Scalable Asynchronous Interaction Based on Selective Recording and Replaying of
X-Protocol Streams

Lassadd Gannoun and Jacques Labetoulle
Institut Eurécom
2229, route des Crétes
F-06904 Sophia-Antipolis
{gannoun, labetoul }@eurecom.fr

Abstract

This paper deals with the problem of allowing a user
to record and replay a specific portion of a window appli-
cation session in order to build an efficient and scalable
asynchronous interaction. Our approach is based on a
method that enables a latecomer to dynamically join a
conference and share applications used in the conference.
We propose to extend this method by archiving the state
modifications to the window system as consistent revival
points that can be stored with the user’s recorded applica-
tion session. Later, in a replaying step we can impose a
specific revival point to a remote window system and start
replaying from this point. We propose two mechanisms
applied in the recording step to allow later the displaying
of the contents of all windows generated by the recorded
application. The first is based on simulated window system
events, and the second applys window system requests to
get and store the comtents of all application’s windows
contents.

Keywords: distance leamning, distributed systems, X-pro-
tocol, application recording/replaying session.

1 Introduction and motivation

Shared window systems allow multiple users, each on
their own workstation, to view and interact with a single
user application [11,[2].[51,[6],[7]. Shared window sys-
tems have a major limitation, they are synchronous and
thus work only when all participants are on-line at the
same time. Application sharing would be even more effec-
tive if efficient collaboration could be extended to asyn-
chronous interaction that does not require all participants
to be on-line at the same time.

This requirement is the origin of designing and

implementing an asynchronous interaction method based
on an asynchronous application sharing service {4}. The
asynchronous application sharing service is based on two
complementary services. The first, is the application
recording service which allows a user (e.g. student) to
record his X-application session and to add comments
along all his’her session. The second is the application
replaying service enabling a remote partner user (e.g. pro-
fessor) to replay the recorded X-session and to understand
the partner user’s work (e.g. student). A major limitation
of those services is that they provide sequential recording
and replaying of X-window streams.

This problem can be solved by designing a method
for a direct access on an X-window stream. This method is
basically based on storing a persistent revival point and
later, accessing directly the X-window stream from this
stored revival point. This method restores the stored point
and imposes it to the window system server (i.e. X-server).
Hence replaying of the remainder X-window stream can
be started from this point.

The remainder of this paper is organized as follows:
first we describe. First, we present a related work on a
method for a dynamic participation in a computer based
conferencing system introduced in [3]. Afterwards, we
present our approach that is based on this method and that
provides a direct access on a stored X-window stream.
Then, we evaluate some protocols for a scalable and flexi-
ble asynchronous interaction. Finally, we provide some
concluding remarks and outline our future plans.

2 A dynamic participation method in a com-
puter based conferencing system

This method was designed to allow a latecomer to
participate in a window shared session. The approach



adopted in this method is to record the modification made
by requests to the resources allocated on the X-server.

2.1 X window system resources

An X application programming model presents six
basic abstractions: window, cursor, graphics context, pix-
map, coulormap and fonts. Windows and pixmaps are both
referred as drawables. Resources are created manipulated
and destroyed by the server in response to clients requests.
The following is brief description of these resources.

2.2 Recording modifications to resources

This approach consists to catalogue changes a client
can make to the server state. A client may change the
server state as follows:

« create private resources (e.g. a client can create a set of
windows, a set of colors, etc...for its use)

* change attributes of resources that it creates itself or
that did not create by itself.

This approach of concentrating on medifications
made to resources guarantees that a minimal set of infor-
mation is kept about the changes made by the client to the
server state. Whenever a new resource is created by a cli-
ent, data structures are created to record the attributes of
the resource. When the clients change the attributes of a
resource, the data structures associated with this resource
will be modified. When a client sends a request to free the
resource, the data structures associated will be deleted.

A problem arises when immediatly deleting a
resource that the client frees. Then we should not delete a
resource that is required by another resource which is not
deleted. To avoid this problem, this method apply an algo-
rithm that creates and maintains a dependency relation-
ships between resources. Figure 1 shows the dependency
graph that result from the CreateCursor request.

P

P,

Figure 1. CreateCursor request dependency
graph.

