of DepSky-A,

DepSky-EC (i.e. a version of DepSky featuring erasure codes support) [53],
18

and the four

individual public clouds underlying both Hybris and DepSky.

Private cloud setup To perform this experiment and the next one (Sec. 3.5.2), we deployed

Hybris “private” components (namely, Hybris client, metadata service (RMDS) and cache) on

virtual machines (VMs) within an OpenStack
19
cluster that acts as our private cloud, located

in Sophia Antipolis, France. Our OpenStack cluster consists of: two master nodes running on

a dual quad-core Xeon L5320 server clocked at 1.86GHz, with 16GB of RAM, two 1TB RAID5

hard-drive volumes and two 1Gb/s network interfaces; nine worker nodes that execute on two

18

We used the open-source DepSky implementation available at http://cloud-of-clouds.github.io/depsky/.
19http://www.openstack.org/

http://cloud-of-clouds.github.io/depsky/
http://www.openstack.org/
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sixteen-core Intel Xeon CPU E5-2630 servers clocked at 2.4GHz, with 128GB of RAM, ten 1TB

disks and four 1Gb/s network cards.
20

We use the KVM hypervisor, and each machine in the

physical cluster runs the Juno release of OpenStack on top of a Ubuntu 14.04 Linux distribution.

We collocate ZooKeeper and Memcached (in their off-the-shelf default configurations) using

three VMs. Each VM has one quad-core virtual processor clocked at 2.40GHz, 8GB of RAM, one

PATA virtual hard drive, and it is connected to the others through a gigabit Ethernet network.

All VMs run the Ubuntu Linux 16.04 distribution images, updated with the most recent patches.

In addition, several OpenStack VMs with similar features are used for running clients. Each VM

has 100Mb/s internet connectivity for both upload and download bandwidths.

For this micro-benchmark we perform a set of independent put and get operations for data

sizes ranging from 100kB to 10MB. We repeated each experiment 30 times, and each set of get

and put operations has been performed one after the other in order to minimize side effects

due to internet routing and traffic fluctuations. Figures 3.4 and 3.5 show the boxplots of client

latencies, varying the size of the object to be written or read. In the boxplots, the central line

shows the median, the box corresponds to the 1st and 3rd quartiles, and whiskers are drawn at

the most extreme data points within 1.5 times the interquartile range from 1st and 3rd quartiles.
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Figure 3.4 – Latencies of get operations.

We observe that Hybris get latency (Fig. 3.4) closely follows those of the fastest cloud

storage provider, as in fact it downloads the object from that specific cloud, thanks to Hybris

cloud latency ranking (see Sec. 3.4). We further observe (Fig. 3.5) that Hybris put roughly

performs as fast as the second fastest cloud storage provider. This is expected since Hybris

uploads to clouds are carried out in parallel to the first two cloud providers previously ranked

by their latency.

Hybris-EC put uploads 3 chunks roughly half as large as the original payload, in parallel, to

the three fastest clouds. Notice that the overhead of computing the coding information and of

using a third cloud is amortized as the payload size increases. Similarly, Hybris-EC get retrieves

20

Our hardware and network configuration closely resembles the one recommended by commercial private cloud

providers.
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Figure 3.5 – Latencies of put operations.

chunks of about half the original size from the two fastest clouds in parallel. As for the put,

Hybris-EC get performance advantage increases as the payload size increases.

Notice that Hybris and Hybris-EC outperform the corresponding clients of DepSky in both

put and get operations. The difference is significant particularly for smaller to medium object

sizes (e.g., 100kB and 1MB). This is explained by the fact that Hybris stores metadata locally,

whereas DepSky needs to store and fetch metadata across clouds. With increased file sizes (e.g.,

10MB) latency merely due to payload takes over and the difference becomes less pronounced.

We further note that we observed, throughout the tests, a significant variance of clouds

performance, in particular for downloading large objects from Amazon and Rackspace. However,

thanks to its latency ranking, Hybris manages to mitigate the backlashes of this phenomenon

on the overall performance.

3.5.2 Experiment 2: latency under faults

In order to assess the impact of faulty clouds on Hybris get performance, we repeated

Experiment 1 with one cloud serving tampered objects. This experiment aims at stress testing

the common-case optimization of Hybris to download objects from a single cloud. In particular,

we focused on the worst case for Hybris, by injecting a fault on the closest cloud, i.e. the one

most likely to be chosen for the download because of its low latency. We injected faults by

manually tampering the data through an external client.

Figure 3.6 shows the download times of Hybris, Hybris-EC, DepSky-A and DepSky-EC for

objects of different sizes, as well as those of individual clouds, for reference. Hybris performance

is nearly the sum of the download times by the two fastest clouds, as the get downloads

happen, in this case, sequentially. However, despite its single cloud read optimization, Hybris

performance under faults remains comparable to that of DepSky variants that download objects

in parallel. We further note that both Hybris-EC and DepSky-EC are less sensitive to faulty

clouds than the corresponding versions featuring plain replication, as they fetch fewer data in

parallel from single clouds.



62 CHAPTER 3. Robust and Strongly Consistent Hybrid Cloud Storage

Hyb
ris

Hyb
ris

-E
C

Dep
Sk

y-
A

Dep
Sk

y-
EC

Am
az

on

Azu
re

Rac
ks

pa
ce

Goo
gl

e
0

200

400

600

800

1000

1200

1400

1600
D

u
ra

ti
o
n
 (

m
s)

(a) 100kB get

Hyb
ris

Hyb
ris

-E
C

Dep
Sk

y-
A

Dep
Sk

y-
EC

Am
az

on

Azu
re

Rac
ks

pa
ce

Goo
gl

e
0

200

400

600

800

1000

1200

1400

1600

D
u
ra

ti
o
n
 (

m
s)

(b) 1MB get

Hyb
ris

Hyb
ris

-E
C

Dep
Sk

y-
A

Dep
Sk

y-
EC

Am
az

on

Azu
re

Rac
ks

pa
ce

Goo
gl

e
0

2000

4000

6000

8000

10000

12000

14000

D
u
ra

ti
o
n
 (

m
s)

(c) 10MB get

Figure 3.6 – Latencies of get operations with one faulty cloud.

3.5.3 Experiment 3: RMDS performance

Aswe envision a typical deployment of Hybris in corporate settings, which generally present

high Internet access bandwidth, we identify in RMDS the most likely bottleneck of the system.

Therefore, in this experiment we aim to stress our crash fault tolerant (vanilla ZooKeeper) and

cross fault tolerant (XPaxos [176]) RMDS implementations in order to assess their performance.

For this purpose, we short-circuit public clouds and simulate uploads by writing a 100 byte

payload to an in-memory hash map. To mitigate possible performance impact of the shared

OpenStack private cloud, we perform (only) this experiment deploying RMDS on a dedicated

cluster of three 8-core Xeon E3-1230 V2 machines (3.30GHz, 20GB ECC RAM, 1GB Ethernet,

128GB SATA SSD, 250GB SATA HDD 10000rpm). The obtained results are shown in Figure 3.7.

Figure 3.7(a) shows get latency as we increase throughput. The observed peak throughput

of roughly 180 kops/s achieved with latencies below 4ms is due to the fact that syncing reads in

ZooKeeper come with a modest overhead, and we take advantage of read locality in ZooKeeper

to balance requests across nodes. Furthermore, since RMDS has a small footprint, all read

requests are serviced directly from memory without incurring the cost of stable storage access.

Using the XPaxos-based RMDS, Hybris get achieves a peak of 160 kops/s with latencies of

about 10 ms. For read operations, XPaxos message pattern is similar to ZooKeeper’s and it uses

lightweight cryptographic operations (e.g., message authentication codes).

In contrast, put operations incur the toll of atomic broadcast and stable storage accesses in

the critical path. Figure 3.7(b) shows the latency-throughput curve for three different classes of

stable storage backing ZooKeeper, namely conventional HDD, SSD and RAMDISK, which would

be replaced by non-volatile RAM in a production-ready system. The observed differences suggest

that the choice of stable storage for RMDS is crucial for overall system performance, with HDD-

based RMDS incurring latencies nearly one order of magnitude higher than RAMDISK-based at

peak throughput of 28 kops/s (resp. 35 kops/s). As expected, SSD-based RMDS is in the middle

of the latency spectrum spanned by the other two storage types. XPaxos achieves a maximum

throughput of about 32 kops/s using RAMDISK as storage. The difference between ZooKeeper
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Figure 3.7 – Performance of metadata read and write operations with RMDS deployed as local cluster in

private premises.
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and XPaxos performance is due to the use of CPU-intensive cryptographic operations in XPaxos.

Note that, unlike in [176] XPaxos does not outperform ZooKeeper because, in the cluster setting

of a private cloud, CPU is the bottleneck of XPaxos, whereas in the WAN experiments by Liu

et al. [176] the bottleneck, for both protocols, is the network. Nevertheless, the peak throughput

of XPaxos-based RMDS is within 10% of ZooKeeper peak throughput, which seems an acceptable

overhead for the additional guarantees of XPaxos and the XFT model.
21

To understand the

impact of concurrency on RMDS performance, we evaluated the latency of put under heavy

contention to a single key. Figure 3.7(c) shows that despite 128 clients writing concurrently to

the same key, the latency overhead is only 30% over clients writing to separate keys.

Finally, Figures 3.7(d) and 3.7(e) depict throughput curves asmore clients invoking operations

in closed-loop are added to the system. Specifically, Fig. 3.7(d) suggests that ZooKeeper-based

RMDS is able to service read requests coming from 2K clients near peak throughput, while

XPaxos can service up to 600 clients on the same client machines due to its substantial use

of cryptographic operations. On the other hand, Figure 3.7(e) shows again the performance

discrepancy in ZooKeeper when using different stable storage types, with RAMDISK and HDD

at opposite ends of the spectrum. Observe that HDD peak throughput, despite being below that

of RAMDISK, slightly overtakes SSD throughput with 5K clients.

3.5.4 Experiment 4: RMDS geo-replication

Modern applications are being deployed increasingly often across wide area networks, in

so-called geo-replicated settings [92], to improve latency and/or fault tolerance. To evaluate

Hybris performance in this context, we placed each of the servers composing the RMDS cluster

in a different data center, and replicated the measurements of Sec. 3.5.3.

For this experiment, we used virtual machines and network infrastracture by IBM SoftLayer

[220]. Specifically, three virtual machines make up the RMDS cluster, while three others host

processes emulating concurrent clients invoking get and put operations. We placed two

machines (one for the clients and one as a server) in each of three data centers located in San

Jose (US), Washington D.C. (US) and London (UK). All the machines run Ubuntu 16.04 and

dispose of 4GB RAM, one quad-core 2.6GHz CPU, a 24GB SSD virtual hard-drive, and 100Mbps

public VLAN. Figure 3.8 illustrates the latencies between data centers.

Each client machine ran up to 800 processes sequentially reading or writing 100kB objects

to an in-memory hash map, as in Sec. 3.5.3. We remark that in Hybris both RMDS and clouds

can be configured separately on a client basis, thus making it possible to exploit the most

favorable settings in terms of deployment location. However, finding the best combination of

client settings for wide area deployment requires more specific assumptions that depend on the

application domain and is therefore out of the scope of this experiment. Research literature

21

An optimized implementation of XPaxos could achieve better performance by offloading cryptographic opera-

tions to a dedicated cryptoprocessor.
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[55, 130] and deployment guidelines [84, 88] suggest mitigating the performance cost of strongly

consistent wide area coordination by means of read-only servers and state partitioning. We

acknowledge these approaches as beneficial and practical, despite lacking generality and a

genuine cross-data center consensus primitive. However, in this experiment we aim at assessing

how far we can stretch the performance of a single consensus instance based on off-the-shelf

coordination systems available as of September 2016, i.e. ZooKeeper 3.4.9 and Consul 0.7. In

particular, in addition to the standard “sync+read” sequentially consistent ZooKeeper read, as

mentioned in Sec. 3.4.1, we implemented a linearizable metadata read operation by prepending

a quorum-based dummy write. We benchmark both the quorum-based and the sync+read

ZooKeeper schemes along with the Consul RMDS. Figure 3.9 shows the results of this wide area

benchmark with respect to throughput and latency performance.
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Figure 3.9 – Performance of metadata operations for Hybris put and get in wide area settings using

Consul or ZooKeeper as RMDS. Each RMDS cluster is composed of three servers deployed in San Jose,

Washington D.C. and London.
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between the data centers of Fig. 3.9.

