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Abstract—In this paper, we consider the scenario of trans-
mitting a first order Gauss-Markov vector signal over a MIMO
Rayleigh non-frequency selective fading channel. The signal is
reconstructed at the receiver side with the help of a Kalman
filter in order to minimize the mean squared error. Orthogonal
space time codes are utilized in order to increase the quality
of estimation and mitigate the destructing effects of the fading
channel. As a criterion for estimation quality assessment, we
use the distortion outage probability. We first obtain upper and
lower bounds for the outage probability as a function of system
parameters. We then perform high SNR analysis of the bounds,
through which we prove the achievability of the maximum
diversity order for a N ×K MIMO fading channel. In addition,
we obtain upper and lower bounds for the coding gain of the
distortion outage probability in the high SNR regime, and outline
the relation between system parameters and the coding gain.

Index Terms—Kalman filter, orthogonal space-time coding,
MIMO fading channels, diversity order, coding gain

I. INTRODUCTION

Analog (uncoded) transmission of discrete-time sources
over fading channels is an alternative to the state-of-the-art
digital communication systems due to its simplicity and zero-
delay property. Analog transmission is specifically attractive
for delay sensitive settings, where state-of-the-art channel
coding schemes cannot be used due to their need for large
buffers. These settings include, but are not limited to, control
over wireless channels, real-time monitoring e.g. in sensor
networks, and real-time event detection e.g. in intelligent
traffic management systems.

Using the analog scheme, the transmitted signals need to
be estimated from the channel outputs at the receiver side. It
is not possible to add redundancy to the transmitted signals
to mitigate the effects of the communication channel either.
However, one can exploit the correlation which already exists
among the signal samples. The auto-regressive (AR) signal
model is widely used to model the correlation in natural sig-
nals. With the AR model, Kalman (-like) estimation algorithms
may be used at the receiver side to minimize the distortion.

In order to measure the quality of estimation at the receiver,
two main criteria have been considered before, namely end-
to-end average distortion and distortion outage probability.
The end-to-end average distortion measure was first studied
in [1] and later considered in [2]–[4]. For AR Gauss-Markov
models, the end-to-end average distortion, corresponding to
the mean of the covariance matrix for the Kalman filter, was
also considered in [5].

For the delay sensitive settings and when the mean squared
error (MSE) is random due to random channels or modeling
errors, the distortion outage probability measure is more
insightful than end-to-end average distortion. This measure
has also been considered before in [6]–[8]. In order to get
a reliable estimation at the receiver and combat the effects
of fading, one can incorporate diversity schemes. In [6],
estimation outage and estimation diversity are considered
in the context of distributed sensing, where several sensors
observe an i.i.d. process and transmit their measurements over
parallel fading channels. A similar system model is considered
in [7], where the focus is on distortion outage minimization.
Estimation error outage minimization is also considered in [9],
where power allocation strategies are developed for outage
minimization and for state estimation with multiple sensors.
Transmission is assumed over fading channels, where each
sensor knows its own channel gain only, while all the channel
gains are known to the receiver. In [8] and with an information
theoretic approach, a diversity order analysis is presented for
distortion outage probability of source transmission over multi-
input multi-output (MIMO) block fading channels. Apart from
a slight difference between the definition of distortion in [8]
and in our work, the main differences are in the practical
scheme of this work over the information theoretical analysis
of [8] and the existence of source time correlation in our
work. Estimation error outage probability was also used in
[10], [11] for transmission of AR Gauss-Markov scalar sources
over fading channels, with respectively one and several receive
antennas and related high signal to noise ratio (SNR) analysis.

As we will see later in the paper, the the random MSE
(estimation error covariance matrix) of the Kalman filter
propagates in time through the random Riccati equation.
With transmission over a fading channel, stability of the
Kalman filter might become an issue due to the random fading
channel. The random fading channel has varying quality, and
measurement updates for the Kalman filter are thus available
with varying quality, which at times might be very poor.
The stability issue of the Kalman filter with random system
parameters has been investigated in the literature before with
respect to various stability measures. To name a few of
such works, one can mention [5], where boundedness of the
expected error covariance matrix (expectation taken over the
channel randomness) for estimation over fading channels is
proven. In this paper however, the outage probability measure
is considered, which is a more suitable performance analysis
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Fig. 1. General system model for joint Kalman filtering and space-time coding

criterion for low latency applications. A Bernoulli packet-drop
channel model is considered in [12] and it is shown that the
random prediction (rather than estimation) error covariance
matrix converges in distribution. While the authors of [12]
consider a packet loss channel model, we utilize a specific
model for the channel attenuation, allowing a more detailed
channel behavior analysis, and the straightforward inclusion
of spatial channel characteristics.

