
Fundamental Limits of Cache-Aided Wireless BC:
Interplay of Coded-Caching and CSIT Feedback

Jingjing Zhang and Petros Elia

Abstract— Building on the recent coded-caching breakthrough
by Maddah-Ali and Niesen, the work here considers the K -user
cache-aided wireless multi-antenna symmetric broadcast channel
with random fading and imperfect feedback, and analyzes the
throughput performance as a function of feedback statistics and
cache size. In this setting, this paper identifies the optimal cache-
aided degrees-of-freedom (DoF) within a factor of 4, by identi-
fying near-optimal schemes that exploit a new synergy between
coded caching and delayed CSIT, as well as by exploiting the
unexplored interplay between caching and feedback-quality. The
DoF expressions reveal an initial gain due to current CSIT, and an
additional gain due to coded caching, which is exponential in the
sense that any linear decrease in the required DoF performance,
allows for an exponential reduction in the required cache size.
In the end, this paper reveals three new aspects of caching:
a synergy between memory and delayed feedback, a tradeoff
between memory and current CSIT, and a powerful ability to
provide cache-aided feedback savings.

Index Terms— Coded Caching, Prefetching, Broadcast channel,
Feedback, Channel State Information at the Transmitter (CSIT),
degrees-of-freedom (DoF), MIMO, Cache Memory.

I. INTRODUCTION

RECENT work by [1] explored — for the single-stream
broadcast setting — how careful caching of content

at the receivers, and proper encoding across different users’ 
requested data, can allow for higher communication rates.
The key idea was to use coding in order to create multicast
opportunities, even if the different users requested different 
data content. This coded caching approach — which went
beyond storing popular content closer to the user — involved 
two phases; the placement phase (during off peak hours) and
the delivery phase (during peak hours). During the placement
phase, content that was predicted to be popular (a library of 
commonly requested files), was coded and placed across user’s
caches. During the delivery phase — which started when users
requested specific files from the predicted library of files —
the transmitter encoded across different users’ requested data
content, taking into consideration the requests and the existing 
cache contents. This approach — which translated to efficient
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interference removal gains that were termed as ‘coded-caching
gains’ — was shown in [1] to provide substantial performance
improvement that far exceeded the ‘local’ caching gains from
the aforementioned traditional ‘data push’ methods that only
pre-store content at local caches.

Our interest here is to explore coded caching, not in the
original single-stream setting in [1], but rather in the feedback-
aided multi-antenna wireless BC. This wireless and multi-
antenna element now automatically brings to the fore a largely
unexplored and involved relationship between coded caching
and CSIT-type feedback quality and feedback timeliness. This
relationship carries particular importance because both CSIT
and coded caching are powerful and crucial ingredients in
handling interference, because they are both hard to implement
individually, and because their utility is affected by one
another (often adversely, as we will see). Our work tries to
understand how CSIT and caching resources jointly improve
performance, as well as tries to shed some light on the
interplay between coded caching and feedback.

A. Motivation for the Current Work

A main motivation in [1] and in subsequent works, was
to employ coded caching to remove interference. Naturally,
in wireless networks, the ability to remove interference is very
much linked to the quality and timeliness of the available
feedback, and thus any attempt to further our understand-
ing of the role of coded caching in these networks, stands
to benefit from understanding the interplay between coded
caching and (variable quality) feedback. This joint exposition
becomes even more meaningful when we consider the con-
nections that exist between feedback-usefulness and cached
side-information at receivers, where principally the more side
information receivers have, the less feedback information the
transmitter might need.

This approach is also motivated by the fact that feedback is
hard to get in a timely manner, and hence is typically far from
ideal and perfect. Thus, given the underlying links between the
two, perhaps the strongest reason to jointly consider coded
caching and feedback, comes from the prospect of using
coded caching to alleviate the constant need to gather and
distribute CSIT, which — given typical coherence durations —
is an intensive task that may have to be repeated hundreds
of times per second during the transmission of content. This
suggests that content prediction of a predetermined library
of files during the night (off peak hours), and a subsequent
caching of parts of this library content again during the



Fig. 1. Cache-aided K -user MISO BC.

night, may go beyond boosting performance, and may in
fact offer the additional benefit of alleviating the need for
prediction, estimation, and communication of CSIT during the
day, whenever requested files are from the library. Our idea
of exploring the interplay between feedback (timeliness and
quality) and coded caching, hence draws directly from this
attractive promise that content prediction, once a day, can offer
repeated and prolonged savings in CSIT.

1) Cache-Aided Broadcast Channel Model:
a) K -user BC with pre-filled caching: In the symmetric

K -user multiple-input single-output (MISO) broadcast channel
of interest here, the K -antenna transmitter, communicates to
K single-antenna receiving users. The transmitter has access
to a library of N ≥ K distinct files W1,W2, . . . ,WN , each
of size |Wn | = f bits. Each user k ∈ {1, 2, . . . , K } has a
cache Zk , of size |Zk| = M f bits, where naturally M ≤ N .
Communication consists of the aforementioned content place-
ment phase and the delivery phase. During the placement
phase — which usually corresponds to communication during
off-peak hours — the caches Z1, Z2, . . . , Z K are pre-filled
with content from the N files {Wn}N

n=1. The delivery phase
commences when each user k requests from the transmitter,
any one file WRk ∈ {Wn}N

n=1, out of the N library files. Each
file can be requested with equal probability. Upon notifica-
tion of the users’ requests, the transmitter aims to deliver
the (remaining of the) requested files, each to their intended
receiver, and the challenge is to do so over a limited (delivery
phase) duration T . We will consider the normalized

γ � M

N
(1)

as well as the cumulative

�� K M

N
= Kγ (2)

where the latter simply means that the sum of the sizes of
the caches across all users, is � times the volume of the
N-file library. As in [1], we will first consider the case where
� = {1, 2, · · · K }, while for non integer �, the result will be
that corresponding to ���.

For each transmission, the received signals at each user k,
will be modeled as

yk = hT
k x + zk, k = 1, . . . , K (3)

where x ∈ CK×1 denotes the transmitted vector satisfying a
power constraint E(||x||2) ≤ P , where hk ∈ CK×1 denotes
the channel of user k in the form of the random vector of
fading coefficients that can change in time and space, and
where zk represents unit-power AWGN noise at receiver k.
At the end of the delivery phase, each receiving user k

combines the received signal observations yk — accumulated
during the delivery phase — with the fixed information in their
respective cache Zk , to reconstruct their desired file WRk .

2) Coded Caching and CSIT-Type Feedback: Communi-
cation also takes place in the presence of channel state
information at the transmitter. CSIT-type feedback is typically
of imperfect-quality as it is hard to obtain in a timely and
reliable manner. In the high-SNR (high P) regime of interest,
this current-CSIT quality is concisely represented in the form
of the normalized quality exponent [2], [3]

α�− lim
P→∞

log E[||hk − ĥk ||2]
log P

, k ∈ {1, . . . , K } (4)

where hk − ĥk denotes the Gaussian estimation error between
the current CSIT estimate ĥk and the estimated channel
hk . In this sense, the variance (power) of the error scales
as P−α . The range of interest1 is α ∈ [0, 1]. We also assume
availability of delayed CSIT (as in for example [6], as well
as in a variety of subsequent works [2], [3], [7]–[14], see
also [12], [13], [15], [16] as well as [17]–[19]) where now
the delayed estimates of any channel, can be received without
error but with arbitrary delay, even if this delay renders this
CSIT completely obsolete.

a) Motivating the mixed-CSIT model: As it is argued
in [2], this mixed CSI model (partial current CSIT, and
good-quality delayed CSIT) nicely captures different realistic
settings that might involve channel correlations and an ability
to improve CSI as time progresses. The idea is that fast feed-
back (that is received well within the coherence period) might
be of reduced refinement, which is though improved later with
additional delayed feedback. Another way to motivate this
setting is by recalling that in practice, current CSI is obtained
from prediction using the delayed CSIT.

In addition, the mixed CSI model is well suited for cache-
aided communications, as it explicitly reflects feedback time-
liness and feedback quality which are both (as we will
see in this paper) directly intertwined with coded caching.
Considering mixed-CSIT is important because the delayed-
and-current CSI combination captures aspects that relate feed-
back to caching; delayed CSIT will introduce a synergy (with
coded caching), while the current-CSIT quality (corresponding
to the parameter α) will introduce a tradeoff.

b) Intuitive links between feedback-quality and
caching (between α and γ ): As we will see, α is not
only linked to the performance — where a higher α allows
for better interference management and higher performance
over the wireless delivery link — but is also linked to
caching; after all, the bigger the γ , the more side information
the receivers have, the less interference one needs to handle
(at least in symmetric systems), and the smaller the α that
is potentially needed to steer interference. This means that
principally, a higher γ implies that more common information
needs to be transmitted, which may (in some cases) diminish
the utility of feedback which primarily aims to facilitate the

1In the high SNR regime of interest here, α = 0 corresponds to having
essentially no current CSIT (cf. [4]), while having α = 1 corresponds (again
in the high SNR regime) to perfect and immediately available CSIT (cf. [5]).



opposite which is the transmission of private information.
It is for example easy to see (we will see this later) that in
the presence of � = K − 1, there is no need for CSIT in
order to achieve the optimal performance.

3) Measures of Performance in Current Work: As in [1],
the measure of performance here is the duration T — in time
slots, per file served per user — needed to complete the deliv-
ery process, for any request. The wireless link capabilities,
and the time scale, are normalized such that one time slot
corresponds to the optimal amount of time it would take to
communicate a single file to a single receiver, had there been
no caching and no interference. As a result, in the high P
setting of interest — where the capacity of a single-user MISO
channel scales as log2(P) — we proceed to set

f = log2(P) (5)

which guarantees that the two measures of performance, here
and in [1], are the same and can thus be directly compared.2

A simple inversion leads to the equivalent measure of the
per-user DoF

d(γ, α) = 1 − γ

T
(6)

which captures the joint effect of coded caching and
feedback.3

4) Notation and Assumptions: We will use the notation
Hn �

∑n
i=1

1
i , to represent the n-th harmonic number, and

we will use εn � Hn − log (n) to represent its logarithmic
approximation error, for some integer n. We remind the reader
that εn decreases with n, and that ε∞ � lim

n→∞ Hn − log (n) is

approximately 0.5772. Z will represent the integers, Z
+ the

positive integers, R the real numbers,
(n

k

)
the n-choose-k

operator, and ⊕ the bitwise XOR operation. We will use
[K ] �{1, 2, · · · , K }. If ψ is a set, then |ψ| will denote its
cardinality. For sets A and B , then A\B denotes the difference
set. Complex vectors will be denoted by lower-case bold font.
We will use ||x||2 to denote the magnitude of a vector x
of complex numbers. For a transmitted vector x, we will
use dur(x) to denote the transmission duration of that vector.
For example, having dur(x) = 1

10 T would simply mean that
the transmission of vector x lasts one tenth of the delivery
phase. In our high-P setting of interest, we will also use

.= to
denote exponential equality, i.e., we will write g(P)

.= P B to

denote lim
P→∞

log2 g(P)

log2 P
= B . Similarly

.≥ and
.≤ will denote

exponential inequalities. Logarithms are of base e, unless we
use log2(·) which will represent a logarithm of base 2.

Throughout this work we adopt the mixed-CSIT model, and
also adhere to the common convention (see for example [6])
of assuming perfect and global knowledge of delayed channel
state information at the receivers (delayed global CSIR),
where each receiver must know (with delay) the CSIR of

2We note that setting f = log2(P) is simply a normalization of choice,
and does not carry a ‘forced’ relationship between SNR and file sizes. The
essence of the derived results would remain the same for any other non-trivial
normalization.

3The DoF measure is designed to exclude the benefits of having some
content already available at the receivers (local caching gain), and thus to
limit the DoF between 0, and the interference free optimal DoF of 1.

(some of the) other receivers. We will assume that the entries 
of each specific estimation error vector are i.i.d. Gaussian. 
Additional basic assumptions regarding the outer bound, can 
be found in Appendix A.