During the write experiment, multiple Hybris

clients performed put operations to different keys,

while in the read experiments all clients read data asso-

ciated to a single key. Both coordination systems reach

peak throughput when using about 1600 concurrent

clients. Note how this simple wide area deployment

strategy easily reduces read throughput to 1/9 and write

throughput to 1/6 of the corresponding figures for local

clusters. Nonetheless, the throughputs and latencies

recorded are arguably acceptable for a wide range of

applications, especially in contexts of low write concur-

rency or asynchronous storage without direct user interaction.

The performance difference between the two coordination systems derive from the con-

sensus protocol they implement (i.e. Zab [206] vs Raft [195]) and the specific API they expose.
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Besides, as expected, we recorded a substantial performance loss when using the quorum-based

ZooKeeper reads, as they require a wider agreement among replicas. We further note that the

low average latencies of the ZooKeeper read+sync instance are due to the presence of reads

performed by clients located in the same data center of the cluster leader. Ultimately, the

choice of the coordination system depends on various needs and in practice it often hinges on

infrastructure already in place. Hybris accommodates these needs through its modular design

that eases the implementations of different RMDS instances.

3.5.5 Experiment 5: caching

In this experiment, we measure the performance of Hybris with and without caching (both

write-through and caching-on-read simultaneously enabled). We deploy Memcached with

128MB cache limit and 10MB single object limit. We vary object sizes from 1kB to 10 MB and

measure average latency using the YCSB benchmarking suite with workload B (95% reads, 5%

writes). The results for get are presented in Figure 3.10.
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Figure 3.10 – Hybris get latency with YCSB workload B (95% reads, 5% writes) varying data size.

Observe that caching decreases latency by an order of magnitude when the cache is large

enough compared to object size. As expected, the benefits of cache decrease with increase in

object size, and the resulting cache misses. This experiment shows that Hybris can simply

benefit from caching, unlike other multi-cloud storage protocols (see also Table 3.2).

3.5.6 Experiment 6: Hybris as personal storage backend

A thorough evaluation of a storage protocol also depends on the type of application that

makes use of it. For this reason, we decided to quantify the practical benefits and overhead

of using Hybris as backend of a personal storage and synchronization application. Over the

last decade, this kind of application has gained a significant adoption both in household and

corporate contexts. Several products have been developed and commercialized, usually as
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freeware in conjunction with storage pay-per-use schemes. At the same time, researchers have

started studying their performance [99, 100].

We decided to integrate Hybris as storage backend of Syncany, a popular open source storage

synchronization application written in Java [225]. The integration entailed the development

of a storage plugin in two different versions.
22

The first version, which we call HybrisSync-1,

uses Hybris for storage of Syncany data and metadata indifferently, while the second version

(HybrisSync-2) exposes an API to exploit Hybris RMDS also for Syncany’s own metadata man-

agement. In addition, we instrumented the Syncany command line client to measure the upload

and download latencies of synchronization operations. We chose to compare Hybris — in its

two versions, and using replication or erasure coding — with the baseline performance of an

existing storage plugin integrating Amazon S3 as remote repository.
23

For this experiment, we hosted the RMDS on a cluster of three virtual machines as in

Sec. 3.5.1. We employed two other similar virtual machines to simulate two clients on the

same local network, mutually synchronizing the content of local folders using Syncany. During

the experiment, we employed only cloud storage accounts referring to data centers located in

Europe, as the client machines. Considering the statistics about workloads in personal cloud

storage [99], we designed a set of benchmarks varying the number of files to be synchronized

along with their sizes.

1x100kB 1x1MB 10x100kB 100x10kB
Benchmark set

0

5

10

15

20

25

D
u

ra
ti

o
n

 (
s)

S3

HybrisSync-1 Rep.

HybrisSync-1 E.C.

HybrisSync-2 Rep.

HybrisSync-2 E.C.

(a) Syncany upload

1x100kB 1x1MB 10x100kB 100x10kB
Benchmark set

0

5

10

15

20

25

D
u

ra
ti

o
n

 (
s)

S3

HybrisSync-1 Rep.

HybrisSync-1 E.C.

HybrisSync-2 Rep.

HybrisSync-2 E.C.

(b) Syncany download

Figure 3.11 – Performance of data synchronization between hosts using different Syncany storage

plugins: Amazon S3 (“S3”), and different Hybris versions. “HybrisSync-1” uses Hybris cloud storage for

both Syncany data and metadata, while “HybrisSync-2” keeps Syncany’s metadata in the RMDS. Both

Hybris versions are evaluated in their replicated and erasure coded versions. Each bar represents the

average of 30 repetitions, with whiskers marking the standard deviation interval.

22https://github.com/pviotti/syncany-plugin-hybris.
23https://github.com/syncany/syncany-plugin-s3

https://github.com/pviotti/syncany-plugin-hybris
https://github.com/syncany/syncany-plugin-s3


68 CHAPTER 3. Robust and Strongly Consistent Hybrid Cloud Storage

From the results shown in Fig. 3.11 we draw the following considerations. First, as high-

lighted in Sec. 3.5.1, erasure coding is beneficial only for object sizes that exceed a certain

threshold (e.g., about 1MB in this experimental setting). For smaller objects the computational

overhead and the additional latency introduced by the use of a third cloud outplays the reduced

payload size. Therefore, given the kind of workload involved, cross-remote storage erasure

coding is not a good match for personal cloud storage. Second, the version of the Hybris plugin

exposing an API for metadata management performs significantly better than the one handling

in the same way both Syncany data and metadata. This is due to the high latency cost of using

clouds even for lightweight operations on metadata, which, in HybrisSync-1 are in fact stored

on clouds. Finally, HybrisSync-2 with replication perform similarly to the Amazon S3 plugin,

while offering further substantial guarantees in terms of consistency and fault tolerance.

In addition to this experiment, and in the scope of the CloudSpaces project [85], we inte-

grated Hybris with StackSync [180], a prototype that provides, like Syncany, personal storage

synchronization.
24

While exploratory, this integration demonstrates the feasibility of adopting

Hybris also as backend of more scalable personal storage solutions.

3.5.7 Cost comparison

Table 3.1 shows an estimate of the monetary costs incurred by several cloud storage systems

in the common case (i.e. in case of synchrony and without failures), including Amazon S3 as

baseline. We set f = 1 and assume a symmetric workload that involves 106 write and 106

read operations accessing 1MB objects totaling to 1TB of storage over a period of 1 month.

This corresponds to a modest workload of roughly 40 hourly operations. We further assume

a metadata payload of 500B for each object. The reference costs per transaction, storage, and

outbound traffic are those of the Amazon S3 US-East region,
25
as of September 5th, 2016. The

cost comparison is based on the protocols’ features reported in Table 3.2, and takes into account

all applicable read and write cost optimizations (e.g., preferred quorums and sequential reads).

Our figures exclude the cost of the private cloud in Hybris, which we assume to be part of an

already existing infrastructure.

We observe that the overhead of Hybris is twice the baseline both for put and storage

because Hybris stores data in two clouds in the common case. Since Hybris uses a single

cloud once for each get operation, the cost of get equals that of the baseline, and hence is

optimal. On the other hand, Hybris-EC incurs for k = 2 a moderate storage overhead of 1.5

times the baseline at the cost of increased overhead for put, as data needs to be dispersed onto

three clouds. We further note that Hybris is the most cost-effective of the multi-cloud systems

considered, as it requires, in its erasure coding version, an additional expense of only 19% more

than the cost of a single cloud.

24https://github.com/pviotti/stacksync-desktop
25

AWS Simple Monthly Calculator: https://calculator.s3.amazonaws.com/index.html.

https://github.com/pviotti/stacksync-desktop
https://calculator.s3.amazonaws.com/index.html
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Table 3.1 – Cost of cloud storage systems in USD for 2 x 106 transactions involving 106 objects of 1MB,

totaling 1TB of storage.

System PUT GET Storage Cost / Month Total

ICStore [42] 60 276 180 516

DepSky-A [53] 30 93 91 214

DepSky-EC [53] 30 93 45 168

Hybris 10 92 60 162

Hybris-EC 15 92 45 152

Amazon S3 5 92 30 127
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3.6 Related Work

Table 3.2 – Comparison of existing robust multi-writer cloud storage protocols. We distinguish cloud

data operations (D) from cloud metadata operations (m). Unless indicated differently, properties pertain

to replication-based variants.

Protocol

Semantics Common case performance

Cloud faults Consistency No. of cloud operations Blowup

ICStore [42] crash-only linearizable
a (4f + 2)(D +m) (writes)

4f + 2
(2f + 1)(D +m) (reads)

DepSky [53] arbitrary regular
a (2f + 1)(D +m) (writes)

2f + 1
b

(2f + 1)(D +m) (reads)

Hybris arbitrary linearizable

(f + 1)D (writes)

f + 1
c

1D (reads)

a

Unlike Hybris, to achieve linearizable (resp., regular) semantics, ICStore (resp., DepSky) requires public clouds

to be linearizable (resp., regular).

b

The erasure coded variant of DepSky features
2f+1
f+1

storage blowup.

c

The erasure coded variant of Hybris features
f+k
k

storage blowup, for any k > 1.

Multi-cloud storage systems Several storage systems have been designed to use multiple

clouds to boost data robustness, notably in its reliability and availability. SafeStore [153]

erasure-codes data across multiple storage platforms (clouds) and guarantees data integrity,

confidentiality and auditing. It uses a non-replicated local server as encryption proxy, and to

cache data and metadata, both stored on clouds. Furthermore, SafeStore requires from cloud

providers to disclose information about their internal redundancy schemes, and to expose an

API that is not available in any of nowadays’ cloud storage services. SPANStore [245] seeks

to minimize the cost of use of multi-cloud storage, leveraging a centralized cloud placement

manager. However, SafeStore and SPANStore are not robust in the Hybris sense, as their

centralized components (local proxy and placement manager, respectively) are single points

of failure. RACS [4] and HAIL [58] assume immutable data, hence they do not address any

concurrency aspects. The Depot key-value store [186] tolerates any number of untrusted clouds,

but does not offer strong consistency and requires computational resources on clouds.

The multi-cloud storage systems most similar to Hybris are DepSky [53] and ICStore [42].

For clarity, we summarize the main aspects of these systems in Table 3.2. ICStore models

cloud faults as outages and implements robust access to shared data. Hybris advantages over

ICStore include tolerating malicious clouds and smaller storage blowup.
26

On the other hand,

DepSky considers malicious clouds, yet requires 3f + 1 replicas, unlike Hybris. Furthermore,

DepSky consistency guarantees are weaker than those of Hybris, even when clouds are strongly

26

The blowup of a given redundancy scheme is defined as the ratio between the total storage size needed to store

redundant copies of a file, over the original file size.
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consistent. Finally, Hybris guarantees linearizability even in presence of eventually consistent

clouds, which may harm the consistency guarantees of both ICStore and DepSky. Recently,

and concurrently with this work, SCFS [52] augmented DepSky to a full-fledged file system

by applying a similar idea of turning eventual consistency to strong consistency by separating

cloud file system metadata from payload data. Nevertheless, SCFS still requires 3f + 1 clouds

to tolerate f malicious ones, i.e. the overhead it inherits from DepSky.

Latency-consistency tradeoffs for cloud storage Numerous recent works have proposed

storage systems that leverage cloud resources to implement tunable latency-consistency trade-

offs. In particular, some of these works focus on providing tunable consistency semantics

expressed by static declarative contracts (e.g., [230, 219]) while others offer dynamic adaptive

mechanisms (e.g., [253, 79]). In alternative to strong consistency, Hybris provides tunable con-

sistency semantics as well, through a static configuration of caching mechanisms implemented

in trusted, private premises. Unlike previous works proposing latency-consistency tradeoffs,

Hybris explicitly addresses resiliency concerns, and does not entail modification to standard

cloud storage interfaces nor it requires cloud computing resources: its RMDS component has a

small footprint which can be conveniently supplied by on-premises resources often already in

place in corporate settings.

Separating data from metadata The idea of separating metadata management from data

storage and retrieval has been proposed in previous literature. Notably, it has been adopted

in the design of parallel file systems, with the main goal of maximizing throughput [119, 242].

Farsite [9] is an early protocol similarly proposing this design choice: it tolerates malicious

faults by replicating metadata (e.g., cryptographic hashes and directory) separately from data.

Hybris builds upon these techniques yet, unlike Farsite, it implements multi-writer/multi-reader

semantics and is robust against timing failures as it relies on lock-free concurrency control.

Furthermore, unlike Farsite, Hybris supports ephemeral clients and has no server code, targeting

commodity cloud storage APIs.