Stability of the random Riccati equation for Kalman filtering
has also been considered in [13], [14] when several system
parameters are random. In [13], almost sure stabilizability
and almost sure detectability measures are studied for linear
systems with random system parameters, and in [14], the
conditions for the weak convergence (in distribution) of the
random Riccati equation are presented. These conditions are
also used in this work to prove the existence of the outage
probability. While more general system models are treated in
[13], [14], it is only convergence to a distribution which is
proven for the random estimation error and the actual distri-
butions are not provided. We however, study the distribution
itself in terms of outage probability, diversity order, and coding
gain, but perform this for the special case Rayleigh fading
channels.

This work follows the line of work in [10] and [11], which
only consider scalar sources, and extends them to vector
sources and MIMO fading channels. The vector AR model
is more general and more realistic, especially for settings
such as wireless control, where the measurements of a plant
with arbitrary number of states need to be transmitted to the
control center in a delay-free manner. In order to provide
the possibility for a transmit diversity gain, we use complex
orthogonal space-time codes as originally introduced in [15].
The idea of using space-time codes for estimation has been
considered before in [16] for application in MIMO channel
estimation. In our work, we adapt the space-time decoding
scheme such that it can be used together with the Kalman
filter. Figure 1 depicts the general structure of the proposed
scheme, consisting mainly of a space-time block encoder at
the transmitter side, and a space-time block decoder and a
Kalman filter at the receiver side. We consider the Rayleigh
fading channels for simplicity of analysis, but the results can
be generalized to other channel distributions. We also consider
the case of fully observable signals, and concentrate on the
characterization of the error behavior of the estimator, and the
diversity effects through space-time coding. While limiting the
generality of the results, the assumption allows for simpler
analysis of the equivalent linear system. It is likely that a
complete characterization of the general case would require
extended and different analytical tools to be utilized.

The main contributions of this work are the following.

• We jointly incorporate space-time codes and Kalman
filtering in a common framework, which allows for extra
reliability for delay-free estimation of AR Gauss-Markov
sources over fading channels.

• We improve the procedure for decoding the complex
orthogonal space-time coding for analog sources, by
performing the decoding operation in separate real and
imaginary parts. This allows for the use of any general
complex orthogonal space-time code and improves over
[16], which is only applicable for half-rate codes.

• We provide bounds for the distortion outage probability,
which allows for a practical use of the current scheme
and facilitates design.

• We perform high SNR analysis for the distortion outage
probability, and show that the proposed scheme can
achieve the maximum diversity order for transmission
over a N × K MIMO fading channel (K transmit-
antennas and N receive antennas), i.e. NK.

• We propose upper and lower bounds for the coding gain
of the outage probability in the high SNR regime, which
completes the high SNR analysis of the distortion outage
probability.

The rest of this paper is organized as follows. We present the
system model and the formal problem definition in Sec. II.
We then study the details of the joint space-time coding and
Kalman filtering scheme in in Sec. III. Furthermore, we focus
on the distortion outage probability analysis in Sec. IV, and
finally present the simulations and numerical evaluations in
Sec. V.

II. SYSTEM MODEL AND PROBLEM DEFINITION

Consider the following system model

x(n) = Ax(n− 1) + u(n)

Y (n) =
√
P/(KN)H(n)T (x(n)) + V (n), (1)

where x(n) and u(n) are column vectors of dimension K
and represent the to-be-transmitted signal and the process
noise, respectively. In this model, x(n) is a first order Gauss-
Markov process. With respect to that, A is the state-transition
matrix and we assume it to be stable and non-singular. Non-
singularity is a sufficient condition for existence of the steady-
state outage probability function and is explained in details in
IV-A. Stability of A is also required, because otherwise the
transmission power grows unbounded and the scheme becomes
impractical.