5) Prior Work: The benefits of coded caching on reducing 
interference and improving performance, were revealed in the 
seminal work by Maddah-Ali and Niesen [1] who considered 
a caching system where a server is connected to multiple 
users through a shared link, and designed a novel caching and 
delivery method that jointly offers a multicast gain that helps 
mitigate the link load, and which was proven to have a gap 
from optimal that is at most 12. This work was subsequently 
generalized in different settings, which included the setting of 
different cache sizes for which Wang et al. in [24] developed a 
variant of the algorithm in [1] which achieves a gap of at most 
12 from the information theoretic optimal. Other extensions 
included the work in [25] by Maddah-Ali and Niesen who 
considered the setting of decentralized caching where the 
achieved performance was shown to be comparable to that 
of the centralized case [1], despite the lack of coordination in 
content placement. For the same original single-stream setting 
of [1], the work of Ji et al. in [26] considered a scenario 
where users make multiple requests each, and proposed a 
scheme that has a gap to optimal that is less than 18. Again 
for the setting in [1], the work of Ghasemi and Ramamoorthy 
in [27], derived tighter outer (lower) bounds that improve upon 
existing bounds, and did so by recasting the bound problem as 
one of optimally labeling the leaves of a directed tree. Further 
work can be found in [28] where Wang et al. explored the 
interesting link between caching and distributed source coding 
with side information. Interesting conclusions are also drawn 
in the work of Ajaykrishnan et al. in [29], which revealed 
that the effectiveness of caching in the single stream case, 
is diminished when N approaches and exceeds K 2.

Deviating from single-stream error free links, different 
works have considered the use of coded caching in dif-
ferent wireless networks, without though particular consid-
eration for CSIT feedback quality. For example, work by 
Huang et al. in [30], considered a cache-aided wireless fading 
BC where each user experiences a different link quality, and 
proposed a suboptimal communication scheme that is based 
on time- and frequency-division and power- and bandwidth-
allocation, and which was evaluated using numerical sim-
ulations to eventually show that the produced throughput 
decreases as the number of users increases. Further work by 
Timo and Wigger in [31] considered an erasure broadcast 
channel and explored how the cache-aided system efficiency 
can improve by employing unequal cache sizes that are 
functions of the different channel qualities. Another work can 
be found in [32] where Maddah-Ali and Niesen studied the 
wireless interference channel where each transmitter has a 
local cache, and showed distinct benefits of coded caching 
that stem from the fact that content-overlap at the transmitters 
allows effective interference cancellation.

Different work has also considered the effects of caching in 
different non-classical channel paradigms. One of the earlier 
such works that focused on practical wireless network settings, 
includes the work by Golrezaei et al. in [33], which considered



a downlink cellular setting where the base station is assisted 
by helper nodes that jointly form a wireless distributed caching 
network (no coded caching) where popular files are cached, 
resulting in a substantial increase to the allowable number of 
users by as much as 400−500%. In a somewhat related setting, 
the work by Perabathini et al. [34] accentuated the energy 
efficiency gains from caching. Further work by Ji et al. [35] 
derived the limits of so-called combination caching networks 
in which a source is connected to multiple user nodes through 
a layer of relay nodes, such that each user node with caching 
is connected to a distinct subset of the relay nodes. Additional 
work can also be found in [36] where Niesen et al. considered 
a cache-aided network where each node is randomly located 
inside a square, and it requests a message that is available in 
different caches distributed around the square. Further related 
work on caching can be found in [37] and [26], [38]–[41].

Work that combines caching and feedback considerations in 
wireless networks, has only just recently started. A reference 
that combines these, can be found in [42] where Deghel et al. 
considered a MIMO interference channel (IC) with caches at 
the transmitters. In this setting, whenever the requested data 
resides within the pre-filled caches, the data-transfer load of 
the backhaul link is alleviated, thus allowing for these links to 
be instead used for exchanging CSIT that supports interference 
alignment. An even more recent concurrent work can be found 
in [43] where Ghorbel et al. studied the capacity of the cache-
enabled broadcast packet erasure channel with ACK/NACK 
feedback. In this setting, Ghorbel et al. cleverly showed —
interestingly also using a retrospective type algorithm, this 
time by Gatzianas et al. in [44] — how feedback can improve 
performance by informing the transmitter when to resend the 
packets that are not received by the intended user and which 
are received by unintended users, thus allowing for multicast 
opportunities. The first work that considers the actual interplay 
between coded caching and CSIT quality, can be found in [45] 
which considered the easier problem of how the optimal cache-
aided performance (with coded caching), can be achieved with 
reduced quality CSIT.

6) Outline and Contributions: In Section II, Lemma 1,
we offer a lower bound for the optimal T ∗(γ, α). Then in
Theorem 1 we calculate the achievable T (γ, α), for � ∈
{1, 2, · · · , K }, α ∈ [0, 1], and prove it to be less than four
times the optimal, thus identifying the optimal T ∗(γ, α) within
a factor of 4. A simpler expression for T (again within a factor
of 4 from optimal), and its corresponding per-user DoF, are
derived in Theorem 2, while a simple approximation of these
is derived in Corollary 2a, where we see that the per-user
DoF takes the form d(γ, α) = α + (1 − α) 1−γ

log 1
γ

, revealing

that even a very small γ = e−G can offer a substantial DoF
boost which, as K increases, tends to d(γ = e−G , α) − d
(γ = 0, α) ≈ (1 − α) 1

G .
In Section III we discuss practical implications.

In Corollary 2d we describe the savings in current CSIT that
we can have due to coded caching, while in Corollary 2e we
quantify the intuition that, in the presence of coded-caching,
there is no reason to improve CSIT beyond a certain threshold
quality. We also show that caching with approximately γ− 1

α

allows us to entirely remove current CSIT without degrading
performance, basically describing the memory cost for
buffering CSI.

In Section IV we present four simple examples that offer
some intuition on the scheme design, while in Section V we
present the caching-and-delivery scheme in its general form,
building on the interesting connections between MAT-type ret-
rospective transmission schemes (cf. [6]) and coded caching.
Appendix A presents the outer bound proof, and Appendix B
the proof for the gap to optimal.

II. THROUGHPUT OF CACHE-AIDED BC AS A FUNCTION

OF CSIT QUALITY AND CACHING RESOURCES

The following results hold for the (K ,M, N, α) cache-aided
K -user wireless MISO BC with random fading and α ∈ [0, 1],
where γ = M

N and � = Kγ . The results hold for N ≥ K ,
except the following outer bound (lower bound) on the optimal
T ∗, which in fact holds for all N, K .

Lemma 1: The optimal T ∗ for the (K ,M, N, α) cache-
aided K -user MISO BC, is lower bounded as

T ∗(γ, α) ≥ max
s∈{1,...,min(N,K )}

1

(Hsα + 1 − α)
(Hs − Ms

� N
s � ).

(7)
Proof: The proof is presented in Section VI and it

uses the bound from Lemma 2 whose proof can be found
in Section VI-A.

A. Achievable Throughput of the Cache-Aided BC

The following identifies, up to a factor of 4, the optimal T ∗,
for all � ∈ {1, 2, · · · , K } (i.e., M ∈ N

K {1, · · · , K }). The result
uses the expression

αb,η = η − �

�(HK − Hη − 1)+ η
, η = ��
, . . . , K − 1. (8)

to define different α intervals, while when � ≥ K − 1, we set
αb,η = 0 reflecting the fact that no CSIT is needed to achieve
the optimal performance.

Theorem 1: In the (K ,M, N, α) cache-aided MISO BC
with N files, K users, � ∈ {1, 2, · · · , K }, and for η =
arg maxη′∈[�,K−1]∩Z{η′ : αb,η′ ≤ α}, then

T = max{1 − γ,
(K − �)(HK − Hη)

(K − η)+ α(η + K (HK − Hη − 1))
} (9)

is achievable and always has a gap-to-optimal that is less
than 4, for all α, K . For α ≥ K (1−γ )−1

(K−1)(1−γ ) , T is optimal.
Proof: The caching and delivery scheme that achieves

the above performance is presented in Section V,
while the corresponding gap to optimal is bounded in
Section VI-A.

The above is achieved with a general scheme whose caching
phase is a function of α. We will henceforth consider a
special case (η = �) of this scheme, which provides similar
performance (it again has a gap to optimal that is bounded
by 4), simpler expressions, and has the practical advantage
that the caching phase need not depend on the CSIT statistics
α of the delivery phase. For this case, we can achieve the
following performance.



Theorem 2: In the (K ,M, N, α) cache-aided MISO BC
with � ∈ {1, 2, · · · , K },

T = (1 − γ )(HK − H�)

α(HK − H�)+ (1 − α)(1 − γ )
(10)

is achievable and has a gap from optimal

T

T ∗ < 4 (11)

that is less than 4, for all α, K . Thus the corresponding per-
user DoF takes the form

d(γ, α) = α + (1 − α)
1 − γ

HK − H�
. (12)

Proof: The scheme that achieves the above performance
will be described later on as a special (simpler) case of the
scheme corresponding to Theorem 1. The corresponding gap
to optimal is bounded in Section VI-A.

The following corollary describes the above achievable T ,
under the logarithmic approximation Hn ≈ log (n). The
presented expression is exact in the large K setting where
HK −H�
log( 1

γ )
= 1.

Corollary 2a: Under the logarithmic approximation
Hn ≈ log (n), the derived T takes the form

T (γ, α) = (1 − γ ) log( 1
γ )

α log( 1
γ )+ (1 − α)(1 − γ )

(13)

and the derived DoF takes the form

d(γ, α) = α + (1 − α)
1 − γ

log 1
γ

. (14)

For the large K setting, what the above suggests is that
current CSIT offers an initial DoF boost of d∗(γ = 0, α) = α
(cf. [46]), which is then supplemented by a DoF gain

d(γ, α)− d∗(γ = 0, α) → (1 − α)
1 − γ

log( 1
γ )

attributed to the synergy between delayed CSIT and caching.4

1) Interplay Between CSIT Quality and Coded Caching in
the Symmetric MISO BC: The derived form in (12) (and its
approximation in (14)) nicely capture the synergistic as well
as competing nature of feedback and coded caching. It is easy
to see for example that the effect from coded-caching, reduces
with α and is proportional to 1 − α. This reflects the fact that
in the symmetric MISO BC, feedback supports broadcasting
by separating data streams, thus diminishing multi-casting by
reducing the number of common streams. In the extreme case
when α = 1, we see — again for the symmetric MISO BC —
that the caching gains are limited to local caching gains.5

For the specific case of α = 0, we have the following.

4We note that these gains are, as K increases, less and less a result of
the extra performance boost directly from D-CSIT, because in the large K
setting, the per-user DoF due to delayed feedback — without caching — is
approximately 1

log K which vanishes to zero.
5This conclusion is general (and not dependent on the specific schemes),

because the used schemes are optimal for α = 1. The statement holds because
we can simply uniformly cache a fraction γ of each file in each cache,
and upon request, use perfect-CSIT to zero-force the remaining requested
information, to achieve the optimal T ∗(γ, α = 1) = 1 − γ , which leaves us
with local (data push) caching gains only.

Corollary 2b: In the (K , M, N) cache-aided MISO BC 
with K ≤ N users, and with � ∈ {1, 2, · · ·  , K − 1}, then

T = HK − H� (15)

is achievable and has a gap-to-optimal

T

T ∗ < 4 (16)

that is less than 4, for all K .
Proof: The scheme that achieves the above perfor-

mance is presented in Section V, while the corresponding
gap to the optimal performance is bounded in the appendix
Section VI-A.