Separation of data frommetadata is intensively used in crash-tolerant protocols. For example,

in the Hadoop Distributed File System (HDFS), modeled after the Google File System [117], HDFS

NameNode is responsible for maintaining metadata, while data is stored on HDFS DataNodes.

Other notable crash-tolerant storage systems that separate metadata from data include LDR

[108] and BookKeeper [148]. LDR [108] implements asynchronous multi-writer multi-reader

read/write storage and, like Hybris, uses pointers to data storage nodes within its metadata and

requires 2f + 1 data storage nodes. However, unlike Hybris, LDR considers full-fledged servers

as data storage nodes and tolerates only their crash faults. BookKeeper [148] implements reliable

single-writer multi-reader shared storage for logs. It stores metadata on servers (bookies) and

data (i.e. log entries) in log files (ledgers). Like in Hybris RMDS, bookies point to ledgers,

facilitating writes to f + 1 replicas and reads from a single ledger in the common-case. Unlike
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BookKeeper, Hybris supports multiple writers and tolerates malicious faults of data repositories.

Interestingly, all robust crash-tolerant protocols that separate metadata from data (e.g., [108, 148],

but also Gnothi [240]), need 2f + 1 data repositories in the worst case, just like Hybris, which

additionally tolerates arbitrary faults.

After the publication of the preliminary, conference version of this work, several follow-up

storage protocols that separate metadata from data and tolerate arbitrary faults have appeared.

Notably, MDStore [74] and AWE [24] follow the footsteps of Hybris and use optimal number of

metadata and data nodes, and implement read/write storage using replication (MDStore) and

erasure coding (AWE). Unlike Hybris, MDStore and AWE are fully asynchronous and replace

the eventually synchronous state-machine replication based metadata service used in Hybris

with asynchronous read-write metadata service. This, however, results in increased complexity

of MDStore and AWE protocols over Hybris, notably manifested in the higher latency values.

Furthermore, MDStore and AWE implementations are not available, unlike that of Hybris.

More recently, Zhang et al. [256] described the design of Cocytus, an in-memory data

store that applies erasure coding to bulk data while replicating metadata and keys through a

primary-backup scheme. While in Hybris we exploit data and metadata separation for fault

tolerance and correctness, Cocytus adopts this hybrid scheme to enable fast data recovery.

In fact, while in Cocytus data and metadata are only logically separated, Hybris store them

on separate systems offering different guarantees in matter of reliability and consistency. We

further note that, like Cocytus, Hybris can optionally apply erasure coding to bulk data stored

on clouds.

Finally, the idea of separating control and data planes in systems tolerating arbitrary faults

was used also by Yin et al. [248] in the context of replicated state machines (RSM). While

such approach could obviously be used for implementing storage as well, Hybris proposes a

far more scalable and practical solution, while also tolerating pure asynchrony across data

communication links.

Systems based on trusted components Several systems in research literature use trusted

hardware to reduce the overhead of replication despite malicious faults from 3f + 1 to 2f + 1

replicas, typically in the context of RSM (e.g., [93, 82, 149, 235]). Some of these systems, like

CheapBFT [149], employ only f + 1 replicas in the common case.

Conceptually, Hybris is similar to these systems in that it uses 2f + 1 trusted metadata

replicas (needed for RMDS) and f + 1 (untrusted) clouds. However, compared to these systems,

Hybris is novel in several ways. Most importantly, existing systems entail placing trusted

hardware within an untrusted process, which raises concerns over practicality of such ap-

proach. In contrast, Hybris trusted hardware (private cloud) exists separately from untrusted

processes (public clouds), with this hybrid cloud model being in fact inspired by practical system

deployments.
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3.7 Summary

In this chapter, we presented Hybris, a robust hybrid cloud storage system. Hybris scatters

data (using replication or erasure coding) across multiple untrusted and possibly inconsistent

public clouds, and it replicates metadata within trusted premises. Hybris is very efficient: in

the common-case, using data replication, writes involve only f + 1 clouds to tolerate up to f

arbitrary public cloud faults, whereas reads access a single cloud. Hence, Hybris is the first

multi-cloud storage protocol that makes it possible to tolerate potentially malicious clouds at

the price of coping with simple cloud outages. Furthermore, Hybris offers strong consistency,

as it leverages strongly consistent metadata stored off-clouds to mask the inconsistencies of

cloud stores. Hybris is designed to seamlessly replace commodity key-value cloud stores (e.g.,

Amazon S3) in existing applications, and it can be used for storage of both archival and mutable

data, due to its strong multi-writer consistency.

We also presented an extensive evaluation of the Hybris protocol. All experiments we

conducted show that our system is practical, and demonstrate that it significantly outperforms

comparable multi-cloud storage systems. Its performance approaches that of individual clouds.





Chapter 4

Automated Declarative Consistency

Verification

In this chapter, we describe a novel approach to tackle the general issue of verifying the cor-

rectness of real world database systems. The key idea of this approach is defining consistency

semantics as declarative invariants of executions. Specifically, we adopt the formal definitions

of consistency semantics that we provided in Chapter 2 to verify what guarantees are actually

respected by distributed stores, despite non-deterministic concurrency and partial failures. We

developed a preliminary implementation that allows us to assess benefits and limitations of this

approach.

4.1 Introduction

Consistency is a key correctness criterion of distributed storage systems. It plays a central

role in the design and development of real world data streaming and data storage systems. The

importance of consistency becomes even more evident when dealing with composite distributed

systems, which entail composing different assumptions and correctness semantics. Nonetheless,

in spite of recent efforts proposing consistency-by-construction through formal methods [243,

168], most real world storage systems are still developed in an ad-hoc manner: practitioners

start with an implementation and proceed with correctness verification through limited testing

afterwards (e.g., using unit and integration tests). As a result, those implementations are fraught

with bugs that may prevent them from respecting their intended semantics or even lead to data

loss [151, 32].

In an attempt to bridge the gap between traditional testing and formal techniques, several

approaches to consistency verification have been devised: we summarize them in the following

paragraphs.
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Strong consistency checkers Several works focused on devising efficient techniques to

determine whether executions of storage systems are strongly consistent [191, 244, 118, 140, 181].

This binary decision problem has then been extended to support other comparably strong

semantics [23], and on-the-fly, incremental verification [122, 107].

Read-write staleness benchmarking A recent approach proposes client-side staleness

measurements as a method to assess consistency. Specifically, data store clients perform write

and read operations in a coordinated fashion in order to detect anomalies related to data staleness.

This technique has been applied both to open source NoSQL databases [198] and, in a black-box

testing manner, to commercial geo-replicated cloud stores [169, 47, 239], typically in the context

of highly available, eventually consistent systems. Other works have focused on modeling and

simulation of eventually consistent stores based on quorum systems by means of Monte Carlo

simulation or by computing probability convolutions [35, 45].

Precedence graph A number of works related to transactional systems adopted a graph-

based approach [8, 254]. According to this approach, transactions are represented by vertices

of a precedence (or serialization) graph, while the edges connecting them denote their mutual

read/write dependencies. Identifying inconsistencies (e.g., isolation anomalies) amounts to

finding cycles in the precedence graph.

Application-level invariant checkers Finally, in recent years, some research efforts have

focused on devising proof rules and efficient techniques to establish whether application-level

invariants — rather than storage read/write semantics — are respected by the underlying storage

system [219, 125, 194].

All these approaches, however, lack generality, as they target only a limited subset of

consistency models. They also lack a comprehensive, structured view of the entire consistency

spectrum, which makes them suboptimal in verifying the core semantics, or composition thereof,

of different consistency models.

We believe that the first step towards building an effective and comprehensive consistency

testing framework should be the adoption of a theoretically sound model of consistency. To this

end, we advocate the use of a declarative approach to define a set of core semantics applicable to

all consistencymodels. In particular, we aim at expressing both client-side visibility of read/write

operations and server-side replicas state. By using logic predicates that encompass these two

perspectives, we define consistency semantics that capture, in form of graph entities, the salient

aspects of system executions, i.e. ordering and visibility of events. In this way, verifying an

implementation of a given consistency semantics amounts to finding, for a given execution, the

global state configurations that validate a logic predicate, taking into account client-side events.
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In summary, we introduce a comprehensive and principled approach to verify the read-

/write level correctness of non-transactional databases, by adopting the formal definitions of

consistency semantics that we introduced in Chapter 2. Effectively, we propose a declarative,

property-based approach to consistency verification, in the same vein of previous proposals

made in the context of generic software testing [83]. We experiment this approach by imple-

menting Conver, an early prototype of a property-based consistency verification framework

that we developed in Scala.

4.2 A declarative semantic model

Several works in the literature [179, 15] illustrate the benefits of a declarative approach in

the context of database, networking and distributed programming. Essentially, the declarative,

axiomatic approach offers a better match to application-level semantics than the traditional

imperative, operational approach. Therefore, the declarative approach allows for a more ex-

pressive, clear and compact way to describe the logic of distributed applications. Additionally,

the declarative approach is amenable to static checking of correctness conditions, allowing

distributed systems problems to be naturally cast into SAT/SMT problems [17, 219, 125], which

in turn allows to leverage the efficiency of related state-of-the-art tools (e.g., [251, 1]).

We found a model supporting the declarative paradigm for consistency semantics in the

work by Burckhardt [65], which we extended and refined as described in Chapter 2. This

model supports expressing declarative, composable consistency semantics as first-order logic

predicates over graph entities which describe visibility and ordering of operations.

In order to verify the consistency models listed in Chapter 2, we would need to build the

entities composing abstract executions. In particular, we would need to work out the arbitration

order of operations (ar) established by the storage system being verified. This requirement

presents us with a design choice: should we build a verification framework that requires to

instrument the code of each system being verified, or should we adopt a black-box approach?

We decided to adopt a black-box approach, as it makes the framework easier to use and more

practical to customize to different storage systems. However, the black-box testing approach

makes it difficult to work out the arbitration order, as it can only make use of client processes.

A seemingly viable approach could be building all possible total orders ar as a linear extensions

of the returns-before partial order rb, and find among those total orders any one matching

operations outcomes. Unfortunately, in spite of previous works describing similar efforts in the

context of main memory models for concurrency [247, 231], this proved to be computationally

intensive, and ultimately impractical, due to modern SAT/SMT tools being generally ill-suited

to solve ordering constraints problems.
1

1

See, as an illustration: http://stackoverflow.com/questions/35558556/linear-extension-of-partial-orders-with-z3.

http://stackoverflow.com/questions/35558556/linear-extension-of-partial-orders-with-z3
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Considering this, we dismissed the global arbitration order to verify consistency semantics

and focused only on information that could be collected at the client side. As a result, the

spectrum of semantics verifiable by our current implementation is reduced to those listed in

Figure 4.1. As can be noticed, we joined some semantics into macro-semantics. In particular,

inter-session monotonicity embeds the notion of monotonic reads and monotonic writes, as it is

in fact not possible to distinguish them from clients’ perspective. Moreover, to check executions

for linearizability, we implemented a graph-based algorithm which is based on the work by Lu

et al. [181]. We postpone further details and examples of the checks we implemented to the

next section.

Linearizability

RegularSequential

Causal

Write-follow-readsInter-session 
monotonicity

(MR and MW)

Session 
monotonicity

(RYW)

Figure 4.1 – Consistency semantics verifiable by our preliminary Conver implementation.

4.3 Property-based consistency verification

In this section we present Conver, a tool to verify the consistency semantics implemented

by storage systems in a black-box manner. Conver verifies semantics as invariants of storage

systems executions, thus effectively implementing a property-based testing approach.

Property-based testing (PBT) [83] (also called generative testing) is an approach to generic

software testing that alleviates the burden of test case generation from the user, allowing the

user to focus on specifying application-level properties that should hold for all executions. A

PBT tool, when supplied with these properties along with information about the generic format

of a valid input, generates random inputs, and then applies these inputs to the program while

constantly verifying the validity of the supplied properties throughout the execution. In a sense,

PBT combines the two old ideas of specification-based testing [166] and random testing [132].

Additionally, to make up for the possible “noise” induced by the random test case generation,

modern PBT tools automatically reduce the complexity of failing tests to a minimal test case

[255], thus proving useful in debugging tasks.
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As an example, given a function lsort that sorts a list of integers, writing a property that

states that the function should not change the list length, would just require the following lines

code in Erlang:

prop_same_length() ->
?FORALL(L,list(integer()), length(L)=:=length(lsort(L))).

In principle, the PBT approach of expressing and testing consistency as a set of predicates allows

for a testing methodology focused on correctness properties rather than operational semantics.