The space-time block encoding operation is represented by
the operator T (·). The output of the space-time encoding
operation, i.e. T (x(n)), is a matrix of dimension K × Nc,
which corresponds to Nc channel uses by each of the transmit
antennas for each new source symbol x(n). (The details of
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the space-time coding operation and the structure of T (x(n))
are presented in Sec. III-A). In this work, we assume that the
number of transmit antennas is equal to K, i.e. the source
dimension.

The MIMO channel matrix of dimension N ×K is denoted
by H(n), which consists of i.i.d. complex Gaussian elements
with zero mean and unit variance (real and imaginary parts
have a variance equal to one half), i.e. non-frequency selective
Rayleigh fading. For some of our derivations in the upcoming
sections, we need that H(n) are also i.i.d. in time and that
H(1) 6= 0 (the latter is required in lemma 1). We acknowl-
edge that the i.i.d. assumption is somewhat limiting, as the
transmission rate will then be limited as a function of the
coherence time of the fading channel. However, in settings
such as wireless sensor networks, there is usually no need
for constant high rate transmission. In that case, we can have
Nc channel uses in a burst mode only when the new channel
values can be considered independent from the previous one.

At the receiver, the received signals from the channel and
the channel noises for the Nc channel uses are denoted by
Y (n) and V (n), which are matrices of dimension N × Nc.
The value of P is also selected such that required SNR at the
receiver is achieved. We also consider the elements of V (n) to
be i.i.d. complex Gaussian random variables. The covariance
matrices for u(n) is denoted by Cu and the elements of V (n)
have a variance equal to σ2

v . We further assume that the H(n)
are perfectly known to the receiver. Note that the above system
model suggests that the source signal x(n) is fully observable.

The vector source x(n) is space-time encoded at the trans-
mitter side and sent over the channel. There are then two major
operations which should be performed at the receiver. The first
operation is the space-time decoding, i.e. the inverse operation
for T (x(n)), which in turn leads to an equivalent channel and
received signal model. The next operation is the estimation of
x(n) from the received signal. The optimal causal minimum
mean square error (MMSE) estimator for this setting is the
Kalman filter. The Kalman filter provides us with an optimal
estimate of the source at the receiver, namely x̂(n) which
minimizes the (normalized) random instantaneous distortion
at time n, i.e.

d(n) =
1

K
E
(
‖x(n)− x̂(n)‖2

)
. (2)

We then define the distortion outage probability as

Pout(dth) = Pr (d(n) > dth) , (3)

which we are interested to characterize. In addition, we are
also interested in the asymptotic behavior of Pout(dth) as a
function of

SNR =
P

σ2
vKN

E
(
‖H(n)‖2

)
E
(
‖T (x(n)‖2

)
,

when SNR→∞, i.e. in the high SNR regime. We define the
diversity order for the distortion outage probability as

dord = − lim
SNR→∞

log(Pout(dth))

log(SNR)
. (4)

Assuming that the diversity order is a finite and positive
number, the outage probability may be written as follows

Pout(dth) = (G · SNR)
−dord + o(SNR−dord). (5)

In this formulation, dord is the diversity order and the value
G may be called the coding gain, parallel to the terms used
in outage analysis in digital communication [17]. While the
diversity order is the slope of the outage probability function
vs. SNR in the log-log scale, G denotes the average relative
asymptotic power gain. As we will see later, the maximum
diversity order is only dependent on the number of available
independent individual channel branches, and its achievability
only depends on the space-time code. The coding gain however
is a function of the source structure and the selected threshold.
Although the diversity order provides a useful rule of thumb
for evaluating the quality of estimation at high SNR, the
coding gain provides a more complete characterization of
performance, which allows for comparison of systems which
have the same diversity order, but different coding gains.

III. JOINT SPACE-TIME CODING AND KALMAN FILTERING

In this section, we first describe the space-time coding
scheme used in this paper and then the Kalman filter which
is used in order to estimate the transmitted signal. We then
describe how these two parts should interact with one another.