When a request to free a resource R is encountered,
the algorithm checks if any resource depends on R. Only
when no other resource depends on R can R’s informaticn
be deleted from maintained data structure, After recording

modifications to resources and maintaining a dependency
relationship graph between resources, using this produced
graph we can modify the state of a latecomer’s server.

In the next section we show how we can adapt this
method to use it in asynchronous manner to allow direct
access on an X-window stored session.

3 An approach for a direct access to an X-
protocol stream.

We propose to apply the method described in the pre-
vious section to access directly a stored X-protocol stream.
We know that it is not possible to access directly a specific
media unit (X-request) of an X-protocol stream and starts
playing requests (to an X-server) from this media unit.
This is because a particular media unit of an X-protocol
stream is effectively dependent of a the media units pre-
ceding it, and hence of a certain context of allocated
resources on the X-server. To explicit our approach, we
introduce these notations:

S: an X-protocol stream with n media units

R;: the media unit (X-request) of rank i in the stream
Swithl<isn

P;: the state point i of the allocated resources on an X-
server after playing all media units R, in the stream S that
precedes R; with 1 <k <i.

To access directly a stored media unit R; we should
save the state point P; at the recording step. This point

reflects the state of the server before playing the X-request
R;. Figure 2 shows the association made between state

server points and X-protocol requests.

s Ri .. Rj time
R]1 R2

Server state points P P time
L ] Hl 1 L 1 -

L] T T L

Figure 2. Relationship between X-requests
and server states

In the replaying step if we desire to start replaying
from the request R; we should restore the correspondent
server state point P; and impose this point to the server,
then we can start playing requests from R;. If we apply
with a “brute approach” the method described in the previ-
ous section we will not able to impose correctly a server
state point in a replaying step. Because, this method only



records the modifications made by the application to the
server state and assumes that displaying the current win-
dows contents will be made by the client. However, in the
replaying step we have only a stored X-protocol stream
request and we have not any client running.

To cope with this problem we propose two mecha-
nisms to allow later the displaying of all the client win-
dows. The first mechanism is based on simulated packet
events, and the second apply Getlmage request and Putlm-
age request to refresh the GUI of the client.

3.1 Simulated packet events

This mechanism is applied in the recording step. In
this step we apply the method proposed by [3] to maintain
a dependency relationship graph between current created
resources. If we desire to save a state point P, then we

send simulated expose events to the client being recorded.
These special server events are normally sent by the server
to the client to indicate that portions of a window become
visible. Each expose event specifies a rectangular region
inside the window that becomes visible. In response, the
client will generate the appropriate requests to draw an up-
to-date image on his window. These generated X-requests
will be stored to further refresh the contents of all win-
dows in the replaying step.

One would expect that to get all requests for refresh-
ing the contents of a given window we should simulate
single expose events for that window. However, it appears
that is pecessary in special cases to simulate multiple
expose events for a given window. This depends on the
current state of the visible window relative io the other
overlapping windows.

To determine whether or not to generate single or
multiple expose events for a window, we archive expose
events sent by the server in the recording step. The
archiving consists of maintaining an event data structure
which represents the most recent expose events sent by the
server relative to a given window. After saving a server
state point, we generate expose events from these event
data structure and we send them to the client. The record-
ing agent handles the request packets sent by the applica-
tion and stores them as refreshing requests.

We present in the following another approach which
is based on generating GetImage requests to later refresh
the contents of all client windows,

3.2 Generated Getlmage requests.

In rarely cases where it is extremely hard for the cli-
ent to refresh the window’s image, the client can request
the server to refresh the window’s image, the client can
request the server to do the refreshing. In this case there

will no expose events sent from the server to the client and
the scheme described above can not be applied. To get the
current image of a window there is a request called GetIm-
age that acquires the contents of a window image from the
server.

In a recording step when we store the state of a
server, Getlmage requests are generated for all windows
created by the client. The server will send replies as a
response to these requests. Then, the contents of windows
are stored. Later, in the replaying step we can use Putim-
age request to up-date the contents of all windows. Figure
3 shows the architecture of a recording agent.that archives
the server’s state.