Furthermore, the following corollary offers some insight by
adopting the logarithmic approximation Hn ≈ log (n) (which
becomes tight as K increases).6

Corollary 2c: Under the logarithmic approximation,
the above T takes the form

T = log(
1

γ
)

and the corresponding per-user DoF takes the form

d(γ ) = 1 − γ

log( 1
γ )
. (17)

Example 1: In a MISO BC system with α = 0, K antennas
and K users, in the absence of caching, the optimal per-user
DoF is d∗(γ = 0, α = 0) = 1/HK (cf. [6]) which vanishes
to zero as K increases. A DoF of 1/4 can be guaranteed with
γ ≈ 1

50 for all K , a DoF of 1/7 with γ ≈ 1
1000 , and a DoF of

1/11.7 can be achieved with γ ≈ 10−5, again for all K .

B. Synergistic DoF Gains

We proceed to derive some insight from the above, and for
this we look to the large K regime, where there is no ambiguity
on which gains can be attributed solely to coded caching
(in addition to possible DoF gains due to other resources such
as feedback). In this regime, what the above says is that the
gain that is directly attributed to caching

d(γ )− d∗(γ = 0) → 1 − γ

log( 1
γ )
> γ, ∀γ ∈ (0, 1]

can substantially exceed7 the typical coded-caching
(per-user DoF) gain γ .

What we also see, again for larger K , is that while
the individual component settings/algorithms (MAT from [6],
and the Maddah-Ali and Niesen (MN) algorithm from [1])
respectively provided individual DoF gains of the form
dMAT = d∗(γ = 0) = 1

HK
and dSS(γ ) = 1−γ

K (1−γ )
1+Kγ

= γ + 1
K

6To avoid confusion, we clarify that the main theorem is simply a DoF-type
result, that nothing but SNR scales to infinity, and the derived DoF holds for
all K . The corollaries are simply the approximation of the above expression,
under the logarithmic approximation, which becomes tight as K increases.

7In this larger K setting, we have dSS(γ ) + dMAT → γ . We clarify that
this step is simply the result of a large-K approximation of the corresponding
expression from the main theorem. In that sense, K scales after SNR does.
We also recall from [6] that d∗(γ = 0) = 1

HK
which decreases with K .



(cf. [1]), the combination of these two components results in 
a synergistic

d(γ ) > dSS(γ )+ dMAT, ∀γ ∈ [0, 1]
that — for larger K — exceeds the sum of the two individual
components. This is the first time that such synergistic gains
have been recorded. The gains become very striking for
smaller values of γ in which case we have that 1−γ

log( 1
γ )

� γ.

1) Derivative Analysis for Understanding the Small-γ
Gains Attributed to Caching: Let us fix K , and consider the
derivative of the DoF gain attributed to caching

d(γ )− d(γ = 0) = 1 − γ

HK − HKγ
− 1

HK
≈ 1 − γ

log(1/γ )
− 1

HK

(18)

which takes the form

δ
(
d(γ )− d(γ = 0)

)

δγ
≈

1
γ − 1 − log( 1

γ )

(log( 1
γ ))

2
≈

1
γ

(log( 1
γ ))

2
(19)

which, when evaluated at γ = 1/K , gives

δ
(
d(γ )− d(γ = 0)

)

δγ
|γ= 1

K
≈ K

log2 K

revealing a substantial DoF boost at the early stages8 of γ .
These can be compared to linear gains where the derivative

is constant
δ
(
d(γ )− d(γ = 0)

)

δγ
= δ

(
γ
)

δγ
= 1, ∀γ. (20)

These gains in fact imply9 an exponential (rather than linear)
effect of coded caching, in the sense that now a microscopic
γ = e−G can offer a very satisfactory

d(γ = e−G) ≈ 1

G
(21)

which is only a factor G from the interference-free (cache-
free) optimal d = 1. The above only needs that K ≥ eG for
any fixed G ≥ 1. It does not require K to be asymptotically
large. Naturally the higher the K , the more of these gains can
be attributed solely to caching (rather than MAT). When the
value of K is moderate, naturally MAT has an impact, in terms
of per-user DoF.

III. CACHE-AIDED CSIT REDUCTIONS

We proceed to explore how coded caching can alleviate the
need for CSIT.

A. Cache-Aided CSIT Gains

To capture the feedback savings, let us consider

δα(γ )� arg min
α′ {α′ : (1 − γ )T ∗(γ = 0, α′) ≤ T (γ, α)} − α

8Similarly for γ = K−(1−ε), ε ∈ (0, 1], we get
δ
(
d(γ )−d(γ=0)

)

δγ |γ=K −(1−ε) ≈ K 1−ε
(1−ε)2 log2 K

.

9Here we make the assumption that 1−γ ≈ 1, which is a soft approximation
that allows for simplicity of expressions, and which reflects the reality of small
γ (cf. [47]).

Fig. 2. Single stream TSS (no delayed CSIT, dotted line) vs. T after the
introduction of delayed CSIT. Plot holds even for very large K , and the main
gains appear for smaller values of γ .

Fig. 3. Typical gain d(γ ) − d∗(γ = 0) attributed solely to coded
caching (dotted line) vs. synergistic gains derived here. Plot holds for large K ,
and the main gains appear for smaller values of γ .

describing the CSIT reduction due to caching, down to an
operational α. The proof is direct from Theorem 2.

Corollary 2d: In the (K ,M, N, α) cache-aided MISO BC,
caching can achieve a CSIT reduction

δα(γ, α) = (1 − α)(HKγ − γ HK )

(HK − 1)(HK − HKγ )

which, under the logarithmic approximation, takes the form

δα(γ, α) = (1 − α)d(γ, α = 0) = (1 − α)
1 − γ

log( 1
γ )
.

Furthermore we have the following which quantifies the
intuition that, in the presence of coded-caching, there is no
need to improve CSIT beyond a certain threshold quality. The
following uses the definition in (8), and it holds for all K .

Corollary 2e: For any � ∈ {1, . . . , K }, then

T ∗(γ, α) = T ∗(γ, α = 1) = 1 − γ (22)

holds for any

α ≥ αb,K−1 = K (1 − γ )− 1

(K − 1)(1 − γ )
(23)

which reveals that CSIT quality α = αb,K−1 is the maximum
needed, as it already offers the same optimal performance
T ∗(γ, α = 1) that would be achieved if CSIT was perfect.

Proof: This is seen directly from Theorem 1 after noting
that the achievable T matches T ∗(γ, α = 1) = 1 − γ .



1) How Much Caching Is Needed to Partially Substitute
Current CSIT With Delayed CSIT (Using Coded Caching
to ‘Buffer’ CSI): As we have seen, in addition to offering
substantial DoF gains, the synergy between feedback and
caching can also be applied to reduce the burden of acquiring
current CSIT. What the above results suggest is that a modest
γ can allow a BC system with D-CSIT to approach the
performance attributed to current CSIT, thus allowing us to
partially substitute current with delayed CSIT, which can be
interpreted as an ability to buffer CSI. A simple calculation
— for the large-K regime — can tell us that

γ ′
α � arg min

γ ′ {γ ′ : d(γ ′, α = 0) ≥ d∗(γ = 0, α)} = e−1/α

which means that γ ′
α = e−1/α suffices to achieve — in con-

junction with delayed CSIT — the optimal DoF performance
d∗(γ = 0, α) associated to a system with delayed CSIT and
α-quality current CSIT.

Example 2: Let K be very large, and consider a BC sys-
tem with delayed CSIT and α-quality current CSIT, where
α = 1/5. Then γ ′

α=1/5 = e−5 = 0.0067 ≈ 1/150 which means
that

d∗(γ = 0.0067, α = 0) ≥ d∗(γ = 0, α = 1/5)

which says that the same high-K per-user DoF performance
d∗(γ = 0, α = 1/5), can be achieved by substituting all
current CSIT with coded caching employing γ ≈ 1/150.

IV. EXAMPLES OF SCHEMES

The general scheme will be presented in Section V. To offer
some intuition on the design, we provide here different exam-
ples (all for the case of K = N = 3,M = 1), first for the
case of α = 1, then for the case of α = 0, then a third
example for the general case of α ∈ (0, 1) corresponding to
Theorem 2, and then a fourth example again for the general
case of α ∈ (0, 1), now though for the case corresponding to
Theorem 1, where the caching redundancy can increase with α.

In our examples here, for simplicity, the three distinct files
in the library will be relabeled as W1 = A,W2 = B,W3 = C ,
and we will assume the worst-case request where A, B,C are
requested by user 1, 2, 3, respectively.

A. Scheme for α = 1

We offer this very simple example as a warm up exercise.
For cache placement, each user stores a fraction γ = M

N = 1
3

of each file, and then (upon notification of the three requests)
the remaining f (1 − γ ) = 2 f

3 bits of each desired file
are delivered using interference-free zero-forcing (ZF) which
employs perfect CSIT. Hence after an optimal duration T =
(1 − γ ) = 2

3 , the transmitter delivers file A to user 1, B to
user 2 and C to user 3. In this symmetric setting, the complete
separation of signals due to perfect-CSIT, renders multicasting
unnecessary, and the optimal performance reflects only local
caching gains.

B. Scheme for α = 0

Now we focus on the case where only delayed CSIT is
available at the transmitter.

Fig. 4. Basic composition of scheme. ‘MAT encoding/decoding’ corresponds
to the scheme in [6], while ‘MN caching/folding’ corresponds to the scheme
in [1].

1) Key Idea Behind the Scheme: As Figure 4 implies,
the scheme starts by first applying the Maddah-Ali and
Niesen (MN) sub-packetization based scheme [1] for placing
sub-packets in the caches, and for generating order-(Kγ + 1)
(i.e., order-2) messages — in the form of XORs of the sub-
packets — where each XOR is meant for Kγ + 1 = 2
users. These XORs are delivered by the well known MAT
method [6], and in particular by the part of MAT which deliv-
ers order-(Kγ + 1) (order-2) messages. This allows us to skip
the first Kγ phases (i.e., to skip the first phase) of the MAT
scheme, which happen to have the longest time duration (phase
i has duration 1/ i ). This gives us an idea as to why the impact
of small caches (small γ ) is substantial; even small caches can
remove a large fraction of the communication duration. Upon
MAT decoding, we simply proceed with decoding based on
the algorithm in [1]. In the end, the key idea is that the caching
algorithm creates a multi-destination delivery problem that is
the same as that which is efficiently solved by the last stages
of the MAT scheme.

a) Placement phase: After splitting each file into
three equally-sized subfiles as A = (A1, A2, A3), B =
(B1, B2, B3),C = (C1,C2,C3), we fill the cache Zk of each
user k, as follows Zk = (Ak, Bk,Ck), k = 1, 2, 3.

b) Delivery phase: To satisfy the requests A, B,C ,
we must deliver the following three XORs A2 ⊕ B1, A3 ⊕
C1, B3 ⊕ C2, each having size f

3 bits, and each intended
for two users (users 1-2, 1-3, and 2-3 respectively). These
messages, which we respectively denote as AB, AC, BC , are
delivered by employing the last two phases of the (K = 3)
MAT algorithm in [6].

Phase 2: Before transmission, we split each XOR into two
mini parts as AB = (AB1, AB2), AC = (AC1, AC2), BC =
(BC1, BC2), where now each mini part has size f

6 bits. Then
we form the following three vectors10

x1 =
⎡

⎣
AB1
AB2

0

⎤

⎦, x2 =
⎡

⎣
AC1
AC2

0

⎤

⎦, x3 =
⎡

⎣
BC1
BC2

0

⎤

⎦ (24)

which we send in three sequential transmissions. This allows
each user to get three different linear combinations of
scalars, one per transmission, as we indicate and label below
(ignoring noise)

user 1 gets: L1(AB1, AB2), L4(AC1, AC2), L7(BC1, BC2)

user 2 gets: L2(AB1, AB2), L5(AC1, AC2), L8(BC1, BC2)

user 3 gets: L3(AB1, AB2), L6(AC1, AC2), L9(BC1, BC2)

where for example L1(AB1, AB2), L4(AC1, AC2),
L7(BC1, BC2) denote the received observations of user 1,

10Here we assume a mapping from bits to QAM.