A. General Space-time Coding for Analog Communication

A space-time block code based on orthogonal designs as de-
fined in [15], is used for transmission of x = {x1, x2, . . . , xK}
over the channel HN×K (we drop the time index n in this
section). The encoding is adopted (and slightly modified) from
[15] as follows. We form a matrix X = T (x) of dimension
K ×Nc, as instructed in [15] and which consists of elements
±x1,±x2, . . . ,±xK , their conjugates ±x∗1,±x∗2, . . . ,±x∗K or
multiples of these elements by ±i (with i =

√
−1) or, if

necessary, other scaling factors. The first column of X can
without loss of generality be assumed to be [x1, x2, . . . , xK ]T ,
where T denotes the transpose operation. The space-time code
rate can be defined as

r = K/Nc (6)

source dimensions per channel use. The code rate needs to be
maximized in order to minimize the extra incurred channel
uses. This is however not the focus of this work and we
mainly refer to the current literature on space-time codes for
that matter. The code design is such that XX† (X† being
the conjugate transpose of X) is a diagonal matrix. It is also
shown in [15] that if at least one orthogonal design exists, one
can always find another design such that

XX† = c‖x‖2IK ,

where c is some constant depending on the code. It is also
possible to normalize the codewords such that c = 1, as we
will assume in the rest of this paper.

Referring to the system model in (1), we note that with this
structure, each row of Y and V corresponds to a particular
receiver antenna, comprising a total number of N receive
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antennas, and each column of Y and V corresponds to one
channel use, comprising a total number of Nc channel uses for
each source symbol transmission, indexed by n. Note that H ,
although random, is fixed for the transmission of each source
symbol.

At the receiver side, the space-time coded signal Y should
be decoded first before it is directed to the Kalman filter in
order to estimate x. The objective of the space-time decoder,
appearing before the Kalman filter as in Fig. 1, is to provide an
equivalent orthogonal channel and as we will see later, allow
for a spatial diversity gain. The number of such orthogonal
branches for the equivalent channel is at most NK. It is
worthwhile mentioning that N has no effect on the code
selection as long as the code is orthogonal.

The decoding we suggest here is different from what is
proposed in [15] due to the different nature of estimation
and detection. We use an approach similar to the one used
in [16], where orthogonal space-time block codes are used for
analog channel state information feedback. The basic idea is
to convert the channel into an equivalent orthogonal channel
and then perform decoding by simply multiplying the received
vector by the transpose of the equivalent channel (matched
filtering). The method in [16] is applicable for the transmission
of real signals only, and uses the 1/2 rate codes based on
real orthogonal designs proposed in [15]. While the same
design can be used for our purpose as well (by alternating the
transmission of real and imaginary parts of the signal x(n) and
therefore having a code of rate 1/4), we propose a different
approach which allows for the incorporation of the available
complex orthogonal space-time codes, and thus operating at a
better rate (e.g. full rate for K = 2). This is made possible by
converting all the complex vectors into equivalent real vectors
with twice the size and finding the equivalent real channel. The
proposed space-time decoding can be performed as follows.

Consider the l-th row of H corresponding to the l-th receiver
(l = 1, 2, . . . , N ), and call that row hl. We then take the
corresponding rows in Y and V to be yl and vl. The received
signal for that receiver is yl =

√
P/(KN)hlX + vl. Note

that it is only enough to analyze the space-time code for one
receiver antenna. Through that, we are able to show that each
receiver is able to provide K orthogonal channels, involving
the corresponding row in H . With N independent rows, a
number of NK orthogonal channels can be created by simply
summing all the results of the space-time decoding for each
receiver.

The next step is to convert all the complex operations to
real ones. First extend the source vector x into a real vector
of dimension 2K by replacing each complex element by a 2×1
real vector of the real and imaginary part of that element and
call this new vector xr, i.e.

xr = [xr1, x
i
1, x

r
2, x

i
2, . . . , x

r
K , x

i
K ]T ,

where the superscripts r and i for each element xk, k =
1, 2, . . . ,K indicate the real and imaginary part of that ele-
ment. Then perform the same procedure for X to provide the
matrix Xr of dimension 2K × Nc. Vectorize (column-wise
reshape) the matrix Xr into a real vector of size 2KNc × 1,
in the same manner as we created xr, and call it x̃. It is now

possible to create a mapping matrix T with size 2KNc× 2K
which maps xr to x̃ and only consists of real numbers. In
other words, we must find a T such that it satisfies x̃ = Txr.
This can be done by considering that each element in x̃ can be
found in xr, possibly with a different sign and scaling factor.