Sres

]
chive:

Client ] session control et ! Server

archive
data hase

Figure 3. Architecture recording agent
archiving server's state

The recording agent consists of three components:
the session control, the filter and the archiver. The session
control, control the recording process. It handles the X
protocol traffic between the client and the server, controls
the recording of X requests and the archiving of server
states. The filter filters requests to be stored. The Archiver
maintains a dependency graph of the resources created.
This dependency graph helps to impose a specific state
point P; to a server in a replaying step.

In the next section we present different approaches
using the recording of a server state point and later restor-
ing and imposing of this state point on a new server.

4 Different approaches for a scalable asyn-
chronous interaction

During an asynchronous interaction based on record-
ing and later replaying of an X-window session, we have
faced the problem of accessing directly a stored X-session.
This problem can be solved by the following two policies.

» selective recording and replaying of an X-window
stream policy



» introducing revival points on the recording of an X-
window stream

In order to criticize these policies we illustrate sce-
narios of an asynchronous interaction between a professor
and a student based on each of these policies.

An asynchronous intercation can be based on a selec-
tive recording and replaying of X-window streams. This
policy is applied in two steps: the recording and the
replaying step.

Within this policy, the recording agent do not have to
record all X-application requests. It uses a method for
dynamic participation in a computer based conferencing
system[3] described in section 2 to record the modifica-
tions made by the application to the X-server state. When
the student encounters a problem he comments it and the
recording agent saves the X-server state as a consistent
revival point as described in section 3. This allow later the
replaying agent to replays requests from the stored revival
point.

In the replaying step, the replaying agent has to
impose the recorded revival point to the X-server. Hence,
the professor can start replaying the X-window session
from this revival point. This policy is interesting when the
professor can understand the student’s work from only this
stored revival point. Applying this policy the student can
store only a portion of his’her application session. There-
fore, this policy has low memory and CPU requirements
but presents the following limitations:

» The professor can only start replaying the stored X-
session from the revival point. It may be that to under-
stand the problem encountered by the student requires
the viewing of a student’s session portion that precede
the stored revival point. In this case, the professor is
not able to view the X-session portion preceding the
stored revival point.

+ The problem of a direct access to the X-window
stream portion remains. For example if the professor
wallts to access the next student’s problem that occurs
one hour after the previous probiem he should also
wait one hour to encounter the next problem.

+ Within this policy there is no way to go-fast backward
or to fast forward (skipping) in order to view rapidly
other portions of the real student’s application session.
This functionality is a key aim of an efficient replaying
service, and then can be useful to understand student’s
session.

An alternative approach that solves these problems is
the second policy that introduces revival points in the stm-
dent’s stored application session.

In the recording step, the recording agent records ali
X-window stream requests. During this step, revival points

are also saved on the recorded session. To save a revival
point the recording agent uses the method suggested in
section TV to save a revival point and to restore and impose
that point to the current X-server. We discuss later several
mechanisms that can control the saving of revival points.

In the replaying step, the replaying agent replays the
student’s stored session sequentially. When the professor
wants to access directly a specific portion, than he could
do it by restoring the correspondent revival point and
imposing it to the window system server (X-server). After
that he starts replaying the student’s recorded session
from this point.

The approach adopted here is the second one because
it combines the sequential and the selective recording and
replaying. The more interesting feature with revival points
is that we are able to go-backward and view other previous
X-window session portions.

4.1 Control of saving revival points

Some relevant questions raise when saving the revival
points. How we can efficiently save revival points during
application session and who can control the saving process
of these revival points? we distinguish three different
approaches can be applied:

» User driven approach
+» Time driven approach

» GUI events approach

In the user driven approach, the user running the
application (e.g. student or professor) controls the saving
of revival points. Then the user decides whether or not to
save a certain revival point regard to the semantic context
of the evolution of his application session. The saving of a
revival point occurs respect to the semantic context of the
user’s work. When the user judge that he starts a novel
step of his work than he can save a revival point which
reflects. This approach do not take account of the time
elapsed since the previous saved revival paint.

Saving revival points can be done by computing the
time elapsed since saving the last revival point. Hence. at
each period of T units of time (seconds or minutes e.g.
1=10mn) a revival point is saved. However, this approach
do not take in account the application session context
Then we can obtain successive revival points saved and all
of them reflect the same semantic session context.