We embed this idea in the design of Conver, a prototype of a consistency verification

framework that we developed in Scala.
2
Conver generates test cases consisting of executions

of concurrent operations invoked on the data store under test. After each execution, Conver

collects all client-side information and builds a graph describing operations’ outcomes and

relations (e.g., the returns-before relation rb, the session-order relation so, operation timings

and results, etc.). Given client-side outcomes, Conver builds graph entities about ordering

and visibility of operations. Then, Conver verifies the compliance of the execution to a given

consistency model by checking the graph entities against the logic predicates composing the

consistency model. First, it checks whether the execution respects linearizability (§ 2.3.1) by

running a slightly modified version of the algorithm reported in [181]. If the linearizability

check fails and a total order of operations cannot be determined, Conver runs a set of checks on

the anomalies found. Specifically, by means of the graph entities described in Chapter 2, it looks

for violation of write ordering across and within sessions. Table 4.1 lists the kind of anomalies

Conver can detect, along with illustrations of minimal sample executions as drawn by Conver.

Indeed, as a result of the verification process, Conver not only outputs a textual report of the

execution, but it also provides a visualization of each failing test case, i.e. all executions that did

not comply with a given consistency semantics. Additionally, the visualization highlights the

operations that caused the test failure.

By default, Conver tests are run against clusters deployed on the local machine using

Docker
3
containers; this greatly improves their portability, and eases their integration within

existing test suites. As an example, test executions of ZooKeeper
4
verified that, as expected,

it provides sequential consistency or linearizability, depending on the read API used (see

§ 3.4.1). Similarly, Riak’s
5
consistency ranges from regular to session guarantees depending

on its replication settings. Furthermore, Conver can programmatically emulate WAN latencies

between containers and inject network faults by using the netem 6
Linux kernel module.

Thanks to this feature, Conver can exercise the intrinsic nondeterminism of distributed systems

further, and potentially discover subtle bugs [114]. Besides, Conver can be easily extended to

2

Conver’s source code is available at https://github.com/pviotti/conver.
3https://www.docker.com/
4https://zookeeper.apache.org/
5http://basho.com/products/riak-kv/
6https://wiki.linuxfoundation.org/networking/netem

https://github.com/pviotti/conver
https://www.docker.com/
https://zookeeper.apache.org/
http://basho.com/products/riak-kv/
https://wiki.linuxfoundation.org/networking/netem
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Consistency semantics Anomaly Sample execution

Linearizability -

Regular New-old inversion

Sequential Stale read

Causal No global total order

-
Inter-session monotonicity

(Monotonic reads/writes)

-
Session monotonicity

(Read-your-writes)

-
Inter-session causality

(Writes-follow-reads)

Table 4.1 – Consistency semantics with corresponding anomalies and minimal sample executions.

All visualizations have been produced running Conver’s own unit tests suite.
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support the generation of test cases targeted to specific consistency semantics or corresponding

to predefined workloads. In this way, Conver would lend itself to explore the consistency

vs. latency tradeoffs, as in the vein of recent work by Fan et al. [107]. Figure 4.2 provides an

overview of the functional architecture of Conver, including these extensions.

Consistency 
Predicates

Verification

Test case generation

Targeted Random

Executions

OK

Fault Injection

Visualization

KO

WAN Emulation

Figure 4.2 – Functional architecture of the Conver verification framework.

4.4 Discussion

With Conver, we made clear and specific design decisions, which we discuss in this section.

As previously mentioned, the black-box verification approach precludes the assessment

of semantics that require server-side knowledge. Moreover, Conver trades the confidence

on correctness typical of formal methods for better usability and performance, as it does not

require access to source code of the data store under test, nor it needs support in form of

code annotations, onerous proof tools or deep packet inspection. Hence, it can easily be used

in association with existing testing tools. Moreover, since we designed Conver as a modular

framework [91] adding the support for a new data store entails implementing a simple read/write

API, which usually amounts to writing less than 50 lines of Scala code.

Another potential limitation of this approach concerns the scalability of the algorithms

building and checking graph entities representing executions. In this regard, we remark that

the most onerous algorithm we implemented in Conver (i.e. the linearizability checker) has

been devised and used at Facebook on massive datasets [181]. Furthermore, in light of recent

related research [250], we argue that simple setups of few hosts in combination with network

fault injection can be sufficient to uncover most correctness bugs. Thus, the graph structures

Conver needs to work out would be fairly limited in size. In our experience, an execution with

about 10 clients and a cluster of 3 hosts takes less than 15 seconds, including the time required

to set up the Docker cluster.
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We further note that the property-based testing approach has already been applied by

practitioners to verify the correctness of distributed applications. Specifically, modern PBT tools

model the state of the system as a set of variables that are verified through postconditions [2].

This state model can only support the verification of consistency models that presume single-

copy semantics, i.e. strong consistency models. Conver differs substantially from common PBT

tools in the way the system state is represented and verified. In particular, the semantic model

implemented by Conver describes the system state as a graph of operations [65]. Hence, Conver

can verify a broader set of consistency models that apply to generic replicated storage systems.

4.5 Future Work

In the following, we discuss several possible extensions of our work.

Transactional consistency models Conver can be extended to support the verification of

transactional consistency models. The state model supported by Conver has already been

adapted to express transactional semantics [77]. Hence, this extension would entail the support

of additional semantic entities for expressing transactional features within the model, and the

implementation of an algorithm to detect transactional anomalies [8].

Mapping to application-level invariants A current trend in research advocates the use of

application-level invariants to enable a fine-grain (but less portable) approach to consistency

enforcement and verification [34, 125]. In this regard, we think it would be interesting to study

how those invariants map to low-level I/O semantics within Conver. In order to do so, an

additional layer in the Conver architecture could emulate common application use cases and

interaction patterns, and match them with read-write database semantics.

Consistency-latency measurement Conver can be extended to measure latency of opera-

tions and throughput. In this way, it would serve as tool to explore consistency-performance

tradeoffs in databases, both offline and in an incremental manner, as shown in recent work by

Fan et al. [107].

Simulation and model checking The execution traces generated by Conver can be input

into simulation frameworks. Moreover, Conver executions’ data may help build mathematical

models of the data store under test that could allow the development of formal specifications

[141] that in turn would enable model checking or formal proofs of correctness.
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4.6 Summary

In this chapter, we described a novel approach to the verification of consistency models

implemented in distributed storage systems. We based our work on a semantic model defining

consistency conditions by means of logic predicates over graph entities describing ordering and

mutual visibility of operations. By leveraging the expressiveness of this model, we designed

Conver, a consistency verification framework that follows the principles of property-based

testing: Conver generates random test cases and run them in the attempt to falsify the consis-

tency semantics defined as execution invariants. We believe that this contribution will prove

instrumental to improve over the state-of-the-art on correctness verification of real world

storage systems. In the next chapter, we further analyze possible research directions related to

this work.





Chapter 5

Conclusion

In this thesis, we presented a set of contributions towards the goals of defining, composing and

testing consistency semantics for distributed storage systems. In the following, we review those

contributions and reflect on future research directions.

5.1 Towards a cross-stack principled approach to consistency

In Chapter 2, we provided a formal taxonomy of more than fifty consistency semantics

defined in four decades of research. Such survey represents a preliminary step of normalization

that will prove useful when sifting through the past literature, or evaluating and comparing

claims about consistency semantics [78]. Indeed, by dismissing imprecise or inaccurate defi-

nitions, and by relating similar semantics to each other, we helped reducing the clutter and

occasional equivocations on the matter. In this way, hopefully, future scholars will find easier

the ongoing quest for the sweet spot between performance, correctness and fault tolerance.

Moreover, our work may allow for more clear and rigorous agreements on quality of service

guarantees (SLA) between users and storage providers/vendors, in the vein of what has been

proposed by Terry et al. [230]. The declarative approach we adopted could also promote more

structured development and testing techniques, as we described in Chapter 4 or as in the recent

work by Sivaramakrishnan et al. [219], which concretizes the paradigm of design-by-contract

programming.

Finally, our survey may serve as a first step in a bottom-up strategy to work out the mapping

between high-level application invariants and storage semantics. Indeed, while the focus of

this thesis has been chiefly on low-level read/write semantics, a current avenue of research

is about establishing the operational and semantic links between storage-level semantics and

application invariants [34, 41]. In turn, this mapping may uncover potential opportunity for

cross-stack optimizations and co-design [18], and enable further automation in the choice and

enforcement of performance vs consistency tradeoffs [170, 125].
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5.2 Planet-scale consistency and the challenges of composition

In Chapter 3, we described a storage system that reaps the benefits of cloud storage without

incurring the cost of wide area cross-cloud coordination, unlike previous approaches [53]. In a

sense, Hybris is yet another attempt at dispelling the dichotomy between safety and scalability,

and it serves as an example of how we can circumvent theoretical impossibilities through

practical and considerate tradeoffs. Other instances of pragmatic tradeoffs include recent works

that propose techniques to minimize coordination [37, 172] or alleviate its cost [192, 102].

Moreover, Hybris makes use of two kinds of resources, different in their fault and timing

assumptions, and providing different consistency guarantees. Hence, it demonstrates that,

in certain settings, it is possible to leverage composition of models and semantics to conceal

shortcomings of individual components while retaining the overall benefits. In Hybris’ case we

cover up faulty and weakly consistent clouds with a negligible amount of metadata and some

coordination in limited, private settings. We believe that there may be unexplored potential

benefits in the composition of systems that provide different semantics, or in the decomposition

of established protocols into their constituent parts — as showed, for instance, in the work

by Zhang et al. [257], which decouples fault tolerance from ordering requirements across the

transactional protocol stack. Clearly, the requisite of this endeavors is a thorough understanding

of the individual semantics and models. In this regard, the taxonomy provided in Chapter 2

represents a solid formal base, while Hybris, presented in Chapter 3, serves as a practical

instance of a beneficial composition.

5.3 Verification of distributed systems correctness

Testing distributed systems is a notoriously difficult endeavor. Numerous approaches have

been devised and implemented that provide a range of tradeoffs in matter of confidence and

usability. While most of nowadays distributed software is still being tested with traditional

unit and integration tests, some companies that operate large deployments have implemented

sophisticated monitoring and tracing tools, that allow for thorough inspection and troubleshoot-

ing of production systems [216, 234]. Formal methods represent a valid alternative to ensure

the correctness of distributed systems, as they are used to formally model a system and prove

its correctness. They offer a strong degree of confidence but require non-negligible prior knowl-

edge of languages and tools to develop faithful models or write formal specifications. Recently,

the increased efficiency of solvers has enabled the adoption of what are sometimes referred

to as “lightweight formal methods,” i.e. the use of SAT/SMT solvers to test specific high-level

invariants of software systems [125]. Another convenient middle ground is represented by the

“smart testing” techniques, which include fault injection, directed random testing, deterministic

simulations and property-based testing. The quest for a sweet spot in the usability vs confidence

spectrum is particularly sensible for verification of semantic properties such as consistency.
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Indeed, according to Rice’s Theorem, the problem of deciding whether a program satisfies a

semantic property is undecidable. Hence the need for practical solutions that trade certainty of

correctness for usability.

In Chapter 4 we introduced a principled approach to consistency verification that follows

the tenets of property-based testing. We based this approach on the declarative, graph-based

framework that we described in Chapter 2: consistency is regarded as logic predicates that must

be respected throughout executions, i.e. a set of invariants. We stress-test the preservation of

these invariants by applying the techniques of random testing and fault injection. These ideas

are implemented in Conver: a utility to perform confidence/sanity tests (also called “smoke

tests”) while developing database applications. Running a distributed test with Conver takes just

a few seconds, thus it can be conveniently integrated and run with existing test suites. Besides,

Conver is easily portable to any non-transactional store, thanks also to the increasing support for

container-based clustered systems. Thus, Conver can become a standard tool to verify that off-

the-shelf systems actually provide the semantics that they claim in their documentation. In turn,

this may yield to a better comprehension and a more rigorous documentation of the software,

which would be especially beneficial for commercial systems subject to quality agreements.