6
1
6

3
6

at time slot 1, 2, 3 respectively. The important thing to 
note is that — as we know from [6] — L7(BC1, BC2) is 
useful to both users 2 and 3 in decoding BC1, BC2, and  
similarly L5(AC1, AC2) is useful to both user 1 and 3, 
and L3(AB1, AB2) is useful to users 1 and 2. Recall that 
|L1(AB1, AB2)| = |AB1| =  f bits, which means that 
dur(xi ) = , i = 1, 2, 3, and that this phase has duration .

Phase 3: We now transmit, using one antenna only, first a 
linear combination

f1
(
L3(AB1, AB2), L5(AC1, AC2), L7(BC1, BC2)

)

and then a second combination

f2
(
L3(AB1, AB2), L5(AC1, AC2), L7(BC1, BC2)

)

both of which carry a fully-common message (i.e., a message 
of order 3) that is useful to all users. Thus after the sequential 
transmission of

x4 = [ f1, 0, 0]T , x5 = [ f2, 0, 0]T (25)

each user can decode. To see this, let us focus on user 1.
Before transmission of x4, x5, user 1 had knowledge of
L7(BC1, BC2) (as this was its received signal during the third
transmission, for BC). Now, with x4, x5, user 1 has two obser-
vations regarding L3, L5, L7. L7 can be removed, hence now
user 1 can resolve L3(AB1, AB2) and L5(AC1, AC2). Thus
now user 1 can combine L1(AB1, AB2) and L3(AB1, AB2)
to resolve AB1 and AB2, and recover A2 ⊕ B1. Similarly
user 1 can combine L4(AC1, AC2) and L5(AC1, AC2) to
resolve AC1 and AC2, to thus recover A3 ⊕ C1. User 1 can
now combine A2 ⊕ B1 with its cache (which includes B1) to
recover A2, and can combine A3 ⊕ C1 with its cache (which
includes C1) to recover A3, and thus recover the desired A.
Similarly users 2 and 3 can recover files B and C respectively.

With dur(x4) = dur(x5) = 1
6 , the third phase has duration 2

6
and the total two-phase transmission has an overall duration

T = 1

2
+ 1

3
= 5

6
(26)

which matches the derived T (γ ) = T ( 1
3 ) = HK − HKγ =

H3 − H2 = 5
6 .

C. Scheme for α ∈ (0, 1)

We proceed with the general case of α ∈ (0, 1), again
focusing on the case corresponding to Theorem 2 where η is
forced to be η = �, for all α (in this case, η = 1).

1) Placement Phase: The cache placement is the same as
in the case of α = 0 described above.

2) Data Folding: Recall that users 1,2,3 respectively request
files A, B,C , which will be delivered with delay T . Also
recall that now, user 1 requires subfiles A2, A3, user 2 subfiles
B1, B3, and user 3 subfiles C1,C2. Each of these subfiles
will be split into two mini parts as A2 = (A f

2 , A f̄
2 ), A3 =

(A f
3 , A f̄

3 ), B1 = (B f
1 , B f̄

1 ), B3 = (B f
3 , B f̄

3 ) and C1 =
(C f

1 ,C f̄
1 ),C2 = (C f

2 ,C f̄
2 ), such that |A f̄

2 | = |A f̄
3 | =

|B f̄
1 | = |B f̄

3 | = |C f̄
1 | = |C f̄

2 | = f αT
2 bits. Now the three

generated XORs will be AB � A f
2 ⊕ B f

1 , AC � A f
3 ⊕ C f

1 ,
and BC � B f

3 ⊕ C f
2 , and will deliver the ‘folded’ part of

each missing subfile, while the remaining ‘unfolded’ parts

A f̄
2 , A f̄

3 , B f̄
1 , B f̄

3 ,C f̄
1 ,C f̄

2 will be delivered via a ZF com-
ponent inside the employed QMAT scheme, as we describe
below.

3) Transmission: We proceed to describe the transmission
of the aforementioned folded and unfolded messages, employ-
ing the last two phases of the three-user QMAT algorithm
from [46].

Phase 2: This phase will take as input the folded mes-
sages (which will be decoded upon completion of the third
phase later on), and will also deliver some of the unfolded
messages. For any Kγ -length set (in this case, for any
pair) ψ ∈ {{1, 2}, {1, 3}, {2, 3}}, and for ψ̄ �{1, 2, 3}\ψ , the
transmission takes the form

xt = Gψ,t xψ,t + gψ̄,t a
∗̄
ψ,t

+ g1,t a1,t + g2,t a2,t + g3,ta3,t .

(27)

where
• Gψ,t �[gψ̄,t ,Uψ,t ], for gψ̄,t being simultaneously

orthogonal to the channel estimates of the two users
in ψ , and for Uψ ∈ C3×2 being a randomly chosen
sub-unitary matrix

• gk,t is orthogonal to the current estimates of the channels
to users {1, 2, 3}\k

• xψ,t = [xψ,1, xψ,2, 0]T is a (K = 3)-length vector with
K − Kγ = 2 non-zero scalar entries, where each scalar
has rate (1 − α) log P bits per unit time, and where each
scalar has power E[|xψ,1|2] .= P , E[|xψ,2|2] .= P1−α

• the bits in XOR AB (ψ = {1, 2}) are split evenly between
x{1,2},1 and x{1,2},2, the bits in XOR AC (ψ = {1, 3})
are split evenly between x{1,3},1 and x{1,3},2, and the
bits in XOR BC (ψ = {2, 3}) are split evenly between
x{2,3},1 and x{2,3},2

• irrespective of ψ , ak,t is the ZF symbol carrying the
unfolded messages for user k ∈ {1, 2, 3}, with the rate
α log P bits per unit time, and with power Pα

• a∗̄
ψ,t

is an auxiliary symbol intended for user ψ̄ , carrying

residual interference.11 The symbol has power P , and
rate min (1 − α, α) log P bits per unit time. Auxiliary
symbols allow for the simultaneous delivery of private
data (unfolded messages) and higher-order data (XORs)

• Transmission xt is sequential: first for ψ = {1, 2}, then
for ψ = {1, 3}, and then for ψ = {2, 3}.

For any given ψ , the received signal (noise is removed) yk,t

of each desired user k ∈ ψ , takes the form

yk,t = hT
k,t Gψ,t xψ,t

︸ ︷︷ ︸
� Lψ,k , power

.=P

+ hT
k,t gψ̄,t a

∗̄
ψ,t

︸ ︷︷ ︸
.=P1−α

+ hT
k,t gk,t ak,t

︸ ︷︷ ︸
.=Pα

(28)

while the received signal for the other user ψ̄ , takes the form

yψ̄,t = hT
ψ̄,t

gψ̄,t a
∗̄
ψ,t

︸ ︷︷ ︸
power

.=P

+ hT
ψ̄,t

Gψ,t xψ,t
︸ ︷︷ ︸
� iψ,ψ̄ , P1−α

+ hT
ψ̄ ,t

gψ̄,t aψ̄,t
︸ ︷︷ ︸

Pα

. (29)

11The interference is carried over from a previous round of the QMAT
scheme. We spare the reader some of the details regarding rounds, and
consider the scheme for just one round. The rounds are linked via the auxiliary
variables, and having more than one round simply guarantees the QMAT DoF
optimality, as it minimizes the cost of initialization.



It is easy to see that at the end of this phase, each user in
ψ needs one more observation to resolve xψ,1, xψ,2, hence
the overheard messages iψ,ψ̄ � hT

ψ̄,t
Gψ,t xψ,t will be quantized

and placed into a message that will be meant for Kγ + 1 = 3
users, and which will be delivered in the next phase.

To calculate the duration of this second phase, we recall
that the phase terminates when we transmit AB = A f

2 ⊕ B f
1 ,

AC = A f
3 ⊕ C f

1 , and BC = B f
3 ⊕ C f

2 . Given that |A f̄
2 | =

|A f̄
3 | = |B f̄

1 | = |B f̄
3 | = |C f̄

1 | = |C f̄
2 | = f αT

2 bits (by design,
as we have seen above), then |AB| = |AC| = |BC| = 1

3 −
f αT

2 . Given that the rate of each transmitted scalar xψ,1 and
xψ,2 is (1 − α) log P bits per unit time, and given that we are
transmitting all three XORs AB, AC, BC , then the duration

of the second phase is 3
1
3 − f αT

2
2(1−α) .

Phase 3: We use īψ,ψ̄ to denote the quantized version
of iψ,ψ̄ (from phase 2) which can be reconstructed by the
transmitter at the beginning of phase 3. Instead of creating
two linear combinations as in (25), here we use the XOR
operator to combine messages: we create f1 � ī12,3 ⊕ ī13,2 and
f2 � ī13,2 ⊕ ī23,1. The transmission then takes the form

xt = [xc,t , 0, 0]T +
3∑

k=1

gk,t ak,t (30)

where xc,t carries information from f1 and f2, has power P ,
rate (1 − α) log P bits per unit time, and finally where ak,t

is again the ZF symbols with power Pα and rate α log P bits
per unit time, as before.

4) Decoding: We first start by noting that by design of
the QMAT algorithm (cf. [46]), each user k ∈ ψ — using
information from the previous round — can decode the aux-
iliary variable a∗̄

ψ,t
from (28) and remove it from its received

signal. Similarly the undesired user ψ̄ can employ successive
interference cancelation (cf. (29)) to again remove a∗̄

ψ,t
. Thus

we can proceed from (28) and (29), without having to consider
the auxiliary variables.

Now each user can decode xc,t and its own private (ZF)
messages in phase 3, and can then go back to phase 2 to decode
the XORs and the private messages. To see this, we again
focus on user 1 who already knows L{1,2},1, L{1,3},1, ī{2,3},1
(cf. (28)), where Lψ,k � hT

k,t Gψ,t xψ,t (here, since we focus
on user 1, we set k = 1).

From the common message xc,t , user 1 knows f1 =
ī{1,2},3⊕ ī{1,3},2 and f2 = ī{1,3},2⊕ ī{2,3},1. Using its knowledge
of ī{2,3},1 and f2, user 1 can get ī{1,3},2, and then from f1
the user can also have ī{1,2},3. Now user 1 combines ī{1,2},3
with L{1,2},1 to get x{1,2},1 and x{1,2},2 which allows for
resolving AB = A f

2 ⊕ B f
1 . Then user 1 combines ī{1,3},2 with

L{1,3},1 to get x{1,3},1 and x{1,3},2 which allows for resolving
AC = A f

3 ⊕ C f
1 . Using B f

1 from Z1 yields A f
2 , and using

C f
1 from Z1 yields A f

3 . Combined with the ZF-transmitted

private data which delivers A f̄
2 and A f̄

3 , completes the delivery
of A2, A3 and thus of A.

To calculate the duration of the third phase, we recall that

xc,t carries f1 and f2, each of size | f1| = | f2| = 1
3 − f αT

2
2 . Thus

xc,t carries a total of 1
3 − f αT

2 bits, at a rate of (1−α) log P bits

Fig. 5. Cache-aided retrospective communications scheme.

per unit time. Hence the total duration of phase 3 is
1
3 − f αT

2
1−α .

Combined with the duration 3
1
3 − f αT

2
2(1−α) of phase 2, implies a

total duration of

T = 10

12 + 3α
(31)

which matches the derived expression T =
(1−γ )(HK −H�)

α(HK −H�)+(1−α)(1−γ ) = 2
3 (H3−H1)

α(H3−H1)+(1−α) 2
3

= 10
12+3α from

Theorem 2.

D. Scheme Which Adapts the Caching Redundancy η to α

In the previous example, we considered the case correspond-
ing to Theorem 2 where the caching redundancy η is fixed as
η = Kγ . This incurs a certain (albeit small) degree of sub-
optimality, because as we argue in the next section, a higher α
can allow for higher caching redundancy because more private
messages means reduced multicasting, which allows some of
the data to remain uncached, which in turn allows for more
copies of the same information across different users’ caches.
Here we give an example of the general scheme that captures
this interplay between η and α, and show the corresponding
improvement that is found in Theorem 1 over Theorem 2.
The description of the example focuses on showing how we
calibrate — as a function of α — the cache placement and
the process of creating the XORs. This is again presented for
the case of K = N = 3, M = 1.