The third approach is the GUI events that can control
the saving of a specific revival point. For example, when
the application opens a new window (e.g after forking a
new process) then this event translates a certain semantic
application context in the evolution of the user’s work.
This event can produce the saving of a revival point. It's
obviously that an optimal control approach for saving



revival points should be a combination of all these
described approaches. We give in the following an algo-
rithm that controls the saving of revival points: we define
here three basic events:

+ user_control_event: user order to save a revival point
» gui_event: Graphical user interface event.

» timeout_event: this event is raised when the maximum
of the time (T units of time) since saving the last
revival point is elapsed.

We define these system parameters;
+ P;: state point eligible for saving.

¢ R;: number of requests generated since the last revival
pointsaving.

« MaxReq: the maximum of requests generated since the
last revival point.

» 1: the maximum of the inter revival point period
* Mint: the minimum of the inter revival point period

« Timelapsed: the time since the last saving of the
revival point

Control Algorithm:
Switch(incoming_event)
case user_event: Save (P)
case timeout_event: if (R; > MaxReq)
Save(P;)
case gui_event: if (Timelapsed > Mint)
Save(P;)
End Switch

This algorithm gives a priority to the user to save a
revival points when he decides to do this. The elapsed time
driven approach is constrained by the number of generated
requests since the last saving of a revival point. This pre-
vents the saving of insignificant revival point after a
silence period (after a pause). The GUI interface event
approach is also constrained by the time elapsed from the
last saving of a revival point, because if we have just saved
a revival point, than it is not necessarily to save another
one even if we receive a GUI event.

5 Conclusion

In this paper we improve an asynchronous interac-
tion method by provinding a novel method for a selective
recording and replaying of stored X-window streams. Qur
proposed approach is based on a method for accommodat-
ing latecomers in a computer based conferencing system.
This method is extended by two mechanisms to allow sav-

ing of consistent revival points on a stored X-window ses-
sion. The first mechanism is based on simulated server
events which allows to get from the client a series of
requests that help restoration of the GUI of a client in a
replaying step. The second is based on generated requests
that gets from the server and after stores the contents of all
windows being displayed.

Finally we propose an approach for a scalable asyn-
chronous interaction based on combining the sequential
and selective recording. In this approach we record revival
points on a stored X-session. This helps to have a flexible
replaying of large stored X-window streams. Finally,
recording of revival points is governed by a control algo-
rithm which gives to the user the high priority to save at
any time a revival point.

In the future we plan to design a method for a rapid
switching from a revival point 10 another one. This is inter-
esting when we search to optimize time processing for an
optimal switching inter-revival point.

6 References

[1] H. M. Abdel-Wahab and M. A. Feit, “XTV: A framework for
sharing X-window clients in remote synchronous collabora-
tion”, In Proceedings of the IEEE Conference on Communi-
cations Software Communications for Distributed
Applications and Systems 1991 pp. 159-167. Chapel Hill,
North Carolina.

[2] J. Baldeschweiler, T. Gutekunst and B. Plattner, “A survey of
X protocol multiplexor”, ACM SIGCOM 1993, (pp 16-24),

[3] G. Chung, K. Jeffay and H. M, Abdel-Wahab, “Accommodat-
ing late-comers in shared window system™, [EEE Computer,
26(1) pp. 72-74.

[4] L. Gannoun, Ph. Dubois and I. Labetoulle, “Asynchronous
Interaction Method for a Remote Teleteaching Session”,
Intemational Journai of Educational Telecommunications
1997, 1{3) pp. 41 - 59.

{51 T. Gutekunst, D. Bauer, G. Caronni, Hasan and B. Plattner,
A distributed and policy-free general-purpose shared window
system”, IEEE/ACM Transactions on Networking.

[6] J. C Lauwers and K. A. Lantz, “Collaboration awareness in
support of collaberation transparency: requirements of the
next generation of shared window systems”, In Proceedings
of the ACM CHI'90 Conference (Human Factors in Comput-
ing Systems), pp. 303 -311. Seattle.

[71 G. McFarlane, “Xmux-a System for computer supported col-
laborative work™, In Proceedings of the 1st Australian Muli-
Media Communications, Applications and Technology Work-
shop. pp. 12-28. Sydney 1991.