We convert vk to the equivalent real vector ṽ in the same
manner.

Next, we consider converting the channel into the real and
imaginary parts. For this reason, each channel tap in hl, i.e.
hl,k, k = 1, 2, . . . ,K is converted to the following 2×2 matrix

H̃l,k =

[
hrl,k −hil,k
hil,k hrl,k

]
.

The complex-valued 1×K vector hl is then expanded to the
real-valued 2×2K channel H̃ = [H̃l,1|H̃l,2, . . . , |H̃l,K ]. With
these definitions, it can be easily shown that the operation
yl =

√
P/(KN)hlX+vl in the domain of complex numbers

can be represented (using the Kronecker product ⊗) by the
following operation over the domain of real numbers

ỹ =
√
P/(KN)(INc

⊗ H̃)x̃ + ṽ

=
√
P/(KN)(INc

⊗ H̃)Txr + ṽ

=
√
P/(KN)Heqx

r + ṽ, (7)

where Heq = (INc ⊗ H̃)T is the equivalent real channel
which acts on the equivalent real source vector xr (note
the conversion from complex row vectors to equivalent real
column vectors). We show in Appendix A that

HT
eqHeq = ‖hl‖2I2K ,

i.e. the equivalent real channel can be orthogonalized by a
simple matched filtering operation constructed as follows

HT
eqỹ = HT

eq

(√
P/(KN)Heqx

r + ṽ
)

=
√
P/(KN)HT

eqHeqx
r +HT

eqṽ

=
√
P/(KN)‖hl‖2xr +HT

eqṽ. (8)

Due to the independence of channel noises for each dimension,
it can be shown that the variance of each element of HT

eqṽ is
equal to ‖hl‖2σ2

v .
For decoding the whole received signals, one should per-

form the same procedure for all the receiver antennas, i.e. all
the rows of H , and sum the results. If we call the resulting sum
yeq and convert the real vectors back to the complex domain
again, we may finally write

yeq =
√
P/(KN)

N∑
l=1

‖hl‖2x + veq

=
√
P/(KN)‖H‖2Fx + veq, (10)

where each element in veq has the variance ‖H‖2Fσ2
v . The SNR

is then equal to SNR = PPx/σ
2
v , where Px = E(‖x(n)‖2).

After space-time decoding for each time step n, yeq(n) is
delivered to the Kalman filter in order to estimate x(n). This
is reviewed in the next section.
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B. Kalman Filtering of Space-time Coded Analog Sources

Given that the correct initialization and equivalent channel
and received signal model are used, the general equations for
the Kalman filter (the estimator) adapted from [18] are

x̂(n|n− 1) = Ax̂(n− 1|n− 1)

P (n) = AM(n− 1)AT + Cu

K(n) =
√
P/(KN)P (n)‖H(n)‖2×(

‖H(n)‖2σ2
v + P/(KN)P (n)‖H(n)‖4

)−1
x̂(n|n) = x̂(n|n− 1)

+K(n)
(
yeq(n)−

√
P/(KN)‖H(n)‖2x̂(n|n− 1)

)
M(n) =

(
I −K(n)

√
P/(KN)‖H(n)‖2

)
P (n). (11)

The second step in (11), i.e. P (n) = AM(n − 1)AT +
Cu is called prediction and it is known that the prediction
error covariance matrix P (n) propagates through the random
Riccati equation given in (12).

We can also simplify (12) to

P (n+ 1)

= A
(
P−1(n) + P/(KN)‖H(n)‖2/σ2

vI
)−1

AT + Cu

= AM(n)AT + Cu (13)

by invoking the Woodbury matrix identity on (13). Comparing
(13) with the second line in (11) necessitates that

M(n) =
(
P−1(n) + P/(KN)‖H(n)‖2/σ2

vI
)−1

. (14)