Using the defined breaking points αb,η =
η−�

�(HK −Hη−1)+η , η = ��
, . . . , K − 1 in (8), the range

of α is split into two intervals. The first interval is
α ∈ [0, αb,2) = [0, 3

4 ] during which the scheme remains
the same as in the previous example, where we chose
η = Kγ = 1 to create XORs that were meant for two users
at a time. In the second interval α ≥ αb,2 = 3

4 , we set η = 2,
and each XOR is meant for η + 1 = 3 users, allowing us to
skip the second phase of the previous example.

1) Placement Phase: We first split each file as

A = (Ac, Ac̄), B = (Bc, Bc̄), C = (Cc,Cc̄), (32)

where Ac, Bc,Cc denote the cached parts, and Ac̄, Bc̄,Cc̄

the parts that are not cached. The split is such that |Ac| =
|Bc| = |Cc| = f Kγ

η = f
2 . Then each cached part is

again divided evenly into
(K
η

) = 3 mini parts as Ac =
(A12, A13, A23), Bc = (B12, B13, B23), Cc = (C12,C13,C23),



and then the caches are filled as

Z1 = A12, A13, B12, B13,C12,C13,

Z2 = A12, A23, B12, B23,C12,C23,

Z3 = A13, A23, B13, B23,C13,C23. (33)

Now, to satisfy the requests A, B,C for users 1, 2, 3 respec-
tively, we must send A23 ⊕ B13 ⊕C12 as well as the uncached
messages Ac̄, Bc̄,Cc̄. This will be achieved by employing
phase η + 1 = 3 of the scheme we saw in the previous
example, where the transmission again takes the form xt =
[xc,t , 0, 0]T +∑3

k=1 gk,t ak,t , where xc,t carries A23⊕B13⊕C12
(again with power P and rate (1−α) log P bits per unit time),
while a1,t , a2,t , a3,t respectively carry Ac̄, Bc̄,Cc̄ (each with
power Pα and rate α log P bits per unit time).

This adaptation of η as a function of α provides for a slightly
better performance, which now — for any α ≥ 3

4 — takes
the form T = 1 − γ = 2

3 , which is the interference-free
optimal, despite having imperfect CSIT, as this was discussed
in Corollary 2e. This performance is an improvement over the
previously derived T = 10

12+3α for all α ≥ K (1−γ )−1
(K−1)(1−γ ) = 3

4 .

V. CACHE-AIDED RETROSPECTIVE COMMUNICATIONS:
THE GENERAL CASE

We proceed to describe the general communication scheme,
and in particular the process of placement, folding-and-
delivery, and decoding that achieve the performance described
in Theorem 1. In the end we calculate the achievable dura-
tion T . We remind the reader that, in the following, forcing
η to the (slightly) suboptimal η = �, delivers the result in
Theorem 2 (for which we saw some examples above).

The caching part is modified from [1] to ‘fold’ (linearly
combine) the different users’ data into multi-layered blocks,
in a way such that the subsequent Q-MAT transmission
algorithm (cf. [46]) (specifically the last K −ηα (ηα ∈ {�, . . . ,
K −1}) phases of the QMAT algorithm) can efficiently deliver
these blocks. Equivalently the algorithms are calibrated so
that the caching algorithm creates a multi-destination delivery
problem that is the same as that which is efficiently solved by
the last stages of the QMAT-type communication scheme.

The intuition is that as α increases, we can have more private
data, which means that there is less to be cached, which means
that caching can have higher redundancy, which implies XORs
of higher order, which means that we can multicast to more
users at a time, which in turn means that we can skip more
phases of QMAT. The intensity of the impact of small values
of γ relates to the fact that the early phases of QMAT are
the longest. So while a small γ can only skip a few phases,
it nonetheless manages to substantially reduce delay.

We henceforth remove the subscript in ηα and simply use η,
where now the dependence on α is implied.

A. Placement Phase

We proceed with the placement phase which modifies on
the work of [1] such that when the CSIT quality α increases,
the algorithm caches a decreasing portion from each file, but
does so with increasing redundancy.

Here each of the N files Wn, n = 1, 2, . . . , N
(|Wn| = f bits) in the library, is split into two parts

Wn = (W c
n ,W c

n ) (34)

where W c
n (c for ‘cached’) will be placed into one or more

caches, while the content of W c
n (c for ‘non-cached’) will never

be cached anywhere, but will instead be communicated —
using CSIT — in a manner that causes manageable inter-
ference and hence does not necessarily benefit from coded
caching. The split is such that

|W c
n | = K M f

Nη
(35)

where η ∈ {�, . . . , K − 1} is a positive integer, the value of
which will be decided later on such that it properly regulates
how much to cache from each Wn . As we will see later, η
will increase with α, and it will reflect the degree of caching
redundancy; cached content will appear in η ≥ � caches.

Now for any specific η, we equally divide W c
n into

(K
η

)

subfiles {W c
n,τ }τ∈
η ,

W c
n = {W c

n,τ }τ∈
η (36)

where12


η �{τ ⊂ [K ] : |τ | = η} (37)

where each subfile has size

|W c
n,τ | = K M f

Nη
(K
η

) = M f

N
(K−1
η−1

) bits. (38)

Now drawing from [1], the caches are filled as follows

Zk = {W c
n,τ }n∈[N],τ∈
(k)η (39)

where


(k)η �{τ ∈ 
η : k ∈ τ }. (40)

Hence each subfile W c
n,τ is stored in Zk as long as k ∈ τ ,

which means that each W c
n,τ (and thus each part of W c

n ) is
repeated η times in the caches.

B. Data Folding

At this point, the transmitter becomes aware of the file
requests Rk, k = 1, . . . , K , and must now deliver each
requested file WRk , by delivering the constituent subfiles
{W c

Rk ,τ
}
τ∈
η\
(k)η as well as W c

Rk
, all to the corresponding

receiver k. We quickly recall that:
1) subfiles {W c

Rk ,τ
}
τ∈
(k)η are already in Zk ;

2) subfiles {W c
Rk ,τ

}
τ∈
η\
(k)η are directly requested by

user k, but are not cached in Zk ;
3) subfiles Zk\{W c

Rk ,τ
}
τ∈
(k)η = Zk\W c

Rk
are cached in Zk ,

are not directly requested by user k, but will be useful
in removing interference.

We assume the communication here has duration T . Thus
for each k and a chosen η, we split each subfile W c

Rk ,τ
,

12We recall that in the above, τ and Wc
n,τ are sets, thus |τ |, |W c

n,τ | denote
cardinalities; |τ | = η means that τ has η different elements from [K ], while
|W c

n,τ | describes the size of W c
n,τ in bits.



τ ∈ 
η\
(k)η (each of size |W c
Rk ,τ

| = M f
N(K−1

η−1)
as we saw

in (38)) into

W c
Rk ,τ

= [W c, f
Rk ,τ

W c, f
Rk ,τ

] (41)

where W c, f
Rk ,τ

corresponds to information that appears in a
cache somewhere and that will be eventually ‘folded’ (XORed)

with other information, whereas W c, f
Rk ,τ

corresponds to infor-
mation that is cached somewhere but that will not be folded
with other information. The split yields

|W c, f
Rk ,τ

| = f αT − f (1 − K M
Nη )

(K−1
η

) (42)

where in the above, f αT represents the load for each user
without causing interference during the delivery phase, where
f (1− K M

Nη ) is the amount of uncached information, and where

|W c, f
Rk ,τ

| = |W c
Rk ,τ

| − |W c, f
Rk ,τ

|.
We proceed to fold cached content, by creating linear

combinations (XORs) from {W c, f
Rk ,τ

}
τ∈
η\
(k)η ,∀k. We will use

Pk,k′ (τ ) to be the function that replaces inside τ , the entry
k ′ ∈ τ , with the entry k. As in [1], the idea is that if we
deliver

W c, f
Rk ,τ

⊕ (⊕k′∈τ W c, f
Rk′ ,Pk,k′ (τ )

︸ ︷︷ ︸
∈Zk

) (43)

the fact that W c, f
Rk′ ,Pk,k′ (τ ) ∈ Zk , guarantees that receiver k

can recover W c, f
Rk ,τ

, while at the same time guarantees that
each other user k ′ ∈ τ can recover its own desired subfile
W c, f

R′
k ,Pk,k′ (τ ) /∈ Zk′ ,∀k ′ ∈ τ .

Hence delivery of each W c, f
Rk ,τ

⊕ (⊕k′∈τW c, f
Rk′ ,Pk,k′ (τ )) of

size |W c, f
Rk ,τ

⊕ (⊕k′∈τW c, f
Rk′ ,Pk,k′ (τ ))| = |W c, f

Rk ,τ
| (cf. (38)),

automatically guarantees delivery of W c, f
Rk′ ,Pk,k′ (τ ) to each user

k ′ ∈ τ , i.e., simultaneously delivers a total of η + 1 distinct
subfiles (each again of size |W c, f

Rk′ ,Pk,k′ (τ )| = |W c, f
Rk ,τ

| bits) to
η + 1 distinct users. Hence any

Xψ �⊕k∈ψW c, f
Rk ,ψ\{k}, ψ ∈ 
η+1 (44)

— which is of the same form as in (43), and which is referred
to here as an order-(η + 1) folded message — can similarly
deliver to user k ∈ ψ , her requested file W c, f

Rk ,ψ\k , which in
turn means that each order-(η + 1) folded message Xψ can
deliver — with the assistance of the side information in the
caches — a distinct, individually requested subfile, to each of
the η + 1 users k ∈ ψ (ψ ∈ 
η+1).

Thus to satisfy all requests {WRk \Zk}K
k=1, the transmitter

must deliver

• uncached messages W c
Rk
, k = 1, . . . , K

• cached but unfolded messages {W c, f
Rk ,ψ\{k}}ψ∈
η+1 ,

k = 1, . . . , K
• and the entire set

X
 �{Xψ = ⊕k∈ψW c, f
Rk ,ψ\{k}}ψ∈
η+1 (45)

consisting of

|X
 | =
(

K

η + 1

)

(46)

folded messages of order-(η + 1), each of
size (cf. (42),(38))

|Xψ | = |W c, f
Rk ,τ

| = |W c
Rk ,τ

| − |W c, f
Rk ,τ

|
= f (1 − γ − αT )

(K−1
η

) (bits). (47)

C. Transmission

We proceed to describe the transmission of the aforemen-
tioned messages by adapting the QMAT algorithm from [46],
with delay T .

The QMAT algorithm has K transmission phases. For each
phase i = 1, · · · , K , the QMAT data symbols are intended for
a subset S ⊂ [K ] of users, where |S| = i . Here by adapting the
algorithm, at each instance t ∈ [0, T ] through the transmission,
the transmitted vector takes the form

xt = Gc,t xc,t +
∑

�∈S̄
g�,t a

∗
�,t +

K∑

k=1

gk,t ak,t (48)

with xc,t being a K -length vector for QMAT data symbols,
with a∗

�,t being an auxiliary symbol that carries residual
interference, where S̄ is a set of ‘undesired’ users that changes
every phase, and where each unit-norm precoder gk,t for user
k = 1, 2, . . . , K , is simultaneously orthogonal to the CSI
estimate for the channels of all other users (gl,t acts the same),
thus guaranteeing

ĥ
T
k′,t gk,t = 0, ∀k ′ ∈ [K ]\k. (49)

Each precoder Gc,t is defined as Gc,t = [gc,t ,Uc,t ], where
gc,t is simultaneously orthogonal to the channel estimates of
the undesired receivers, and Uc,t ∈ CK×(K−1) is a randomly
chosen, isotropically distributed unitary matrix.13

Throughout communication

• we will allocate power such that

E{|xc,t |21} .= E{|a∗
k,t |2} .= P,

E{|xc,t |2i �=1} .= P1−α, E{|ak,t |2} .= Pα (50)

where |xc,t |i , i = 1, 2, · · · , K , denotes scalar i in
vector xc,t , and we will allocate rate such that

13Whenever possible, we will henceforth avoid going into the details of the
Q-MAT scheme. Some aspects of this scheme are similar to MAT, and a main
new element is that Q-MAT applies digital transmission of interference, and a
double-quantization method that collects and distributes residual interference
across different rounds (this is here carried by a∗

k,t ), in a manner that allows
for ZF and MAT to coexist at maximal rates. Some of the details of this
scheme are ‘hidden’ behind the choice of Gc,t and behind the loading of the
MAT-type symbols xc,t and additional auxiliary symbols a∗

k,t . The important
element for the decoding part later on, will be how to load the symbols, the rate
of each symbol, and the corresponding allocated power. An additional element
that is hidden from the presentation here is that, while the Q-MAT scheme
has many rounds, and while decoding spans more than one round, we will —
in a slight abuse of notation — focus on describing just one round, which we
believe is sufficient for the purposes of this paper here.