Finally, Conver represents also an effort to materialize the subtle yet perilous side effects

of inconsistency in data management systems. Our aim in designing Conver was twofold: we

wanted both to raise awareness about consistency issues among developers, and to concretize

the outcomes entailed by the theoretical definitions we introduced in Chapter 2. Thus, Conver

can not only be another tool in developers’ tool belt, but it can also serve as an instrument to

further the study of data storage semantics.
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Appendix A

Summary of Consistency Predicates

Linearizability(F) SingleOrder ∧ RealTime ∧ RVal(F)

SingleOrder ∃H ′ ⊆ {op ∈ H : op.oval = ∇} : vis = ar \ (H ′ ×H)

RealTime rb ⊆ ar

Regular(F) SingleOrder ∧ RealTimeWrites ∧ RVal(F)

Safe(F) SingleOrder ∧ RealTimeWrites ∧ SeqRVal(F)

RealTimeWrites rb|wr→op ⊆ ar

SeqRVal(F) ∀op ∈ H : Concur(op) = ∅ ⇒ op.oval ∈ F(op, cxt(A, op))

EventualConsistency(F) EventualVisibility ∧ NoCircularCausality ∧ RVal(F)

EventualVisibility ∀a ∈ H,∀[f ] ∈ H/ ≈ss: |{b ∈ [f ] : (a
rb−→ b) ∧ (a

vis
b)}| <

∞
NoCircularCausality acyclic(hb)

StrongConvergence ∀a, b ∈ H|rd : vis−1(a)|wr = vis−1(b)|wr ⇒ a.oval = b.oval

StrongEventualCons.(F) EventualConsistency(F) ∧ StrongConvergence

QuiescentConsistency(F) |H|wr| < ∞ ⇒ ∃C ∈ C : ∀[f ] ∈ H/ ≈ss: |{op ∈ [f ] :

op.oval /∈ F(op, C)}| < ∞
PRAM so ⊆ vis

SeqentialConsistency(F) SingleOrder ∧ PRAMConsistency ∧ RVal(F)

MonotonicReads ∀a ∈ H,∀b, c ∈ H|rd : a
vis−→ b ∧ b

so−→ c ⇒ a
vis−→ c ≜

(vis; so|rd→rd) ⊆ vis

ReadMyWrites ∀a ∈ H|wr,∀b ∈ H|rd : a
so−→ b ⇒ a

vis−→ b ≜ so|wr→rd ⊆ vis

MonotonicWrites ∀a, b ∈ H|wr : a
so−→ b ⇒ a

vis−→ b ≜ so|wr→wr ⊆ vis
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WritesFollowReads ∀a, c ∈ H|wr,∀b ∈ H|rd : a
vis−→ b ∧ b

so−→ c ⇒ a
ar−→ c ≜

(vis; so|rd→wr) ⊆ ar

CausalVisibility hb ⊆ vis

CausalArbitration hb ⊆ ar

Causality(F) CausalVisibility ∧ CausalArbitration ∧ RVal(F)

Causal+(F) Causality(F) ∧ StrongConvergence

RealTimeCausality(F) Causality(F) ∧ RealTime

TimedVisibility(∆) ∀a ∈ H|wr,∀b ∈ H,∀t ∈ Time : a.rtime = t ∧ b.stime ≥
t+∆ ⇒ a

vis−→ b

TimedCausality(F ,∆) Causality(F) ∧ TimedVisibility(∆)

TimedLinearizability(F ,∆) SingleOrder ∧ TimedVisibility(∆) ∧ RVal(F)

PrefixSeqential(F) SingleOrder ∧MonotonicWrites ∧ RVal(F)

PrefixLinearizable(F) SingleOrder ∧ RealTimeWW ∧ RVal(F)

RealTimeWW rb|wr→wr ⊆ ar

K-Linearizable(F ,K) SingleOrder ∧ RealTimeWW ∧ K-RealTimeReads(K) ∧
RVal(F)

K-RealTimeReads(K) ∀a ∈ H|wr,∀b ∈ H|rd,∀PW ⊆ H|wr,∀pw ∈ PW : |PW | <
K ∧ a

ar−→ pw ∧ pw
rb−→ b ∧ a

rb−→ b ⇒ a
ar−→ b

ForkLinearizability(F) PRAM ∧ RealTime ∧ NoJoin ∧ RVal(F)

NoJoin ∀ai, bi, aj , bj ∈ H : ai ̸≈ss aj ∧ (ai, aj) ∈ ar \ vis ∧ ai ⪯so

bi ∧ aj ⪯so bj ⇒ (bi, bj), (bj , bi) /∈ vis

Fork*(F) ReadMyWrites ∧ RealTime ∧ AtMostOneJoin ∧ RVal(F)

AtMostOneJoin ∀ai, aj ∈ H : ai ̸≈ss aj ∧ (ai, aj) ∈ ar \ vis ⇒ |{bi ∈ H :

ai ⪯so bi ∧ (∃bj ∈ H : aj ⪯so bj ∧ bi
vis−→ bj}| ≤ 1 ∧ |{bj ∈

H : aj ⪯so bj ∧ (∃bi ∈ H : ai ⪯so bi ∧ bj
vis−→ bi}| ≤ 1

ForkSeqential(F) PRAM ∧ NoJoin ∧ RVal(F)

WeakForkLin(F) PRAM ∧ K-RealTime(2) ∧ AtMostOneJoin ∧ RVal(F)

PerObjectPRAM (so ∩ ob) ⊆ vis

PerObjectSingleOrder ∃H ′ ⊆ {op ∈ H : op.oval = ∇} : ar∩ob = vis∩ob\(H ′×H)

PerObjectSeqential(F) PerObjectSingleOrder ∧ PerObjectPRAM ∧ RVal(F)

ProcessorConsistency(F) PerObjectSingleOrder ∧ PRAM ∧ RVal(F)

PerObjectHappensBefore hbo ≜ ((so ∩ ob) ∪ vis)+

Table A.1 – Summary of consistency predicates formulated in Chapter 2.
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Appendix B

Proofs of Strength Relations between

Consistency Semantics

In this section, we prove some of the strength relations highlighted in Fig 2.1, using the

formal definitions provided in Chapter 2 and listed, for convenience, in Appendix A. All proofs

we provide hold regardless of the replicated data type implemented by the storage system.

Specific semantics referring to the implemented replicated data type are enclosed in the return

value consistency term (Eq. 2.4).

Preliminaries In the following, letH be an history andA = (H, ar, vis) a corresponding ab-

stract execution. Unless stated otherwise, we assume that all operations complete. Furthermore,

each process can have at most one pending operation at any given time.

Proposition B.1. Linearizability > SequentialConsistency

Proof. We show that (SingleOrder ∧ RealTime) ⇒ PRAM. Let o, o′ ∈ H and o
so−→ o′. Then,

by definition of so, o
rb−→ o′. By RealTime, this implies o

ar−→ o′. Finally, by SingleOrder,

o
vis−→ o′.

Furthermore, it follows trivially from the definitions of PRAM, SingleOrder and RealTime

that PRAM ≠⇒ RealTime, PRAM ≠⇒ SingleOrder and PRAM ≠⇒ (SingleOrder ∧
RealTime). It follows that (SingleOrder ∧ PRAM) ≠⇒ (SingleOrder ∧ RealTime).

Proposition B.2. Linearizability > Regular

Proof. It follows from RealTime > RealTimeWrites, since rb|wr→op ⊆ rb ⊆ ar, and by the

definition of rb.

Proposition B.3. Regular > Safe
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Proof. It follows trivially from RVal(F) > SeqRVal(F).

Proposition B.4. SequentialConsistency > Causality

Proof. First, we proceed to show that (SingleOrder ∧ PRAM) ⇒ CausalArbitration. By

SingleOrder and PRAM we have that vis ⊆ ar and so ⊆ vis. Thus, hb = (so ∪ vis)+ ⊆
(vis ∪ vis)+ = vis+ ⊆ ar+ = ar.

Now we prove that (SingleOrder∧ PRAM) ⇒ CausalVisibility. As in the previous case, we

find hb ⊆ vis+. It remains to show that vis+ ⊆ vis. Let a, b, c ∈ H , such that a
vis−→ b

vis−→ c.

Then, by SingleOrder, a
ar−→ b

ar−→ c. Since ar is transitive, a
ar−→ c. Thus, by SingleOrder,

a
vis−→ c.

It is easy to show that (CausalVisibility ∧ CausalArbitration) ≠⇒ (SingleOrder ∧
PRAM) from the definitions of the predicates in question.

Proposition B.5. Causality > WritesFollowReads

Proof. Let a, b, c ∈ H such that a
vis−→ b

so−→ c. Then, by CausalArbitration, a
ar−→ c.

Proposition B.6. PRAM > ReadMyWrites

Proof. It follows from the definition of so and from PRAM that so|wr→rd ⊆ so ⊆ vis.

Proposition B.7. PRAM > MonotonicWrites

Proof. It follows from the definition of so and from PRAM that so|wr→wr ⊆ so ⊆ vis.

Proposition B.8. Safe > ReadMyWrites

Proof. Let a, b, c ∈ H such that a
so−→ b

vis−→ c. Then, by definition of so, a
rb−→ b

vis−→ c. By

RealTime, a
ar−→ b

vis−→ c. Finally, by SingleOrder and by transitivity of ar, a
vis−→ c.

Proposition B.9. Causality > PRAM

Proof. Causality ⇒ PRAM follows from the definition of CausalVisibility, namely: so ⊆
(so ∪ vis)+ ⊆ vis. PRAM ≠⇒ CausalArbitration follows trivially from the definitions of

the predicates in question.

Proposition B.10. Fork* > ReadMyWrites

Proof. Given that the Fork* predicate includes ReadMyWrites, to prove that it is strictly

stronger than ReadMyWrites we have to show that ReadMyWrites does not imply the other

terms of its predicate. Formally: ReadMyWrites ≠⇒ RealTime ∧ AtMostOneJoin, which

trivially follows from the predicates in question.



Appendix C

Consistency Semantics and

Implementations

Models Definitions Implementations
1

Atomicity Lamport [164] Attiya et al. [29]

Bounded fork-join

causal

Mahajan et al. [185] -

Bounded staleness Mahajan et al. [184] -

Causal Lamport [160], Hutto and

Ahamad [143], Ahamad et al.

[11], Mahajan et al. [185]

Ladin et al. [156], Birman et al.

[56], Lakshmanan et al.

[158], Lloyd et al. [178], Du et al.

[101], Zawirski et al.

[252], Lesani et al. [168]

Causal+ Lloyd et al. [177] Petersen et al. [201], Belaramani

et al. [44], Almeida et al. [14]

Coherence Dubois et al. [103] -

Conit Yu and Vahdat [249] -

Γ-atomicity Golab et al. [123] -

∆-atomicity Golab et al. [122] -

Delta Singla et al. [218] -

Entry Bershad and Zekauskas [51] -

1

In case of very popular consistency semantics (e.g., causal consistency, atomicity/linearizability), we only cite a

subset of known implementations.
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Eventual Terry et al. [228], Vogels [237] Reiher et al. [207], DeCandia

et al. [96], Singh et al.

[217], Bortnikov et al.

[57], Bronson et al. [62]

Eventual

linearizability

Serafini et al. [212] -

Eventual

serializability

Fekete et al. [109] -

Fork* Li and Mazières [173] Feldman et al. [110]

Fork Mazières and Shasha

[189], Cachin et al. [70]

Li et al. [174], Brandenburger

et al. [59]

Fork-join causal Mahajan et al. [184] -

Fork-sequential Oprea and Reiter [196] -

Hybrid Attiya and Friedman [27] -

K-atomic Aiyer et al. [13] -

K-regular Aiyer et al. [13] -

K-safe Aiyer et al. [13] -

k-staleness Bailis et al. [35] -

Lazy release Keleher et al. [150] -

Linearizability Herlihy and Wing [138] Burrows [69], Baker et al.

[40], Glendenning et al.

[121], Calder et al. [75], Corbett

et al. [92], Han et al. [133], Lee

et al. [167]

Location Gao and Sarkar [115] -

Monotonic reads Terry et al. [228] Terry et al. [229]

Monotonic writes Terry et al. [228] Terry et al. [229]

Observable causal Attiya et al. [30] -

PBS ⟨k, t⟩-staleness Bailis et al. [35] -

Per-object causal Burckhardt et al. [68] -

Per-record timeline Cooper et al. [90], Lloyd et al.

[177]

Andersen et al. [22]

PRAM Lipton and Sandberg [175] -

Prefix Terry et al. [229], Terry [227] -

Processor Goodman [124] -

Quiescent Herlihy and Shavit [137] -

Rationing Kraska et al. [154] -

Read-my-writes Terry et al. [228] Terry et al. [229]
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Real-time causal Mahajan et al. [185] -

RedBlue Li et al. [170] -

Regular Lamport [164] Malkhi and Reiter

[188], Guerraoui and Vukolic

[127]

Release Gharachorloo et al. [116] -

Safe Lamport [164] Malkhi and Reiter

[187], Guerraoui and Vukolic

[127]

Scope Iftode et al. [145] -

Sequential Lamport [161] Rao et al. [204]

Slow Hutto and Ahamad [143] -

Strong eventual Shapiro et al. [214] Shapiro et al. [213], Conway

et al. [89], Roh et al. [209]

Timed causal Torres-Rojas and Meneses [232] -

Timed serial Torres-Rojas et al. [233] -

Timeline Cooper et al. [90] Rao et al. [204]

Tunable Krishnamurthy et al. [155] Lakshman and Malik [157], Wu

et al. [245], Perkins et al.