We may then rewrite (14) as

M(n) =
(
P−1(n) + P/(KN)‖H(n)‖2/σ2

vI
)−1

=
KN

P‖H(n)‖2/σ2
v

((
P/(KN)‖H(n)‖2/σ2

vP (n)
)−1

+ I
)−1

=
1

γn

(
1

γn
P−1(n) + I

)−1
, (15)

with

γn =
P‖H(n)‖2

σ2
vKN

(16)

denoting the instantaneous channel SNR at time instant n. One
can also rewrite (13) (while setting n− 1 instead of n) as

P (n) = AM(n− 1)AT + Cu

=
A

γn

(
1

γn
P−1(n− 1) + I

)−1
AT + Cu. (17)

If we denote the k’th diagonal element of M(n) by Mkk(n)

and define the distortion as d(n) =
1

K
tr (M(n)), the distortion

outage probability at time n is equal to

Pout(dth) = Pr (d(n) > dth)

= Pr

(
1

K

K∑
k=1

Mkk(n) > dth

)
, (18)

where dth is an arbitrary threshold value. The analysis of this
outage probability as a function of SNR and other system
parameters is the topic of the next section.

IV. OUTAGE PROBABILITY ANALYSIS

We begin this section by first proving that d(n) converges
in distribution and consequently that the outage probability as
defined in (18) exists. After that, we study the achievable di-
versity order and coding gain for distortion outage probability
when the orthogonal space-time codes are used in conjunction
with the Kalman filter. We also develop upper and lower
bounds on the distortion outage probability, which are used for
both obtaining numerical values with application in practical
systems and also a prerequisite tool in obtaining the asymptotic
results.

A. Existence of the Outage Probability

The proof presented here for the existence of the outage
probability is very similar to the proof provided in [10] for
the scalar case. We start by lemma 1 to prove that the process
M(n) converges in distribution. We then use this fact to show
the existence of a stationary outage probability.

Lemma 1. The random process M(n) converges in distribu-
tion.

Proof. Convergence of the estimation error covariance matrix
of the Kalman filter (denoted by M(n) in this paper) with
stochastic system parameters, is studied in [14, Theorem 2.4].
For convergence in distribution, it is first required that a
hypothesisH (defined in [14, Section 2]) is satisfied. Secondly,
it is necessary that the system is weakly observable and weakly
controllable as defined in [14, Definition 2.1]. Thirdly, certain
system parameters which we name later, must be integrable.

For hypothesis H to hold, it is mentioned in [14, Section
2] that a conditionally Gaussian system satisfies such a re-
quirement. In our equivalent system model, u(n) and veq(n)
are i.i.d. Gaussian random processes and also independent of
H(n). Therefore, the system in this paper is also conditionally
Gaussian and satisfies the aforementioned hypothesis H.

Then, it must be shown that the system is weakly control-
lable and weakly observable. The exact definitions for weak
controllability and weak observability are provided in [14,

P (n+ 1) = AP (n)AT − P/(KN)AP (n)‖H(n)‖2
(
‖H(n)‖2σ2

v + P/(KN)‖H(n)‖4P (n)
)−1 ‖H(n)‖2P (n)AT + Cu

(12)
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Definition 2.1]. From there and in order to define weak con-
trollability and weak observability, the following probabilities
are defined first.

εo = Pr
(
Det

(
AT ‖γ(1)‖2A+ (AT )2‖γ(2)‖2A2

+ . . .+ (AT )n‖γ(n)‖2An
)
> 0
)

εc = Pr
(
Det

(
Cu +ACuA

T +A2Cu(AT )2

+ . . .+AnCu(AT )n
)
> 0
)
,

where Det(.) represents the determinant of a matrix.
For weak observability, it must hold that εo is non-zero

and for weak controllability, it must hold that εc is non-zero.
It is easy to show that εc is non-zero as the determinant of
the sum of positive definite matrices is non-zero. The same
argument holds for εo as well, as long as the non-existent
channel (h(n) = 0 for all n) does not occur. The non-existent
channel may only happen with zero-probability for Rayleigh
fading. Therefore, the system is weakly controllable.

For the third condition to hold, it should be such that the
(random) variables log log+(A), log log+(A−1), log log+(Cu)
and log log+(γ(1)) are integrable, where

log+(x) = max (log(x), 0) , (19)

i.e. they have a well-defined expectation value (see e.g. [19]
Chapter 13 for a definition of integrable random variables).
Obviously, A and Cu > 0 are deterministic parameters. There-
fore, they are integrable. log log+(γ(1)), is also integrable,
given that H(n) is defined as in Sec. 1. As a result, our system
model satisfies all the prerequisites of Theorem 2.4 in [14].
The consequence of the aforementioned theorem is that M(n)
converges in distribution (law).