• each xc,t carries f (1 − α) bits per unit time,
• each a∗

�,t carries min( f (1 − α), f α) bits per unit time.
• and each ak,t carries f α bits per unit time.
Remark 1: Recall that instead of employing matrix nota-

tion, after normalization, we use the concept of signal duration
dur(x) required for the transmission of some vector x. We also
note that due to time normalization, the time index t ∈ [0, T ],
need not be an integer.

For any α, our scheme will be defined by an integer
η ∈ [�, K − 1] ∩ Z, which will be chosen as

η = arg max
η′∈[�,K−1]∩Z

{η′ : αb,η′ ≤ α} (51)

for

αb,η = η − �

�(HK − Hη − 1)+ η
. (52)

η will define the amount of cached information that will be
folded ({W c, f

Rk ,τ
}
τ∈
η\
(k)η ), and thus also the amount of cached

information that will not be folded ({W c, f
Rk ,τ

}
τ∈
η\
(k)η ) and

which will be exclusively carried by the different ak,t .
Remark 2: As we have argued, η (which increases with α)

reflects the caching redundancy, and thus the minimum degree
of multicasting; instead of content appearing in � different
caches, it now appears in η ≥ � caches instead, which will
translate into multicast messages that are intended for more
receivers, which will eventually result in reduced delay of
delivery. The above equation (52) simply defines the rule that
relates α to the degree of multicasting η. This transition, from
one η to the next, happens in steps, at the different break-point
α values αb,η (b here stands for ‘break-point’).

In all cases,
• all of {Xψ }ψ∈
η+1 (which are functions of the cached-

and-to-be-folded {W c, f
Rk ,τ

}
τ∈
η\
(k)η ) will be exclusively

carried by xc,t , t ∈ [0, T ], while
• all of the uncached W c

Rk
(for each k = 1, . . . , K ) and

all of the cached but unfolded {W c, f
Rk ,τ

}
τ∈
η\
(k)η will be

exclusively carried by ak,t , t ∈ [0, T ].
1) Transmission of {Xψ }ψ∈
η+1: From [46], we know that

the transmission relating to xc,t can be treated independently
from that of ak,t , simply because — as we will further clarify
later on — the ak,t do not actually interfere with decoding of
xc,t , as a result of the scheme, and as a result of the chosen
power and rate allocations which jointly adapt to the CSIT
quality α. For this reason, we can treat the transmission of
xc,t separately.

Hence we first focus on the transmission of {Xψ }ψ∈
η+1 ,
which will be sent using xc,t , t ∈ [0, T ] using the last K − η
phases of the QMAT algorithm in [46] corresponding to having
the ZF symbols ak,t set to zero. For ease of notation, we will
label these phases starting from phase η+1 and terminating in
phase K . The total duration is the desired T . Each phase j =
η+1, . . . , K aims to deliver order- j folded messages (cf. (45)),
and will do so gradually: phase j will try to deliver
(in addition to other information) N j � (K − j +1)

(K
j

)
order- j

messages which carry information that has been requested
by j users, and in doing so, it will generate N j+1 � j

( K
j+1

)

signals that are linear combinations of received signals from
j + 1 different users, and where these N j+1 signals will be
conveyed in the next phase j +1. During the last phase j = K ,
the transmitter will send fully common symbols that are useful
and decoded by all users, thus allowing each user to go back
and retroactively decode the information of phase j = K − 1,
which will then be used to decode the information in phase
j = K − 2 and so on, until they reach phase j = η + 1 (first
transmission phase) which will complete the task. We proceed
to describe these phases. We will use Tj to denote the duration
of phase j .

2) Phase η+1: In this first phase of duration Tη+1, the infor-
mation in {Xψ }ψ∈
η+1 is delivered by xc,t , t ∈ [0, Tη+1],
which can also be rewritten in the form of a sequential
transmission of shorter-duration K -length vectors

xψ = [xψ,1, . . . , xψ,K−η, 0, . . . , 0]T (53)

for different ψ , where each vector xψ carries exclusively the
information from each Xψ , and where this information is
uniformly split among the K − η independent scalar entries
xψ,i , i = 1, . . . , K − η, each carrying

|Xψ |
(K − η)

= f (1 − γ − αT )
(K−1
η

)
(K − η)

(54)

bits (cf. (47)). Hence, given that the allocated rate for xc,t (and
thus the allocated rate for each xψ ) is (1 − α) f , we have that
the duration of each xψ is

dur(xψ) = |Xψ |
(K − η)(1 − α) f

. (55)

Given that |X
 | = ( K
η+1

)
, then

Tη+1 =
(

K

η + 1

)

dur(xψ) =
( K
η+1

)|Xψ |
(K − η)(1 − α) f

. (56)

After each transmission of xψ , the received signal yk,t ,
t ∈ [0, Tη+1] of desired user k (k ∈ ψ) takes the form

yk,t = hT
k,t Gc,t xc,t

︸ ︷︷ ︸
Lψ,k ,power

.=P

+ hT
k,t

∑

�∈ψ̄
g�,t a

∗
�,t

︸ ︷︷ ︸
.=P1−α

+ hT
k,t gk,t ak,t

︸ ︷︷ ︸
Pα

(57)

where ψ̄ �[K ]\ψ , while the received signal for the other users
k ∈ ψ̄ takes the form

yk,t = hT
k,t gk,t a

∗
k,t

︸ ︷︷ ︸
power

.=P

+ hT
k,t

∑

�∈ψ̄
� �=k

g�,t a
∗
�,t + hT

k,t Gc,t xc,t
︸ ︷︷ ︸

Lψ,k ,
.=P1−α

︸ ︷︷ ︸
iψ,k ,

.=P1−α

+ hT
k,t gk,t ak,t

︸ ︷︷ ︸
Pα

(58)

where in both cases, we ignored the Gaussian noise and
the ZF noise up to P0. Each user k ∈ [K ] receives a
linear combination Lψ,k of the transmitted K − η symbols
xψ,1, xψ,2, . . . , xψ,K−η. Next the transmitter will somehow
send an additional K −η−1 signals Lψ,k, k ∈ [K ]\ψ (linear
combinations of xψ,1, xψ,2, . . . , xψ,K−η as received — up to



noise level — at each user k ′ ∈ [K ]\ψ) which will help each
user k ∈ ψ resolve the already sent xψ,1, xψ,2, . . . , xψ,K−η.
This will be done in the next phase j = η + 2.

3) Phase η + 2: The challenge now is for signals
xc,t , t ∈ (Tη+1, Tη+1 + Tη+2] to convey all the messages
of the form

iψ,k, ∀k ∈ [K ]\ψ, ∀ψ ∈ 
η+1

to each receiver k ∈ ψ . Note that hT
k,t

∑
�∈ψ
� �=k

g�,t a
∗
�,t is the

residual interference of the previous round which can be
removed easily and each of the above linear combinations,
is now — during this phase — available (up to noise level) at
the transmitter. Let


η+2 = {ψ ∈ [K ] : |ψ| = η + 2} (59)

and consider for each ψ ∈ 
η+2, a transmitted vector

xψ = [xψ,1, . . . , xψ,K−η−1, 0, . . . , 0]T

which carries the contents of η+1 (l = 1, · · · , η+1) different
elements

fl = (īψ\{k},k ⊕ īψ\{k′},k′ ), k �= k ′, k, k ′ ∈ ψ
where īψ\k,k is the quantization of iψ\k,k from phase 1. fl are
predetermined and known at each receiver. The transmission
of {xψ }∀ψ∈
η+2 is sequential.

It is easy to see that there is a total of (η+1)
( K
η+2

)
XORs in

the form of fl , each of which can be considered as an order-
(η + 2) signal intended for η + 2 receivers in ψ . Using this,
and following the same steps used in phase η+1, we calculate
that

Tη+2 =
(

K

η + 2

)

dur(xψ) = Tη+1
η + 1

η + 2
. (60)

We now see that for each ψ , each receiver k ∈ ψ recalls
their own observation iψ\{k},k from the previous phase, and
removes it from fl , thus now being able to acquire the η + 1
independent linear combinations {Lψ\{k},k}∀k∈ψ\{k} by easily
removing the auxiliary symobls. The same holds for each other
user k ∈ ψ .

After this phase, we use Lψ,k , ψ ∈ 
η+2 to denote the
received signal of QMAT at receiver k. Like before, each
receiver k, k ∈ ψ needs K − η − 2 extra observations of
xψ,1, . . . , xψ,K−η−1 which will be seen from Lψ,k ,∀k /∈ ψ ,
which will come from order-(η+ 3) messages that are created
by the transmitter and which will be sent in the next phase.

4) Phase j (η + 3 ≤ j ≤ K ): Generalizing the described
approach to any phase j ∈ [η + 3, . . . , K ], we will use
xc,t , t ∈ [∑ j−1

i=η+1 Ti ,
∑ j

i=η+1 Ti ] to convey all the messages
of the form

iψ,k, ∀k ∈ [K ]\ψ, ∀ψ ∈ 
 j−1

to each receiver k ∈ ψ . For each ψ ∈
 j �{ψ ∈ [K ] : |ψ| = j}
each transmitted vector

xψ = [xψ,1, . . . , xψ,K− j−1, 0, . . . , 0]T

will carry the contents of j − 1 different XORs
fl , l = 1, . . . , j−1 of the j elements {īψ\{k},k}∀k∈ψ created by

the transmitter. After the sequential transmission of 
{xψ }∀ψ∈
 j , each receiver k can obtain the j − 1 independent 
linear combinations {Lψ\{k},k }∀k∈ψ\{k} again by removing 
the auxiliary symbols. The same holds for each other user 
k ′ ∈ ψ . As with the previous phases, we can see that

Tj = Tη+1
η + 1

j
, j = η + 3, . . . , K . (61)

This process finishes at phase j = K , during which each

xψ = [xψ,1, 0, 0, . . . , 0]T

carries a single scalar that is decoded easily by all.
Based on this, backwards decoding will allow for users to
retrieve {Xψ }ψ∈
η+1 . This is described immediately after-
wards. In treating the decoding part, we briefly recall that each
ak,t , k = 1, . . . , K carries (during period t ∈ [0, T ]), all of

the uncached W c
Rk

and all of the unfolded {W c, f
Rk ,τ

}
τ∈
η\
(k)η .