[200], Sivaramakrishnan et al.

[219]

t-visibility Bailis et al. [35] -

Vector-field Santos et al. [211] -

Weak Vogels [237], Bermbach and

Kuhlenkamp [46]

-

Weak

fork-linearizability

Cachin et al. [73] Shraer et al. [215]

Weak ordering Dubois et al. [103] -

Writes-follow-reads Terry et al. [228] Terry et al. [229]

Table C.1 – Definitions of consistency semantics and their implementations in research literature.





Appendix D

Hybris: Proofs and Algorithms

This appendix presents pseudocode and correctness proofs for the core parts of the Hybris

protocol as described in Section 3.3.
1
In particular, we prove that Algorithm 3, satisfies lineariz-

ability, and wait-freedom (resp. finite-write termination) for put (resp. for get) operations.
2

The linearizable functionality of RMDS is specified in Alg. 1, while Alg. 2 describes the simple

API required from cloud stores.

1

For simplicity, in the pseudocode we omit the container parameter which can be passed as argument to Hybris

APIs. Furthermore, the algorithms here presented refer to the replicated version of Hybris. The version supporting

erasure codes does not entail any significant modification to algorithms and related proofs.

2

For the sake of readability, in the proofs we ignore possible delete operations. However, it is easy to modify

the proofs to account for their effects.
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D.1 Hybris protocol

Algorithm 1 RMDS functionality (linearizable).

1: Server state variables:

2: md ⊆ K × TSMD , initially ⊥, read and written through mdf : K → TSMD
3: sub ⊆ K × (N0 × . . .× N0), initially ⊥, read and written through subf : K → (N0 × . . .× N0)

4: operation condUpdate (k, ts, cList, hash, size)
5: (tsk,−,−,−)← mdf (k)
6: if tsk = ⊥ or ts > tsk then

7: mdf : k ← (ts, cList, hash, size)
8: send notify(k, ts) to every cid ∈ subf (k)
9: subf : k ← ∅
10: return ok

11: operation read (k, subscribe) by cid
12: if subscribe then

13: subf : k ← subf (k) ∪ {cid}
14: returnmdf (k)

15: operation list ()
16: return mdf (∗)

Algorithm 2 Cloud store Ci functionality.

17: Server state variables:

18: data ⊆ K × V , initially ∅, read and written through f : K → V

19: operation put(key, val)
20: f : key ← value
21: return ok

22: operation get(key)
23: return f(key)
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Algorithm 3 Algorithm of Hybris client cid.

24: Types:

25: TS = (N0 × N0) ∪ {⊥}, with fields sn and cid // timestamps

26: TSMD = (TS × (Ci × . . .× Ci)×H(V )× N0) ∪ {⊥}, with fields ts, replicas, hash and size

27: Shared objects:

28: RMDS:MWMR linearizable wait-free timestamped storage object, implementing Alg. 1

29: C0...n: cloud stores, exposing key-value API as in Alg. 2

30: Client state variables:

31: ts ∈ TS , initially (0,⊥)
32: cloudList ∈ {Ci × . . .× Ci} ∪ {⊥}, initially ∅

33: operation put (k, v)
34: (ts,−,−,−)← RMDS.read(k, false)
35: if ts = ⊥ then ts← (0, cid)
36: ts← (ts.sn+ 1, cid)
37: cloudList← ∅
38: trigger timer
39: forall f + 1 selected clouds Ci do

40: Ci.put(k|ts, v)
41: wait until |cloudList| = f + 1 or timer expires
42: if |cloudList| < f + 1 then

43: forall f secondary clouds Ci do

44: Ci.put(k|ts, v)
45: wait until |cloudList| = f + 1
46: RMDS.condUpdate(k, ts, cloudList,H(v), size(v))
47: trigger garbage collection // see Section 3.3.4

48: return ok

49: upon put(k|ts, v) completes at cloud Ci

50: cloudList← cloudList ∪ {Ci}

51: operation get (k) // worst-case, Section 3.3.5 code only

52: (ts, cloudList, hash, size)← RMDS.read(k, true)
53: if ts = ⊥ or cloudList = ⊥ then return ⊥
54: forall Ci ∈ cloudList do
55: Ci.get(k|ts)

56: upon get(k|ts) returns data from cloud Ci

57: if H(data) = hash then return data
58: else Ci.get(k|ts)

59: upon received notify(k, ts′) from RMDS such that ts′ > ts
60: cancel all pending get

61: return get (k)

62: operation list ()
63: mdList← RMDS.list()
64: forallmd ∈ mdList do
65: if md.cloudList = ⊥ then

66: mdList← mdList \ {md}
67: returnmdList

68: operation delete (k)
69: (ts, cloudList,−,−)← RMDS.read(k, false)
70: if ts = ⊥ or cloudList = ⊥ then return ok

71: ts← (ts.sn+ 1, cid)
72: RMDS.condUpdate(k, ts,⊥,⊥, 0)
73: trigger garbage collection // see Section 3.3.4

74: return ok
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D.2 Correctness proofs

Preliminaries We define the timestamp of operation o, denoted ts(o), as follows. If o is a

put, then ts(o) is the value of client’s variable ts when its assignment completes at line 36,

Alg. 3. Else, if o is a get, then ts(o) equals the value of ts when client executes line 57, Alg. 3

(i.e., when get returns). We further say that an operation o precedes operation o′, if o completes

before o′ is invoked. Without loss of generality, we assume that all operations access the same

key k.

Lemma D.2.1 (Partial Order). Let o and o′ be two get or put operations with timestamps ts(o)

and ts(o′), respectively, such that o precedes o′. Then ts(o) ≤ ts(o′), and if o′ is a put then

ts(o) < ts(o′).

Proof. In the following, prefix o.RMDS denotes calls to RMDSwithin operation o (and similarly

for o′). Let o′ be a put (resp. get) operation.

Case 1 (o is a put): then o.RMDS.condUpdate(o.md) at line 46, Alg. 3, precedes (all possible

calls to) o′.RMDS.read() at line 52, Alg. 3 (resp., line 34, Alg. 3). By linearizability of

RMDS (and RMDS functionality in Alg. 1) and definition of operation timestamps, it follows

that ts(o′) ≥ ts(o). Moreover, if o′ is a put, then ts(o′) > ts(o) because ts(o′) is obtained

from incrementing the timestamp ts returned by o′.RMDS.read() at line 34, Alg. 3, where

ts ≥ ts(o).

Case 2 (o is a get): then since all possible calls to o′.RMDS.read() at line 52 (resp. 34) follow

the latest call of o.RMDS.read() in line 52, by Alg. 1 and by linearizability of RMDS, it follows

that ts(o′) ≥ ts(o). If o′ is a put, then ts(o′) > ts(o), similarly to Case 1.

Lemma D.2.2 (Unique puts). If o and o′ are two put operations, then ts(o) ̸= ts(o′).

Proof. By lines 34-36, Alg. 3, RMDS functionality (Alg. 1) and the fact that a given client does

not invoke concurrent operations on the same key.

Lemma D.2.3 (Integrity). Let rd be a get(k) operation returning value v ̸= ⊥. Then there exists

a single put operation wr of the form put(k, v) such that ts(rd) = ts(wr).

Proof. Since rd returns v and has a timestamp ts(rd), rd receives v in response to get(k|ts(rd))
from some cloud Ci. Suppose for the purpose of contradiction that v is never written by a put.

Then, by the collision resistance of H(), the check at line 57 does not pass and rd does not

return v. Therefore, we conclude that some operation wr issues put (k|ts(rd)) to Ci in line 40.

Hence, ts(wr) = ts(rd). Finally, by Lemma D.2.2 no other put has the same timestamp.

Theorem D.2.4 (Atomicity). Every execution ex of Algorithm 3 satisfies linearizability.
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Proof. Let ex be an execution of Algorithm 3. By Lemma D.2.3 the timestamp of a get either

has been written by some put or the get returns ⊥. With this in mind, we first construct ex′

from ex by completing all put operations of the form put (k, v), where v has been returned by

some complete get operation. Then we construct a sequential permutation π by ordering all

operations in ex′, except get operations that return ⊥, according to their timestamps and by

placing all get operations that did not return ⊥ immediately after the put operation with the

same timestamp. The get operations that did return ⊥ are placed in the beginning of π.

Towards linearizability, we show that a get rd in π always returns the value v written

by the latest preceding put which appears before it in π, or the initial value of the register ⊥
if there is no such put. In the latter case, by construction rd is ordered before any put in π.

Otherwise, v ̸= ⊥ and by Lemma D.2.3 there is a put (k, v) operation, with the same timestamp,

ts(rd). In this case, put (k, v) appears before rd in π, by construction. By Lemma D.2.2, other

put operations in π have a different timestamp and hence appear in π either before put (k, v)

or after rd.

It remains to show that π preserves real-time order. Consider two complete operations o

and o′ in ex′ such that o precedes o′. By Lemma D.2.1, ts(o′) ≥ ts(o). If ts(o′) > ts(o) then o′

appears after o in π by construction. Otherwise ts(o′) = ts(o) and by Lemma D.2.1 it follows

that o′ is a get. If o is a put, then o′ appears after o since we placed each read after the put

with the same timestamp. Otherwise, if o is a get, then it appears before o′ as in ex′.

TheoremD.2.5 (Availability). Hybris put calls are wait-free, whereas Hybris get calls are finite-

write terminating.

Proof. The wait freedom of Hybris put operations follows from: a) the assumption of using

2f + 1 clouds out of which at most f may be faulty (and hence the wait statement at line 45,

Alg. 3 is non-blocking), and b) wait-freedom of calls to RMDS (hence, calls to RMDS at lines 34

and 46, Alg. 3 return).

We prove finite-write termination of get by contradiction. Assume there is a finite number

of writes to key k in execution ex, yet that there is a get(k) operation rd by a correct client that

never completes. Let W be the set of all put operations in ex, and let wr be the put operation

with maximum timestamp tsmax inW that completes the call to RMDS at line 46, Alg. 3. We

distinguish two cases: (i) rd invokes an infinite number of recursive get calls (in line 61, Alg 3),

and (ii) rd never passes the check at line 57, Alg. 3.

In case (i), there is a recursive get call in rd, invoked after wr completes conditional update

to RMDS. In this get call, the client does not execute line 61, Alg 3, by definition of wr and

specification of RMDS.condUpdate in Alg. 1 (as there is no notify for a ts > tsmax). A

contradiction.

In case (ii), notice that key k|tsmax is never garbage collected at f +1 clouds that constitute

cloudList at line 46, Alg. 3 in wr. Since rd does not terminate, it receives a notification at
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line 59, Alg. 3 with timestamp tsmax and reiterates get. In this iteration of get, the timestamp

of rd is tsmax. As cloudList contains f + 1 clouds, including at least one correct cloud Ci, and

as Ci is eventually consistent, Ci eventually returns value v written by wr to a get call. This

value v passes the hash check at line 57, Alg. 3 and rd completes. A contradiction.
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D.3 Alternative proof of Hybris linearizability

In this section, we prove the linearizability of the Hybris protocol (§ D.1) using the axiomatic

framework we introduced in Chapter 2.

Preliminaries We define the timestamp of operation o, denoted ts(o), as follows. If o is a

put, then ts(o) is the value of client’s variable ts when its assignment completes at line 36,

Alg. 3. Else, if o is a get, then ts(o) equals the value of ts when client executes line 57, Alg. 3

(i.e., when get returns). Without loss of generality, we assume that all operations access the

same key k.

Definition D.3.0.1 (Same-timestamp equivalence relation). Let st be an equivalence relation

onH that groups pairs of operations having the same timestamp. Formally: st ≜ {(a, b) : a, b ∈
H ∧ ts(a) = ts(b)}.

Lemma D.3.1 (Partial order tso). Let o and o′ be two get or put operations with timestamps

ts(o) and ts(o′), respectively, such that o
rb−→ o′. Then there exists a partial order tso ≜ ar \ st

induced by timestamps such that: if o′ is a put then o
tso−→ o′; otherwise (o, o′) ∈ st ∪ tso.

