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ABSTRACT

In this paper, we introduce SmarTspelL, a new speaker-
independent algorithm to recognize continuously spelled
names over the telephone. Our method is based on an N-best
multi-pass recognition strategy applying costly constraints
when the number of possible candidates is low. This strategy
outperforms an HMM recognizer using a grammar contain-
ing all the possible names. It is also more suitable to reai-
time. For a 3,388 name dictionary, a 95.3% name recognition
rate is obtained. A real-time prototype has been implemented
on a workstation. We also present comparisons of different
feature sets for speech representation, and two speech recog-
nition approaches based on first- and second-order HMMs.

L. INTRODUCTION

Automatic speech recognition of spelled names is a diffi-
cult task because of the confusable letters contained in the
alphabet, the distortions introduced by the telephone channel
and the variability due to an undefined telephone handset.
However, in an application, the names generally belong to a
fixed list and the knowledge of this list can be used to apply
constraints on the sequence of letters. One way to use this
knowledge is to define a grammar containing the name list,
and to constrain the recognition with this grammar. While
reasonable recognition accuracy can be obtained with this
method, response time increases very rapidly with the size of
the dictionary. As our concern was to develop a real-time
recognizer, we investigated a different strategy. In this paper,
we present our recognition procedure, its evaluation on the
OGI speech telephone corpus, the performance of various
analysis techniques for telephone speech and a comparison
between two recognition approaches based on a first- and
second-order HMMs (called hereafter HMM1 and HMM?2).

II. THE RECOGNITION STRATEGY
The central idea of our method is to propagate N-best

hypotheses through different processing modules and to
apply costly constraints, if needed, at the end of the process-
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ing when the number of remaining candidates is low. As
shown in Figure 1, our recognition strategy consists of at
most four passes. The first pass, which produces the N-best
sequences of letters (N=20 in our experiments) given acous-
tic hidden Markov models of the letters, is the most time
consuming. After the first pass, selectively trained neural
networks (STNN) [1] focus on the discriminative segments
of speech, where the distinct acoustic information is local-
ized. The discriminative speech segments are determined
using the segmentation given by the first pass and an energy
criterion. This second pass is activated each time an hypoth-
esized letter belongs to one of the confusable subsets. The
third pass consists of a DTW alignment procedure taking
into account confusions made by the previous two passes as
well as insertion, deletion and substitution penalties. This
third pass provides the decision strategy module with N-best
candidates. Based on the scores of the third pass candidates,
the decision strategy module decides if the first candidate
should be considered as the recognized name or if the fourth
pass should be invoked. If the fourth pass is invoked, a
dynamic grammar is built with the N-best candidates pro-
vided by the DTW alignment and the HMM recognizer used
in the first pass is re-run with this highly constrained gram-
mar (typically 10 or 20 names). When the fourth pass is
invoked, its output is the recognized name.

II1. DATABASE

The database used in our experiments is a subset of the
speech telephone corpus collected at Oregon Graduate Insti-
tute (OGI) [3]. Over four thousand people called in response
to public requests. They were prompted by a recorded voice
to say their first and last names, with and without pauses,
together with other information. 225 repetitions of the alpha-
bet and more than 1300 different calls were selected for the
training, 558 calls for the validation and 491 calis for the
test. The purpose of the validation experiments was to opti-
mally tune the system’s parameters before running it on the
test set. As every speaker belongs only to one set (training,
validation or test) the experiments conducted are speaker-
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Figure 1. Block Diagram of the SmarTspelL recognition system.

independent.
IV. THE FIRST PASS

IV.1 The HMM1 recognizer

Our first pass is based on a frame synchronous first-order
continuous density hidden Markov model recognizer with
beam search. The development of this recognizer started
from a modified version of the HTK toolkit Viterbi decoder
[10]. A bigram letter grammar, computed on the training set
labels, is used in the decoder. The output of the decoder con-
sists of N-best hypotheses computed with a word-dependent
algorithm derived from [9]. To be more efficient in the word-
dependent algorithm and limit the memory space allocated,
we included an adaptive path pruning threshold which
decreases the number of paths processed, and a local word
pruning which eliminates theories whose last word probabil-
ity does not score well as compared to the best last word
probability. In the case of confusable words, we use state
tying to help the recognizer focus on the discriminative part
of the word and to decrease the number of estimated parame-
ters. The tied letters are (m, n), (i, 1), (p, t) and (b, d). We
chose 6 state HMM models for all letters but “w” (12 states)
and the silence model (1 state). Letter models have different
numbers of Gaussian mixtures, depending on how confus-
able the letters are. The letters are modeled with 3 mixture
densities, except b, ¢, d, e, g, p, t, v and z (the “e-set”’) and m,
n, s and f, which are modeled with 6 mixture densities.