When M(n) converges in distribution, then d(n) which is
the normalized sum of the diagonal elements of M(n) also
converges in distribution. As a result, Pout(dth) as defined in
(18) exists.

B. Bounds for the Outage Probability

As the distortion at each time step n is obtained from
M(n), we should first try to develop an equation for M(n)
which makes distortion calculation possible. One easy way to
find the diversity order is finding a closed-form equation for
M(n) which is independent of P−1(n) such that it allows
for diversity order calculation. This however, proves to be
rather complicated. Previously, some efforts had been carried
out to characterize the single-input single-output (SISO) and
single-input multi-output (SIMO) cases in [10] and [11],
respectively. While some initial results were obtained, even
for those simpler cases one had to resort to finding bounds
and approximates for characterization of the outage probability
and then its high SNR behavior. We follow the same approach
in this paper as well. In this section, we first establish upper
and lower bounds for the outage probability and then in the
following section obtain the diversity order and coding gain
via the high SNR analysis of the bounds.

In order to get upper and lower bounds for Pout(dth), we use
the following fact. It is straightforward to show that if for two
random variables X and Y , we have that X 6 Y (meaning

that X(ω) ≤ Y (ω) for all ω), then as a result, we obtain that

Pr(X > T ) 6 Pr(Y > T ). As d(n) =
1

K
tr(M(n)), if we

can find dl(n) and du(n) such that we would have dl(n) <
d(n) < du(n), then we may bound the outage probability
as Pr(dl(n) > dth) < Pr(d(n) > dth) < Pr(du(n) > dth),
i.e. upper and lower bounds on the outage probability may be
established. We would prefer random variables whose cdf have
a Taylor series with the first non-zero term equal to that of the
original distortion variable. This is for the diversity analysis
to be successful and will be explained later in the section.

In the following lemmas (Lemma 2 and 3), we present dl(n)
and du(n), used to establish upper and lower bounds on the
outage probability.

Lemma 2. The instantaneous distortion d(n) may be lower
bounded by dl(n) 6 d(n) as

dl(n) =
1

γn +
1

K

∑K
l=1

1

λl(Cu)

,

where the λl(.) function denotes the l-th eigenvalue of its
matrix argument.

Proof. Please see Appendix B.

Lemma 3. The instantaneous distortion d(n) may be upper
bounded by du(n) > d(n) as follows

du(n) =
1

γn +
1

1

K

∑K
l=1 θl

with

θl = λl(Cu) +
|λmax(A)|2
1

αmax
+ γn−1

, (20)

where λmax(.) denotes the maximum value of the eigenvalues
of its matrix argument, and αmax = |λmax(A)|2λmax(Cx) +
λmax(Cu), with Cx being the stationary covariance matrix of
the source.

Proof. Please see Appendix B.

From Lemmas 2 and 3, and the previous discussion, we can
now obtain the bounds for the outage probability as follows.
For the lower bound, we have that
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P lout(dth) = Pr(dl(n) > dth)

= Pr

 1

γn +
1

K

∑K
l=1

1

λl(Cu)

> dth


= Pr

(
γn 6 (

1

dth
− 1

K

K∑
l=1

1

λl(Cu)
)

)

= Pr

(
P‖H(n)‖2

σ2
vKN

6 (
1

dth
− 1

K

K∑
l=1

1

λl(Cu)
)

)

= Pr

(
‖H(n)‖2 6

σ2
vKN

P
(

1

dth
− 1

K

K∑
l=1

1

λl(Cu)
)

)

= F‖H(n)‖2

(
σ2
vKN

P
(

1

dth
− 1

K

K∑
l=1

1

λl(Cu)
)

)
,

(21)

where F‖H(n)‖2(.) is the cdf of the random variable ‖H(n)‖2
and can be obtained from

F‖H(n)‖2(z) =
1

(NK − 1)!