D. Decoding

The whole transmission lasts K −η phases. For each phase
j, j = η + 1, · · · , K and the corresponding ψ , the received
signal yk,t , t ∈ [∑ j−1

i=η+1 Ti ,
∑ j

i=η+1 Ti ] of desired user
k (k ∈ ψ) takes the same form as in (57), while the received
signal for the other users k ∈ [K ]\ψ takes the same form
as in (58). As we see in [46], after each phase, iψ,k is
first quantized with (1 − 2α)+ log P bits, which results in
a residual quantizaton noise nψ,k with power scaling as Pα .
Then, the transmitter quantizes the quantization noise nψ,k
with an additional α log P bits, which will be carried by the
auxiliary data symbols in the corresponding phase in the next
round (here we ‘load’ this round with additional requests
from the users). In this way, we can see that the ‘common’
signal xc,t can also be decoded at user k ∈ [K ]\ψ with the
assistance of an auxiliary data symbol from the next round.
After this, each user k will remove hT

k,t Gc,t xc,t from their
received signals, and readily decode their private symbols
ak,t , t ∈ [0, T ], thus allowing for retrieval of their own

unfolded {W c, f
Rk ,ψ\{k}}ψ∈
η+1 and uncached W c

Rk
. In terms of

decoding the common information, as discussed above, each
receiver k will perform a backwards reconstruction of the sets
of overheard equations

{Lψ,k, ∀k ∈ [K ]\ψ}∀ψ∈
K

...

↓
{Lψ,k, ∀k ∈ [K ]\ψ}∀ψ∈
η+2

until phase η + 2. At this point, each user k has
enough observations to recover the original K − η symbols
xψ,1, xψ,2, . . . , xψ,K−η that fully convey Xψ , hence each user
k can reconstruct their own set {W c, f

Rk ,ψ\{k}}ψ∈
η+1 which,
combined with the information from the ak,t , t = [0, T ] allow
for each user k to reconstruct {W c

Rk ,ψ\{k}}ψ∈
η+1 which is then
combined with Zk to allow for reconstruction of the requested
file WRk .



E. Calculation of T

To calculate T , we recall from (61) that

T =
K∑

j=η+1

Tj = Tη+1

K∑

j=η+1

η + 1

j

= (η + 1)(HK − Hη)Tη+1 (62)

which combines with (54) and (56) to give

T = (K − �)(HK − Hη)

(K − η)+ α(η + K (HK − Hη − 1))
(63)

as stated in Theorem 1. The bound by T = 1 − γ seen in the
theorem, corresponds to the fact that the above expression (63)
applies, as is, only when α ≤ αb,K−1 = K (1−γ )−1

(K−1)(1−γ ) which
corresponds to η = K − 1 (where Xψ are fully common
messages, directly desired by all), for which we already get
the best possible T = 1 −γ , and hence there is no need to go
beyond α = K (1−γ )−1

(K−1)(1−γ ) .

VI. CONCLUSIONS

This work studied the previously unexplored interplay
between coded-caching and CSIT feedback quality and time-
liness, and identified the optimal cache-aided DoF within a
multiplicative factor of 4. This work is motivated by the fact
that CSIT and coded caching are two powerful ingredients
that are hard to obtain, and by the fact that these ingredi-
ents are intertwined in a synergistic and competing manner.
In addition to the substantial cache-aided DoF gains revealed
here, the results suggest the interesting practical ramification
that distributing predicted content ‘during the night’, can
offer continuous amelioration of the load of predicting and
disseminating CSIT during the day.

The work also revealed interesting connections between
retrospective transmission schemes which alleviate the effect
of the delay in knowing the channel, and coded caching
schemes which alleviate the effect of the delay in knowing
the content destination. These connections are at the core
of the coded caching paradigm, and their applicability can
extend to different settings. The result also implies that a very
modest amount of caching can have a substantial impact on
performance, as well as can go a long way toward removing
the burden of acquiring timely CSIT.

APPENDIX A
PROOF OF LEMMA 1 (LOWER BOUND ON T ∗)

We here note that for the outer (lower) bound to hold,
we will make the common assumption that the current channel
state must be independent of the previous channel-estimates
and estimation errors, conditioned on the current estimate
(there is no need for the channel to be i.i.d. in time). We will
also make the common assumption that the channel is drawn
from a continuous ergodic distribution such that all the channel
matrices and all their sub-matrices are full rank almost surely.

To lower bound T , we first consider the easier problem
where we want to serve s ≤ K different files to s users, each
with access to all caches. We also consider that we repeat
this (easier) last experiment � N

s � times, thus spanning a total

duration of T � N
s � (and up to � N

s �s files delivered). At this
point, we transfer to the equivalent setting of the s-user MISO
BC with delayed CSIT and imperfect current CSIT, and a side-
information multicasting link to the receivers, of capacity dm

(files per time slot). Under the assumption that in this latter
setting, decoding happens at the end of communication, and
once we set

dm T � N

s
� = sM (64)

(which guarantees that the side information from the side link,
throughout the communication process, matches the maximum
amount of information in the caches), we have that

T � N

s
�d ′
�(dm) ≥ � N

s
�s (65)

where d ′
�(dm) is any sum-DoF upper bound on the above

s-user MISO BC channel with delayed CSIT and the afore-
mentioned side link. Using the bound

d ′
�(dm) = sα + s

Hs
(1 − α + dm)

from Lemma 2 (see below), and applying (64), we get

T � N

s
�(sα + s

Hs
(1 − α + sM

T � N
s � )

) ≥ � N

s
�s (66)

and thus that

T ≥ 1

(Hsα + 1 − α)
(Hs − Ms

� N
s � ) (67)

which implies a lower bound on the original s-user problem.
Maximization over all s, gives the desired bound on the
optimal T ∗

T ∗ ≥ max
s∈{1,...,min(N,K )}

1

(Hsα + 1 − α)
(Hs − Ms

� N
s �) (68)

required for the original K -user problem. This concludes the
proof of Lemma 1.

A. Sum-DoF Bound for the s-User MISO BC, With
Delayed CSIT, α-Quality Current CSIT, and
Additional Side Information

We begin with the statement of the lemma, which we prove
immediately below.

Lemma 2: For the s-user MISO BC, with delayed CSIT,
α-quality current CSIT, and an additional parallel side-link
of capacity that scales as dm log P , the sum-DoF is upper
bounded as

d�(dm) ≤ sα + s

Hs
(1 − α + dm). (69)

Proof: Our proof traces the proof of [48], adapting for
the additional α-quality current CSIT.

Consider a permutation π of the set E = {1, 2, · · · , s}. For
any user k, k ∈ E , we provide the received signals y[n]

k as
well as the message Wk of user k to user k + 1, k + 2, · · · , s.



We use y[n]
0 to denote the output of the side-link and we also

define the following notations

�[n] := {h[n]
k }s

k=1, �̂[n] := {ĥ
[n]
k }s

k=1, U [n] := {�[n], �̂[n]},
h[t ]

k := {h(i)k }t
i=1, y[t ]

k := {y(i)k }t
i=1, t = 1, 2, · · · , n,

W[k] := {W1,W2, · · · ,Wk}, y[n]
[k] := {y[n]

1 , y[n]
2 , · · · , y[n]

k }.
Then for k = 1, 2, · · · , s, we have

n (Rk − εn)

≤ I (Wk ; y[n]
[k] , y[n]

0 ,W[k−1]|U [n]) (70)

= I (Wk ; y[n]
[k] , y[n]

0 |W[k−1],U [n]) (71)

= I (Wk ; y[n]
[k] |W[k−1],U [n])+ I (Wk ; y[n]

0 |y[n]
[k] ,W[k−1],U [n])

= h(y[n]
[k] |W[k−1],U [n])− h(y[n]

[k] |W[k],U [n])
+ h(y[n]

0 |y[n]
[k] ,W[k−1],U [n])− h(y[n]

0 |y[n]
[k] ,W[k],U [n])

(72)

where (70) follows from Fano’s inequality, where (71) holds
due to the fact that the messages are independent, and where
the last two steps use the basic chain rule. Note that W0 = 0.

s−1∑

k=1

(h(y[n]
[k+1]|W[k],U [n])

k + 1
− h(y[n]

[k] |W[k],U [n])
k

)

=
n∑

t=1

s−1∑

k=1

(h(y(t)1 , · · · , y(t)k+1|y[t−1]
1 , · · · , y[t−1]

k+1 ,W[k],U [n])
k + 1

− h(y(t)1 , · · · , y(t)k |y[t−1]
1 , · · · , y[t−1]

k ,W[k],U [n])
k

)
(73)

=
n∑

t=1

s−1∑

k=1

(h(y(t)1 , · · · , y(t)k+1|y[t−1]
1 , · · · , y[t−1]

k+1 ,W[k],U [t ])
k + 1

− h(y(t)1 , · · · , y(t)k |y[t−1]
1 , · · · , y[t−1]

k ,W[k],U [t ])
k

)
(74)

≤
n∑

t=1

s−1∑

k=1

(h(y(t)1 , · · · , y(t)k+1|y[t−1]
1 , · · · , y[t−1]

k+1 ,W[k],U [t ])
k + 1

− h(y(t)1 , · · · , y(t)k |y[t−1]
1 , · · · , y[t−1]

k+1 ,W[k],U [t ])
k

)
(75)

≤
n∑

t=1

s−1∑

k=1

1

k + 1
α log P + n · o(log P) (76)

= n(Hs − 1)α log P + n · o(log P) (77)

where (73) follows from the linearity of the summation, where
(74) holds since the received signal is independent of the
future channel state information, where (75) uses the fact
that conditioning reduces entropy, and where (77) is from the
fact that Gaussian distribution maximizes differential entropy
under the covariance constraint and from [9, Lemma 2].
From (72), we then have

s∑

k=1

n (Rk − εn)

k

≤
s−1∑

k=1

(h(y[n]
[k+1]|W[k],U [n])

k + 1
− h(y[n]

[k] |W[k],U [n])
k

)

+ h(y[n]
1 |U [n])− 1

s
h(y[n]

[s] |W[s],U [n])

+
s−1∑

k=1

(h(y[n]
0 |y[n]

[k+1],W[k],U [n])
k + 1

− h(y[n]
0 |y[n]

[k] ,W[k],U [n])
k

)

+ h(y[n]
0 |y[n]

1 ,U [n])− 1

s
h (y[n]

0 |y[n]
[s] ,W[s],U [n])

≤ n (Hs − 1)α log P + h(y[n]
1 |U [n])

︸ ︷︷ ︸
≤n log P

+ h(y[n]
0 |y[n]

1 ,U [n])
︸ ︷︷ ︸

≤n·dm log P

+
s−1∑

k=1

(
(

1

k + 1
− 1

k
)h(y[n]

0 |y[n]
[k] ,W[k],U [n]) + n · o(log P)

≤ n(Hs − 1)α log P + n log P + n · dm log P + n · o(log P).

(78)

where the second inequality is from (77), where the last
inequality follows from the fact that entropy is non-negative
and 1

k+1 − 1
k ≤ 0. Dividing by n log P and letting P → ∞

gives

s∑

k=1

dk

k
≤ (Hs − 1)α + 1 + dm (79)

which implies that

d�(dm) ≤ sα + s

Hs
(1 − α + dm) (80)

which completes the proof of Lemma 2.

APPENDIX B
BOUNDING THE GAP TO OPTIMAL

This section presents the proof that the gap T (γ )
T ∗(γ ) , between

the achievable T (γ ) and the optimal T ∗(γ ), is always upper
bounded by 4, which also serves as the proof of identifying
the optimal T ∗(γ ) within a factor of 4.

We first begin with the case of α = 0.

B. Gap for α = 0

First recall from Corollary 2b that

T (γ ) = HK − HKγ

and from Lemma 1 that

T ∗(γ ) ≥ max
s∈{1,...,� N

M �}
Hs − Ms

� N
s � .