IV.2 Front-end optimization

At the speech analysis level, we compared the 8th-order
PLP-RASTA [4] cepstral coefficients with a 14th-order
MFECC analysis. For PLP-RASTA, we used a 10ms frame
shift and a 20ms analysis window. As shown in figure 2, we

optimized the RASTA filter coefficient to decrease the num-
ber of substitution, deletion and insertion errors. The best
compromise was found for a value of 0.90. In these experi-
ments, the energy, the first derivative of the energy, and the
first derivative of the static cepstral coefficients C; through
Cg (computed over 7 frames) were combined with the static
cepstral coefficients to form the speech parametric represen-
tation (a total of 18 coefficients). For the MFCC analysis, we
used 11 static cepstral coefficients (G, included) computed
with a frame shift of 16ms and an analysis window of 32ms.
Various feature sets, combining static and dynamic features,
have been compared with PLP-RASTA (see Figure 3). To
obtain filtered data for the test set, we applied a distorting fil-
ter as shown in [7]. Filtering the test data artificially created a
mismatch between training and testing sets. In Figure 3, S,
stands for static coefficients and R1, R2 for, respectively,
first-order and second-order regression coefficients.
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Figure 2. Optimization of PLP-RASTA.
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These results show that:

+ including a second derivative slightly improves
recognition accuracy for unfiltered speech;

* both PLP-RASTA and the combination of MFCC
first and second derivatives (R1+R2) successfully
handle the mismatch between training and testing;
however, R1+R2 alone decreases the recognition
accuracy for the unfiltered data;

» static coefficients by themselves are not robust
against a mismatch between training and testing
conditions;

* long regression windows for the first and second
derivatives decrease recognition accuracy (for our
database the average letter duration is 386ms).
Additional experiments for other window sizes
confirmed this observation (e.g. R1(112ms) and
R2(208ms)). This result is in agreement with
Nadeu and Juang [8], who mentioned that long
regression windows may not be desirable for con-
tinuous speech recognition systems.
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Figure 3. Recognition accuracy obtained with different
feature sets. Recognition accuracgewas computed by
taking the dpercentagg of the number of correctly
recognized letters minus the number of insertions over
the total number of letters.

PLP-RASTA gave the best recognition accuracy. How-
ever, good performance was also obtained with the MECC
analysis. The band-pass filtering included in PLP-RASTA
explicitely compensates for channel distortion. However, we
believe that some kind of multi-style training (more exactly
multi-environment training) is happening because of the
diversity and the size of our database. In the case of the
MFCC analysis, multi-style training also compensates for
the channel distortions. In this study, one of our concerns
was to develop a system suitable for real-time implementa-
tion. Consequently, we did not investigate the combination
of long-term cepstral subtraction with MFCC analysis which
could have improved the accuracy. A short-term cepstral
substraction may constitute an alternative. The low dimen-
sionality of PLP-based feature vectors led us to choose the

PLP-RASTA analysis for our multi-pass recognizer in the
remaining part of the study.

IV.3 Comparison between first and
second-order HMM

We compared our system to a second-order hidden
Markov model recognizer [6, 5] where the underlying state
sequence is a second-order Markov chain in which the transi-
tion probability between two states at time t depends on the
states in which the process was at time t-1 and t-2. This
HMM?2 system has been shown to give good results on the
same task [5]. Compared to the system presented in [5], we
tried to optimize the whole system by:

« varying the feature sets on the basis of the MFCC
and PLP-RASTA parametrization;

* varying the number of mixtures

The best results are obtained for 6 mixture densities,
when the feature vector is represented by 11 Mel static cep-
strum coefficients (without the energy), plus the first deriva-
tive of the energy, the first derivative of the static coefficients
and the second derivative of the energy (a total of 24 coeffi-
cients). Comparative results between HMMI1 and HMM2
with the different optimization schemes is presented in Table
1. Compared to the results reported in [5], while the insertion
rate decreased, the recognition rate also decreased and the
deletion rate increased. In these HMM2 experiments, PLP-
RASTA and MFCC-based analyses gave similar perfor-
mance. From Table 1 (obtained on 3145 letters from the 491
names of the test set), we can see that very comparable
results are obtained with HMM1- and HMM2-based systems.
(the differences are not significant). However, a number of
differences exist between the two systems. HMM2 models
duration information, while the system based on HMM1 uses
tied state modeling and a bigram grammar. The results given
in the next sections were obtained with the HMM1 recog-
nizer, which is more suitable for a real-time implementation.