Proof. In the following, prefix o.RMDS denotes calls to RMDSwithin operation o (and similarly

for o′). Let o′ be a put (resp. get) operation.

Case 1 (o is a put): then o.RMDS.condUpdate(o.md) at line 46, Alg. 3, precedes (all possible

calls to) o′.RMDS.read() at line 52, Alg. 3 (resp., line 34, Alg. 3). By linearizability of

RMDS (and RMDS functionality in Alg. 1) and definition of operation timestamps, it follows

that ts(o′) ≥ ts(o). Moreover, if o′ is a put, then o
tso−→ o′, because ts(o′) is obtained from

incrementing the timestamp ts returned by o′.RMDS.read() at line 34, Alg. 3, where ts ≥
ts(o).

Case 2 (o is a get): then since all possible calls to o′.RMDS.read() at line 52 (resp. 34) follow

the latest call of o.RMDS.read() in line 52, by Alg. 1 and by linearizability of RMDS, it follows

that ts(o′) ≥ ts(o). If o′ is a put, then o
tso−→ o′, similarly to Case 1.

Corollary D.3.1.1. No two operations ordered by the returns-before partial order have strictly

decreasing timestamps. Formally: ∄a, b ∈ H : a
rb−→ b ∧ b

tso−→ a ⇔ rb ⊆ st ∪ tso.

LemmaD.3.2 (Unique timestamps of puts). If o and o′ are two put operations, then (o, o′) /∈ st.

Proof. By lines 34-36, Alg. 3, RMDS functionality (Alg. 1) and the fact that a given client does

not invoke concurrent operations on the same key.

Corollary D.3.2.1. tso is a total order over put operations.

LemmaD.3.3 (Integrity). Let rd be a get(k) operation returning value v ̸= ⊥. Then, there exists

a single put operation wr of the form put(k, v) such that rd ≈st wr .
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Proof. Since rd returns v and has a timestamp ts(rd), rd receives v in response to get(k|ts(rd))
from some cloud Ci. Suppose for the purpose of contradiction that v is never written by a

put. Then, by the collision resistance of the hash function H(), the check at line 57 does not

pass and rd does not return v. Therefore, we conclude that some operation wr issues put

(k|ts(rd)) to Ci in line 40. Hence, rd ≈st wr. Finally, by Lemma D.3.2 no other put has the

same timestamp.

Lemma D.3.4. No two operations a and b non overlapping in real time, and having the same

timestamp are arbitrated in a different order with respect to rb. Formally: ∄a, b ∈ H : a
rb−→

b ∧ a ≈st b ∧ b
ar−→ a ⇔ (rb ∩ st) \ ar = ∅.

Proof. By Lemmas D.3.1 and D.3.2 a and b can only comply with one the following cases:

Case 1: a is a put, b is a get. By Lemma D.3.3, a.ival = b.oval. More-

over, a.RMDS.condUpdate(a.md) at line 46, Alg. 3, precedes (all possible calls to)

b.RMDS.read() at line 52, Alg. 3. By linearizability of RMDS (and RMDS functionality in

Alg. 1), it follows that a
ar−→ b.

Case 2: a and b are both gets. All possible calls to a.RMDS.read() at line 52, Alg. 3 precede

all possible calls to the same API within operation b. By linearizability of RMDS (and RMDS

functionality in Alg. 1), it follows that a
ar−→ b.

Lemma D.3.5 (RealTime). Arbitration total order complies with returns-before partial order.

Formally: rb ⊆ ar.

Proof. It follows from Corollary D.3.1.1 and Lemma D.3.4.

Figure D.1 – A set-based representation of Lemma D.3.5.

Lemma D.3.6 (Replicated register SingleOrder). Every read operation returns the last written

value according to the arbitration order. Formally: vis = ar ∧ RVal(Freg).
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Proof. Let ex be an execution of Algorithm 3. By Lemma D.3.3 the timestamp of a get either

has been written by some put or the get returns ⊥. With this in mind, we first construct ex′

from ex by completing all put operations of the form put (k, v), where v has been returned

by some complete get operation. Then we construct a sequential permutation π by ordering

all operations in ex′, except get operations that return ⊥, according to some arbitration order

ar ⊇ tso. The get operations that return ⊥ are placed at the beginning of π.

We show that a get r in π always returns the value v written by the latest preceding put

which appears before it in π (i.e., ∀r ∈ H|rd ∧ r.oval ̸= ⊥ :!∃w ∈ H|wr ∧ w
vis−→ r ∧ w.ival =

r.oval ⇒ w = precar(r)) or the initial value of the register ⊥ if there is no such put. In the

latter case, by construction r is ordered before any put in π. Otherwise, r.oval ̸= ⊥ and by

Lemma D.3.3 there is a put (k, v) operation, with the same timestamp, ts(r). In this case, put

(k, v) appears before r in π, by construction. By Lemma D.3.2, other put operations in π have

different timestamps and hence appear in π either before put (k, v) or after r.

It remains to show that the converse proposition holds, i.e., formally: ∀w, r ∈ H : r.oval ̸=
⊥ ∧ w = precar(r) ⇒ w

vis−→ r ∧ w.ival = r.oval. Suppose, for the purpose of contradiction,

that w.ival ̸= r.oval. Then, by Lemma D.3.3 there exists another put w1 such that w1.ival =

r.oval. By construction of π w1 = precar(r), and by hypothesis w = precar(r), thus w1 = w:

a contradiction.

Theorem D.3.7 (Linearizability). Every execution ex of Algorithm 3 resulting in a history H

satisfies linearizability. Formally: H |= SingleOrder ∧ RealTime ∧ RVal(Freg).

Proof. It follows from Lemmas D.3.5 and D.3.6.
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La cohérence dans les systèmes de stockage distribués :

des principes à l’application au stockage dans le nuage

E.1 La cohérence dans les systèmes de stockage répartis non

transactionnels

Au cours des années, le mot “cohérence” a connu différentes définitions dans les domaines

des systèmes distribués et des bases de données. Alors que dans les années 80, la cohérence

signifiait généralement forte cohérence, plus tard défini aussi comme linéarisation, ces dernières

années, avec l’avènement de systèmes hautement disponibles et évolutifs, la notion de cohérence

a été à la fois affaiblie et floue. De plus, en dépit de sa pertinence dans le contexte des systèmes

concurrents et distribués, le concept de cohérence a manqué historiquement d’un cadre de

référence pour décrire ses aspects dans les communautés de chercheurs et de professionnels.

Dans le passé, certains efforts conjoints entre la recherche et l’industrie ont permis de

formaliser, de comparer et même de standardiser les sémantiques transactionnelles [21, 126, 8].

Cependant, ces travaux ne tiennent pas compte des progrès de la dernière décennie de la

recherche sur les bases de données, et ils ne considèrent pas la sémantique non-transactionnelle.

Récemment, la cohérence non transactionnelle a connu une reprise en raison de la popularité

croissante des systèmes NoSQL. Par conséquent, de nouveaux modèles ont été conçus pour

tenir compte de diverses combinaisons de problèmes de tolérance de panne et d’invariants

d’application. Les chercheurs se sont efforcés de formuler les exigences minimales en termes

131
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d’exactitude et, par conséquent, de coordination, pour permettre la conception de systèmes

distribués rapides et fonctionnels [34, 30]. En outre, une tendance de recherche continue et

passionnante a abordé cette question en s’appuyant sur différents outils et couches, en fonction

des langages de programmation [16] dans les structures de données [213] et les correcteurs

statiques au niveau de l’application [219, 125].

En tant que première contribution de cette thèse, nous proposons une étude de principe

sur la sémantique de cohérence non-transactionnelle. Nous basons notre étude sur le modèle

mathématique pour définir la sémantique de cohérence fournie dans [65], que nous avons

étendue et raffinée. Ce modèle permet la définition de la sémantique de cohérence déclarative

et composable, qui peut être exprimée en termes de prédicats logiques de premier ordre sur des

entités graphiques qui, à leur tour, décrivent la visibilité et l’ordre d’événements. La table E.1

présente les entités les plus importantes de cemodèle, qui sont expliquées aussi dans le Chapitre 2.

Entité Description

Operation (op) Single operation.

Includes : process id, type, input and output values, start

and end time.

History (H ) History of an execution.

Includes : set of operations, returns-before partial order,

same-session and same-object equivalence relations.

Visibility (vis) Acyclic partial order on operations.

Accounts for propagation of write operations.

Arbitration (ar ) Total order on operations.

Specifies how the system resolves conflicts.

Table E.1 – Résumé des entités les plus pertinentes du modèle décrit dans le Chapitre 2.

À titre d’exemple, une sémantique de cohérence qui exige le respect de l’ordre en temps

réel comprendrait le prédicat suivant :

RealTime ≜ rb ⊆ ar (E.1)

Nous avons utilisé ce modèle pour formuler des définitions formelles pour la sémantique

de plus de 50 modèles de cohérence que nous avons étudié — les définitions formelles sont

rapportées dans l’Annexe A. Pour le reste, nous avons présenté des descriptions informelles qui

donnent un aperçu de leur caractéristique et de leurs forces relatives.
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De plus, grâce à l’approche axiomatique que nous avons adoptée, nous avons mis en place

un cluster de sémantique selon des critères qui tiennent compte de leur nature et de leurs

caractères communs. Grâce à ces nouvelles définitions formelles, nous sommes en mesure de

les comparer et de les placer dans une hiérarchie partiellement ordonnée selon leur «force»

sémantique, comme le montre la Figure 2.1.

En outre, nous établissons la correspondance entre ces sémantiques et les implémentations

de prototypes et de systèmes décrit dans la littérature de recherche (Annexe C). Enfin, dans

l’Annexe B, nous fournissons des preuves de relations de force entre les modèles sémantiques

mis en évidence dans la Figure 2.1.
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E.2 Stockage robuste et fortement cohérent dans le Cloud hy-

bride

Le stockage dans le Cloud hybride consiste à stocker des données sur des locaux privés

ainsi que sur un (ou plusieurs) fournisseur de stockage public dans un Cloud distant. Pour les

entreprises, cette conception hybride apporte le meilleur des deux mondes : les avantages du

stockage public dans le Cloud (par exemple, l’élasticité, les systèmes de paiement flexibles et la

durabilité sans danger pour les catastrophes) ainsi que le contrôle des données d’entreprise. En

un sens, le Cloud hybride élimine dans une large mesure les préoccupations que les entreprises

ont de faire confiance à leurs données aux Clouds commerciaux. En conséquence, les solutions

de stockage de Clouds hybrides de classe entreprise sont en plein essor avec tous les principaux

fournisseurs de stockage offrant leurs solutions exclusives.

Comme une approche alternative pour résoudre les problèmes de confiance et de fiabilité

associés aux fournisseurs publics de stockage dans le Cloud, plusieurs travaux de recherche (par

exemple, [53, 42, 245]) ont permis de stocker les données de manière robuste dans les Clouds

publics en exploitant plusieurs fournisseurs de Cloud. En bref, l’idée derrière ces systèmes

publics de stockage multi-nuages tels que DepSky [53], ICStore [42] et SPANStore [245] est de

tirer parti de plusieurs fournisseurs de Cloud dans le but de distribuer la confiance à travers les

Clouds, d’accroître la fiabilité, la disponibilité et la performance et/ou l’adressage des problèmes

de verrouillage des fournisseurs (par example, le coût).

Cependant, les systèmes de stockage multi-Clouds robustes existants souffrent de graves

limites. En particulier, la robustesse de ces systèmes ne concerne pas la cohérence : ces systèmes

fournissent une cohérence au mieux proportionnelle [53] à celle des Clouds sous-jacents qui

fournit très souvent seulement une cohérence éventuelle [237]. En outre, ces systèmes de

stockage dispersent les métadonnées de stockage dans les Clouds publics, ce qui augmente la

difficulté de la gestion du stockage et affecte les performances. Enfin, les systèmes de stockage

multi-Clouds existants ignorent les ressources sur des locaux privés.

Nous proposons Hybris, le premier système de stockage de Cloud hybride robuste, qui unifie

l’approche du Cloud hybride avec celle du stockage multi-Clouds robuste.
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E.2.1 Principales caractéristiques d’Hybris

Hybris est un système de stockage à valeurs multiples et multi-lecteurs qui garantit une forte

cohérence (c.-à-d., linearisation [139]) de lectures et écritures. L’idée clé derrière Hybris est qu’il

conserve tout stockage de métadonnées sur des locaux privés, même lorsque ces métadonnées

concernent des données externalisées aux Clouds publics (voir la Figure 3.1 pour l’architecture

de haut niveau d’Hybris) . La métadonnée Hybris est légère (cc 40 octets par objet) et se compose

de : i) numéro de version, ii) hash, iii) pointeurs vers des Clouds qui stockent la copie de la

valeur et iv) la taille de la valeur. Hybris réplique les données pour la fiabilité en utilisant des API

de stockage en nuage (par exemple, Amazon S3, Rackspace CloudFiles, etc.). Les métadonnées

sont également reproduites dans des locaux privés — donc, la conception d’Hybris ne présente

aucun point d’échec.