We want to prove that

T (γ )

T ∗(γ )
< 4, ∀K , ∀� = 1, 2, . . . , K − 1 (81)

and the proof will be split into three cases: case 1 for γ ∈
[ 1

K ,
1

36 ], case 2 for γ ∈ [ 1
36 ,

1
2 ], and case 3 for γ ∈ [ 1

2 ,
K−1

K ].
Recall that γ is bounded as γ ≥ 1

K .
1) Case 1 (γ ≤ 1

36 ): First note that having γ ≤ 1
36 implies

K ≥ 36. To prove (81), we see that

T

T ∗ ≤ max
γ∈[ 1

K ,
1

36 ]∩(Z/K )

HK − HKγ

max
s∈[1,K ]∩Z

Hs(1 − Ms
Hs� N

s � )
(82)

≤ max
γ∈[ 1

K ,
1

36 ]∩(Z/K )

HK − HKγ

max
s∈[6,�√K �]∩Z

(Hs − Ms
� N

s � )
(83)



≤ max
γ∈[ 1

K ,
1

36 ]
HK − HKγ

max
s∈[6,�√K�]∩Z

(Hs − Ms
� N

s � )
(84)

≤ max
γ∈[ 1

K ,
1

36 ]

log( 1
γ )+ ε36 − ε∞

max
s∈[6,�√K�]∩Z

log(s)+ ε∞ − γ s2 7
6

(85)

where (83) holds because Hs − Ms
� N

s � < 0 when s > � 1
γ �

and because we reduced the maximizing region for s, where
(84) holds because we increased the maximizing region for γ ,
and where (85) holds because εK decreases with K , because
HK −log(K ) ≤ ε36, HKγ−log(Kγ ) > ε∞, Hs > log(s)+ε∞,
and because (� N

s �)/ N
s ≥ 6

7 , s ≤ N
6 (recall that s ≤ �√K � ≤

K
6 ≤ N

6 ). Continuing from (85), we have that

T

T ∗ ≤ max
sc∈[6,�√K �]∩Z

max
γ∈[ 1

(sc+1)2
, 1

s2
c

]

log( 1
γ )+ ε36 − ε∞

log(sc)+ ε∞ − γ s2
c

7
6

(86)

because

max
s∈[6,�√K �]∩Z

log(s)+ ε∞ − γ s2 7

6
≥ log(sc)+ ε∞ − γ s2

c
7

6

for any γ and for any sc ∈ [6, �√K�] ∩ Z. The split of
the maximization maxγ∈[ 1

K ,
1

36 ] into the double maximization
maxsc∈[6,�√K �]∩Z

maxγ∈[ 1
(sc+1)2

, 1
s2
c

] reflects the fact that we

heuristically choose14 s = sc ∈ Z when γ ∈ [ 1
(sc+1)2

, 1
s2

c
].

Now we perform a simple change of variables, introducing a

real valued s′ (s′ �
√

1
γ ) such that γ = 1

s ′2 . Hence, a γ range of

γ ∈ [ 1
(sc+1)2

, 1
s2

c
], corresponds to an s′ range of s′ ∈ [sc, sc+1].

Hence we rewrite (86) using this change of variables,
to get

T

T ∗ ≤ max
sc∈[6,�√K�]∩Z

max
s ′∈[sc,sc+1]

log(s′2)+ ε36 − ε∞
log(sc)+ ε∞ − 7

6
s2

c
s ′2

(87)

≤ max
sc∈[6,�√K�]∩Z

log(sc + 1)2 + ε36 − ε∞
log(sc)+ ε∞ − 7

6︸ ︷︷ ︸
f (sc)

(88)

≤ 2 ∗ log(7)+ ε36 − ε∞
log(6)+ ε∞ − 7

6

< 4 (89)

where (88) holds because s2
c

s ′2 ≤ 1, where (89) holds because
f (sc) is decreasing in sc.

2) Case 2 (γ ∈ [ 1
36 ,

1
2 ]): In the maximization of the lower

bound, we will now choose s = 1.
For K ≥ 2, we have

T

T ∗ ≤ log( 1
γ )+ ε2 − ε∞

1 − γ
=: f (γ ) (90)

because HK − log(K ) ≤ ε2, HKγ − log (Kγ ) > ε∞,∀K ≥ 2.

14Essentially we choose an s that is approximately equal to �
√

1
γ �, and

while this choice does not guarantee the exact maximizing s, it does manage
to sufficiently raise the resulting lower bound.

For the above defined f (γ ), we calculate the derivative to
take the form

d f (γ )

dγ
=

f ′
N (γ )︷ ︸︸ ︷

1 − γ−1 − log(γ )+ ε2 − ε∞
(1 − γ )2
︸ ︷︷ ︸

f ′
D(γ )

where f ′
N (γ ), f ′

D(γ ) respectively denote the numerator and
denominator of this derivative. Since f ′

D(γ ) > 0,∀γ < 1, and
since

d f ′
N (γ )

dγ
= γ−2 − γ−1 ≥ 0, ∀γ ∈ [ 1

36
,

1

2
].

To prove this, we use the following lemma, which we prove
in Section VI-B.4 below.

Lemma 3: Let g′
N (γ ) and g′

D(γ ) respectively denote the
numerator and the denominator of the derivative dg(γ )

dγ of some
function g(γ ). If in the range γ ∈ [γ1, γ2], g′

N (γ ) increases
in γ , and if g′

D(γ ) > 0, then

max
γ∈[γ1,γ2]

g(γ ) = max{g(γ = γ1), g(γ = γ2)}. (91)

We now continue with the main proof, and apply Lemma 3,
to get

max
γ∈[ 1

36 ,
1
2 ]

f (γ ) = max{ f (
1

2
), f (

1

36
)} < 4 (92)

which directly shows the desired T
T ∗ < 4 for 1

36 ≤ γ ≤ 1
2 ,

K ≥ 2.
3) Case 3 (γ ∈ [ 1

2 ,
K−1

K ]): In the maximization of the lower
bound, we will again choose s = 1. Considering that now γ
takes the values γ = j

K , j ∈ [ K
2 , K − 1] ∩ Z, we have

T

T ∗ ≤ HK − HKγ

1 − γ
= HK − H(K− j )

j/K

= 1

j
(

K

K − j + 1
+ K

K − j + 2
+ · · · + 1)

= 1

j
(1 + j − 1

K − ( j − 1)
+ 1 + j − 2

K − ( j − 2)
+ · · · + 1)

= 1 + 1

j
(

j − 1

K − ( j − 1)
+ j − 2

K − ( j − 2)
+ · · · + 1

K − 1
)

< 2

(93)

because j ≤ K
2 .

This completes the proof for the entire case where
� = 1, 2, . . . , K − 1.

4) Proof of Lemma 3 : We first note that the condition
dg′

N (γ )

dγ ≥ 0 implies that g′
N (γ ) is increasing in γ . We also

note that g′
D(γ ) ≥ 0, γ ∈ [γ1, γ2] where naturally γ1 ≤ γ2.

We consider the following three cases.
a) Case 1 (g′

N (γ1) ≥ 0): If g′
N (γ1) ≥ 0 then g′

N (γ ) ≥ 0

for any γ ∈ [γ1, γ2], which in turn means that dg(γ )
dγ =

g′
N (γ )

g′
D(γ )

≥ 0, γ ∈ [γ1, γ2]. This gives the desired

max
γ∈[γ1,γ2]

g(γ ) = g(γ2).



b) Case 2 (g′
N (γ1) < 0 & g′

N (γ2) ≤ 0): For any γ ∈
[γ1, γ2], then if g′

N (γ1) < 0 & g′
N (γ2) ≤ 0 then g′

N (γ ) ≤ 0,
thus dg(γ )

dγ ≤ 0, which gives the desired

max
γ∈[γ1,γ2]

g(γ ) = g(γ1).

c) Case 3 (g′
N (γ1) < 0 & g′

N (γ2) > 0): For any
γ ∈ [γ1, γ2], then if g′

N (γ1) < 0 & g′
N (γ2) > 0, there

exists a unique γ = γ ′ ∈ [γ1, γ2] such that g′
N (γ

′) = 0.
Hence dg(γ )

dγ ≤ 0,∀γ ∈ [γ1, γ
′] and dg(γ )

dγ ≥ 0,∀γ ∈ [γ ′, γ2].
Consequently we have the desired

max
γ∈[γ1,γ2]

g(γ ) = max{g(γ1), g(γ2)}.
Combining the above three cases, yields the derived

max
γ∈[γ1,γ2]

g(γ ) = max{g(γ1), g(γ2)} which completes the proof

for the case of α = 0.

C. Gap for α > 0

Our aim here is to show that
T (γ, α > 0)

T ∗(γ, α > 0)
< 4

and we will do so by showing that the above gap is smaller
than the gap we calculated above for α = 0, which was again
bounded above by 4. For this, we will use the expression15

T (γ, α > 0) = (1 − γ )(HK − H�)

α(HK − H�)+ (1 − α)(1 − γ )
(94)

from Theorem 2, and the expression

T ∗(γ, α > 0) ≥ max
s∈{1,...,� N

M �}
1

(Hsα + 1 − α)
(Hs − Ms

� N
s � )

from Lemma 1. Hence we have

T

T ∗ ≤
(1−γ )(HK −HKγ )

α(HK −HKγ )+(1−α)(1−γ )
max

s∈{1,...,� N
M �}

1
(Hsα+1−α)(Hs − Ms

� N
s � )

(95)

≤
(1−γ )(HK −HKγ )

α(HK −HKγ )+(1−α)(1−γ )
1

(Hscα+1−α) (Hsc − Msc

� N
sc

� )
︸ ︷︷ ︸

g(sc,γ )

(96)

where s = sc ∈ {1, . . . , � N
M �}, but where this sc will be chosen

here to be exactly the same as in the case of α = 0. This will
be useful because, for that case of α = 0, we have already
proved that the same specific sc guarantees that

HK − HKγ

Hsc − Msc

� N
sc

�
< 4 (97)

for the appropriate ranges of γ . This will apply towards
bounding (96).

The proof is broken in two cases, corresponding to
γ ∈ [ 1

36 ,
K−1

K ], and γ ∈ [0, 1
36 ].

15We note that the here derived upper bound on the gap corresponding to
the T in Theorem 2, automatically applies as an upper bound to the gap
corresponding to the T from Theorem 1, because the latter T is smaller than
the former.

1) Case 1 (α > 0, γ ∈ [ 1
36 ,

K−1
K ]): As when α = 0

(cf. [50]), we again set s = 1, which reduces (96) to

T (α > 0, γ )

T ∗(α > 0, γ )
≤

(1−γ )(HK −HKγ )
α(HK −HKγ )+(1−α)(1−γ )

1 − γ
.

For this case — when α was zero, and when we chose the
same s = 1 — we have already proved that T (α=0,γ )

1−γ < 4.
As a result, since T (α > 0, γ ) < T (α = 0, γ ), and since
1 − γ ≤ T ∗, we conclude that T (α>0,γ )

T ∗ < 4, γ ∈ [ 1
36 ,

K−1
K ]

which completes this part of the proof.
2) Case 2 (α > 0, γ ∈ [0, 1

36 ]): Going back to (96), we now
aim to bound

g(sc, γ )�
(1−γ )(HK −HKγ )

α(HK −HKγ )+(1−α)(1−γ )
1

(Hscα+1−α) (Hsc − Msc

� N
sc

� )
< 4. (98)

We already know from the case of α = 0 (cf. (97)) that

HK − HKγ

Hsc − Msc

� N
sc

�
< 4 (99)

holds. Hence we will prove that

g(sc, γ ) ≤ HK − HKγ

Hsc − Msc

� N
sc

�
(100)

to guarantee the bound. We note that (100) is implied by

Hsc ≤ HK − HKγ

1 − γ
(101)

which is implied by

log(sc) ≤ log(1/γ )

1 − γ
− ε6, ε6 = H6 − log(6) (102)

because Hsc ≤ log(sc) + ε6,∀sc ≥ 6,∀γ ∈ [0, 1
36 ],∀K .

Furthermore (102) is implied by

1

2
log(

1

γ
) ≤ log(1/γ )

1 − γ
− ε6 (103)

because γ ∈ [ 1
(sc+1)2

, 1
s2

c
] means that sc ≤

√
1
γ . Since

1
1−γ ≥ 1, then (103) is implied by

1

2
log(

1

γ
) ≤ log(

1

γ
)− ε6. (104)

It is obvious that (104) holds since γ ≤ 1
36 . Towards this,

by proving (104), we guarantee (98) and the desired bound.
This completes the proof.
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