HMM1 HMM2

Correct 86.8% 86.1%
Substituted 11.8% 11.4%
Deleted 1.4% 2.4%
Inserted 3.7% 1.1%

Tablel : Performance comparison between HMM1 and
HMM2.

V. DISCRIMINATION AND ALIGNMENT

As expected, most of the confusions occurring in the first
pass are obtained for confusable subsets (e.g. {M,N}, {P, T},
{B, D, V}). By applying, after the first pass, discriminative
neural networks to the confusable letters of the subsets {B,
D, V} and {P, T}, we could increase the recognition rate on
these letters by more than 3%. The discriminative method is
based on a search for the frames which bear the most distinc-
tion between the confusable words. Then, a parametrization
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is done on these frames and the resulting vectors are given to
a neural network which provides the final decision. At this
level too, different feature sets have been investigated but an
MFCC-based feature set gave the best results.

The third pass of our method consists of a DTW align-
ment with a name dictionary. Three dictionary sizes have
been tested: 491, 3,388 and 21,877 names. The alignment
provides N-best candidates (20 in our implementation) to a
decision strategy module which uses their scores to deter-
mine if the fourth pass should be invoked or not.

VI. DYNAMIC GRAMMARS AND NAME
RETRIEVAL

Finally, in the fourth pass, dynamic grammars are built
with the N-best candidates provided by the alignment mod-
ule and the hidden Markov model recognizer is invoked with
this constrained grammar. As the number of names in the
grammar is limited (< =N-best candidates) this fourth pass is
not time consuming. The results obtained after the first pass,
the alignment (third pass) and the fourth pass, for the differ-
ent dictionaries, are given in Table 2.

The average confusability, indicated between the paren-
thesis in the first column of Table 2, is a measure of confus-
ability of the dictionary [2]. In the third dictionary (21,877)
there are 39,302 pairs of names which differ by one letter
substitution. This corresponds to an average of 1.8 confu-
sions per name.

In these scores, the improvement yielded by the neural
network discrimination has not yet been taken into account.
These results compare favorably with previous reported
work [3]. However, Cole et al. used a larger dictionary and
considered names spelled with pauses between letters. A
real-time version of our recognizer, working over the tele-
phone network, has been implemented on a workstation.

Size of the dictionary Th:a(inp;ass Fourth pass
and average reconition name
confusability il recognition rates
rates
491 (0.07) 97% 98.4%
3,388 (0.5) 90.6% 95.3%
21,877 (1.8) 87% 90.4%

Table 2 : Name retrieval accuracy after the third pass
(alignment) and the fourth pass (use of dynamic grammars).

VII. DISCUSSION AND PERSPECTIVES

We compared the performance of our approach with that
of a more conventional spelled name recognition task, where
all the names are present in a recognizer grammar. In this
case, we used a Viterbi decoder providing only the best can-
didate. This conventional approach yielded a 93.1% recogni-
tion rate on the 491 name dictionary. This recognition rate is
much lower than that obtained with our new approach and,
moreover, the decoding process is several times slower.

For the real-time multi-pass version of our system, we

used various pruning mechanisms which, on the average, led
to a decrease in name recognition rate between 3% and 5%.

The discrimination provided by neural networks (second
pass) is most useful when the size of the name dictionary
increases. We observed that in the case of the 21, 877 dictio-
nary, more than 95% of the time the correct name can be
found in the first two candidates. Furthermore, when there is
a misrecognition, often the first and second candidate differ
by only one letter. Consequently, it may be useful to re-apply
our STNN discrimination method as a fifth processing pass.

Several improvements of SmarTspell. are investigated.
Looking at the errors found after the first pass, a number of
recognition errors may be avoided using duration informa-
tion. Consequently, we are currently implementing a duration
prediction mechanism to prune hypotheses which are outside
a predicted duration length. Such a mechanism will eventu-
ally decrease the amount of space, increase the speed and
possibly the performance of the system. Another potential
source of improvement is the use of trigrams instead of big-
rams as a language model.
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