Plus précisément, notre modèle de système est hybride. À savoir, les clients et (une minorité

de) serveurs de métadonnées peuvent échouer en s’écrasant et expérimentent des périodes

arbitraires, longues mais finies, d’asynchronisme des communications dans un Cloud privé. En

revanche, les Clouds publics ne sont pas fiables et peuvent même présenter des comportements

malveillants. Nous modélisons la communication entre les Clouds publics et les clients comme

purement asynchrones, sans aucune limite aux retards des communications.

La conception d’Hybris permet les caractéristiques suivantes.

Cohérence renforcée Hybris garantit la linéarisation des lectures et des écritures même

en présence de Clouds publics finalement cohérents. À cette fin, Hybris utilise un nouveau

schéma que nous appelons renforcement de la cohérence : il tire parti d’une forte cohérence

des métadonnées stockées localement pour masquer les incohérences possibles des données

stockées sur des Clouds publics éventuellement cohérents. Dans l’Annexe D, nous présentons

le pseudo-code du protocole mis en œuvre par Hybris, ainsi que la preuve de sa linéarisation.

De plus, dans l’Annexe D.3, nous prouvons la linéarisation de Hybris en utilisant le cadre que

nous avons introduit dans le Chapitre 2.

BFT avec 2f + 1 Nuages non fiables Hybris peut masquer les défauts malveillants (aussi

appelés byzantins) de Clouds publics allant jusqu’à f. Cependant, contrairement aux systèmes

de stockage BPT (de l’anglais, Byzantine-Fault Tolerance) qui impliquent des nœuds de stockage

de données 3f + 1 pour masquer les f malveillants, Hybris est le premier système de stockage
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BFT qui ne nécessite que 2 nœuds +1 (nuages publics) dans le pire des cas. La mise en œuvre de

référence d’Hybris prend également en charge le cryptage de clé symétrique côté client pour la

confidentialité des données.

Efficacité Hybris est efficace et encourt un faible coût. Dans le cas commun, une écriture

de Hybris implique un peu moins de f + 1 de nuages publics, alors qu’une lecture implique

seulement un seul nuage, même si tous les nuages ne sont pas fiables. Hybris réalise ceci

en utilisant des fonctions de hachage cryptographiques, et sans compter sur des primitives

cryptographiques coûteuses. En stockant des métadonnées localement, Hybris évite les com-

munications coûteux pour les opérations légères qui ont eu des problèmes avec les systèmes

multi-Clouds précédents. Enfin, Hybris réduit en option les exigences de stockage en prenant

en charge le code d’effacement [208], au détriment de l’augmentation du nombre de nuages

impliqués.

Évolutivité L’écueil potentiel de l’adoption d’une telle architecture composée est que les res-

sources privées peuvent représenter goulot d’étranglement à l’échelle. Hybris évite ce problème

en gardant l’empreinte des métadonnées très faible. À titre d’illustration, la variante répliquée

d’Hybris maintient environ 50 octets de métadonnées par clé, ce qui est un ordre de grandeur

plus petit que les systèmes comparables [53]. En conséquence, le service de métadonnées Hybris,

résidant dans des locaux de confiance, peut facilement supporter jusqu’à 30k d’écriture / s et

près de 200k lecture / s, tout en étant entièrement répliqué pour la tolérance de panne. En

outre, Hybris offre des fonctionnalités multi-écrivains multi-lecteurs par clé grâce au contrôle

de concurrence [136] sans attendre, ce qui augmente encore le passage à l’échelle d’Hybris par

rapport aux systèmes basés sur le verrouillage [245, 53, 52].

Afin de mieux répondre à la diversité des besoins en matière de cohérence par rapport aux

compromis de performance, Hybris implémente et met en évidence la sémantique cohérence

accordable. À savoir, pour chaque exécution, il est possible de faire en sorte que Hybris respecte

deux modèles de cohérence en alternative à la linéarisation, c’est-à-dire la cohérence read-your-

write et bounded staleness. Enfin, Hybris implémentewrites transactionnelles. Ces opérations

permettent des écritures atomiques qui couvrent différentes clés.
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E.2.2 Implémentation et résultats

Pour maintenir une petite empreinte d’Hybris, nous avons choisi de reproduire de manière

robuste ses métadonnées en utilisant le service de coordination Apache ZooKeeper [142] (voir

la Figure 3.1). Les clients d’Hybris agissent simplement comme clients de ZooKeeper — notre

système n’implique aucune modification à ZooKeeper, facilitant ainsi le déploiement d’Hybris

et son adoption future. En outre, nous avons conçu le service de métadonnées Hybris pour être

facilement portable de ZooKeeper à n’importe quel magasins de données RDBMS ou NoSQL

répliqués et qui exportent une opération de mise à jour conditionnelle (par exemple, HBase ou

MongoDB).

Nous avons implémenté Hybris en Java
1
et nous l’avons évalué à travers une série de

repères. Nos résultats expérimentaux montrent que Hybris surpasse de manière constante les

systèmes de stockage multi-Clouds robustes à la fine pointe de la technologie (par exemple,

[53]) avec une latence inférieure jusqu’à 2-3x dans le cas commun, se compare de la même

manière que les Clouds individuels tout en engendrant un faible coût. De plus, en utilisant le

service de métadonnées basé sur ZooKeeper déployé sur trois serveurs de produits, Hybris lit

l’échelle au-delà de 150 kops/s, tandis que les écritures augmentent jusqu’à 25 kops/s (resp., 35

kops/s) avec SSD (resp., NVRAM) comme solution de durabilité de ZooKeeper. Les Figures 3.4,

3.5 et 3.7 illustrent certains résultats sur la performance globale et l’évolutivité d’Hybris.

1

Le code d’Hybris est disponible sur : https://github.com/pviotti/hybris

https://github.com/pviotti/hybris
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E.3 Vérification déclarative et automatisée de la cohérence

La cohérence est le principal critère d’exactitude des systèmes de stockage distribués. Malgré

les récents efforts consistency-by-construction proposés par des méthodes formelles [243, 168],

dans le monde réel, la plupart des systèmes de stockage sont encore développés de manière

ponctuelle. Plus précisément, la plupart du temps, les praticiens commencent par la mise en

oeuvre, et plus tard procèdent à la vérification par tests limités (ex. utilisation de tests unitaires

et/ou tests d’intégration). En conséquent, diverses approches ont été conçues pour donner une

manière générale de vérification de la mise en oeuvre de modèles de cohérence. Cependant, les

approches conçues jusqu’à présent ne s’appliquent qu’à un sous-ensemble restreint de modèles

de cohérence et sont prévues pour fonctionner dans des contextes spécifiques (ex. stockage

dans le Cloud, bases de données transactionnelles, etc.).

Nous estimons que l’étape initiale pour construire un cadre de test de cohérence efficace et

complet devrait être l’utilisation d’un modèle de cohérence théoriquement rationnel. Pour ce

faire, nous préconisons le choix d’utiliser une approche déclarative pour définir un ensemble de

sémantiques de base applicables à l’ensemble des modèles de cohérence. En particulier, nous

voudrions avoir de la visibilité côté client, des opérations de lecture/écriture et des configu-

rations de l’état global. En utilisant tirant parti des prédicats logiques qui incluent ces deux

perspectives, nous définissons une sémantique de cohérence qui capture, sous forme de com-

posants graphiques, les aspects les plus importants des différentes exécutions du système, en

l’occurrence la commande et la visibilité des événements. De cette manière, la vérification d’une

implémentation d’une sémantique de cohérence donnée revient à trouver, pour une exécution,

les différentes configurations de l’état global qui valident un prédicat logique, tout en prenant

en compte les événements côté client.

En bref, nous proposons une approche déclarative et basée sur la propriété de la vérification

de la cohérence, dans le volet des travaux précédents réalisés dans le cadre d’un test de logiciel

générique [83]. Nous expérimentons cette approche en mettant en œuvre Conver, un prototype

pratique de vérification de la cohérence, développé en Scala.
2

2

Le code de Conver est disponible à l’adresse : https://github.com/pviotti/conver

https://github.com/pviotti/conver
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E.3.1 Principales caractéristiques

Nous avons trouvé un modèle supportant le paradigme dećlaratif pour les sémantiques de

cohérence dans le travail Burckhardt [65], et que nous avons étendu et raffiné comme décrit

dans le Chapitre 2.

Ce modèle supporte l’expression de la sémantique déclarative et composable de la cohérence

en tant que prédicats logiques de premier ordre sur les entités graphiques qui décrivent la

visibilité et l’ordre des opérations.

Afin de vérifier les modèles de cohérence listés dans le Chapitre 2, nous devrions construire

les entités qui composent des exécutions abstraites. En particulier, nous devrions établir l’ordre

d’arbitrage (ar) établi par le système de stockage en cours de vérification.

Cependant, l’approche de test en boite noire que nous avons adoptée rend difficile l’élabora-

tion de l’ordre d’arbitrage, car il ne peut utiliser que les processus clients. Compte tenu de cela,

nous avons rejeté l’ordre d’arbitrage global pour vérifier la sémantique de la cohérence et nous

nous sommes concentrés uniquement sur les informations qui pourraient être collectées du

côté du client. En conséquence, le spectre de la sémantique vérifiable par notre mise en œuvre

actuelle est réduit à ceux répertoriés dans la Figure 4.1.

Dans ce qui suit, nous discutons brièvement les principales caractéristiques de Conver.

Génération de cas de test ciblés Nous avons mis en place une série d’heuristiques pour

générer des exécutions de cas de test adaptée pour une vérification sémantique spécifique. Par

exemple, en fonction du modèle de cohérence sous vérification, Conver ajuste le rapport entre

les opérations de lecture et d’écriture, ou établit une coordination sans limites entre les clients

pour mieux exercer leur concurrence.

Injection de fautes L’injection de fautes est une technique d’essai qui vise à remettre en

cause la mise en œuvre des banques de stockage de données en rajoutant le non-déterminisme

intrinsèque des systèmes distribués. Grâce à son approche de test en boîte noire (de l’anglais

“black box testing”), Conver a été instrumenté pour injecter des défauts externes, tels que les

partitions réseau et les pannes de processus.

Dans ce qui suit, nous identifions plusieurs extensions possibles de Conver, que nous pré-

voyons d’implémenter dans un temps futur.



140 CHAPITRE E. French Summary

Modèles de cohérence transactionnels Conver peut être étendu pour supporter la vérifica-

tion des modèles de cohérence transactionnels [77]. Le modèle d’état pris en charge par Conver

a déjà été adapté pour exprimer la sémantique transactionnelle. De ce fait, cette extension

impliquerait le soutien d’entités sémantiques supplémentaires pour exprimer les fonctionnalités

transactionnelles dans le modèle et la mise en œuvre d’un algorithme pour détecter les anomalies

transactionnelles [8].

Correspondance à des invariants au niveau applicatif Une tendance actuelle de la re-

cherche préconise l’utilisation d’invariants au niveau applicatif pour permettre Une approche

fine (mais moins portable) de la verification et la réalisation de la cohérence. [34, 125]. À cet

égard, nous pensons qu’il serait intéressant d’étudier comment ces invariants correspondent à

la sémantique de bas niveau dans Conver. Pour ce faire, une couche supplémentaire dans l’ar-

chitecture Conver peut imiter les cas d’usages applicatif communs et les modèles d’interaction,

et les associer à la sémantique des lecture-écriture de base de données.

Mesure de latence de cohérence Conver peut être étendu pour mesurer la latence des

opérations et le débit. De cette façon, il servirait d’outil pour explorer les compromis entre

la cohérence et la performance dans les bases de données, à la fois hors ligne et de manière

incrémentale, comme le montrent les travaux récents de Fan et al. [107].

Simulation et vérification Les traces d’exécution générées par Conver peuvent être entrées

dans des framework de simulation. En outre, les données des exécutions de Conver peuvent

aider à construire des modèles mathématiques sur le stockage de données sous test qui pourrait

permettre le développement de spécifications formelles [141], qui, à son tour, permettrait le

contrôle du modèle ou des preuves formelles d’exactitude.
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