∫ z

0

e−ttNK−1 dt. (22)

Note that the only difference between (22) and the standard
cdf of a χ2 random variable is a scaling factor of 2 in the
integral upper limit z, which is added due to the normalized
variance assumption on the individual complex channel paths.

For the upper bound, we similarly have that

Puout(dth) = Pr(du(n) > dth)

= Pr

 1

γn +
1

1/K ·
∑K
l=1 θl

> dth


= Pr

(
γn 6

1

dth
− 1

1/K ·
∑K
l=1 θl

)
. (23)

Since θl are functions of γn−1, we may fix the value of γn−1
in order to perform the same procedure as for P lout(dth) and
then integrate over the pdf of γn−1, in order to obtain the total
outage probability. Note that in order for this procedure to be
correct, we need that γn and γn−1 are statistically independent.

After that, we obtain

Puout(dth)

=

∞∫
0

Pr

γn 6

 1

dth
− 1

1

K

∑K
l=1 θl

∣∣∣∣∣γn−1 = z


× fγn−1

(z) dz

=

∞∫
0

Pr

P‖H(n)‖2

σ2
vKN

6

 1

dth
− 1

1

K

∑K
l=1 θl

∣∣∣∣∣γn−1 = z


× fγn−1

(z) dz

=

∞∫
0

F‖H(n)‖2

σ2
vKN

P

 1

dth
− 1

1

K

∑K
l=1 θl

∣∣∣∣∣γn−1 = z


× fγn−1

(z) dz. (24)

Note that it is only θl which is a function of γn−1.
For the numerical evaluation of the bounds, please see Sec.

V.

C. Analysis of Diversity Order and Coding Gain

In order to obtain the diversity order with the help of the
bounds as we previously mentioned, we present the following
lemma.

Lemma 4. Assume that the outage probability Pout(dth) can
be lower and upper bounded by P lout(dth) and Puout(dth),
respectively, i.e. P lout(dth) < Pout(dth) < Puout(dth) for all
system parameters and all n. If P lout(dth) and Puout(dth) have
a diversity order of d0ord, then the outage probability Pout(dth)
has a diversity order of d0ord as well.

Proof. Since P lout(dth) < Pout(dth) < Puout(dth) and log(.)
is a monotonic increasing function for all valid (positive)
arguments and log(SNR) is a positive number, then we have
that

log(P lout(dth))

log(SNR)
<

log(Pout(dth))

log(SNR)
<

log(Puout(dth))

log(SNR)
. (25)

As we have that limSNR→∞
log(P lout(dth))

log(SNR)
= −d0ord and that

limSNR→∞
log(Puout(dth))

log(SNR)
= −d0ord, then according to the well-

known squeeze theorem for limits, we obtain that

lim
SNR→∞

log(Pout(dth))

log(SNR)
= −d0ord, (26)

and the proof is complete.

At this stage, we only need to find the diversity order
for P lout(dth) and Puout(dth). By a Taylor series expansion of
F‖H(n)‖2(z) from (22), it is easy to show that the cumulative
distribution function (cdf) of this distribution near zero (small
z) is of the form

F‖H(n)‖2(z) =
1

(NK)!
zNK + o(zNK). (27)
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Then, we obtain that

Plout(dth) = F‖H(n)‖2

(
σ2
vKN

P
(

1

dth
− 1

K

K∑
l=1

1

λl(Cu)
)

)

=
1

(NK)!

(
σ2
vKN

P
(

1

dth
− 1

K

K∑
l=1

1

λl(Cu)
)

)NK
+ o(P−NK)

=
(σ2
vKN)KN

(NK)!

(
1

dth
− 1

K

K∑
l=1

1

λl(Cu)

)NK
P−NK

+ o(P−NK)

=

(
σ2
vKNPx

)NK
(NK)!

(
1

dth
− 1

K

K∑
l=1

1

λl(Cu)

)NK
SNR−NK

+ o(SNR−NK), (28)

with λl(.) defined in Lemma 2.

Similarly for Puout(dth) and taking P̃ =
P

σ2
vKN

and λ̄ =

1

K

∑K
l=1 λl(Cu), we have that

Puout(dth)

=

∞∫
0

F‖H(n)‖2

 1

P̃

 1

dth
− 1

1

K

∑K
l=1 θl

∣∣∣∣∣γn−1 = z


× fγn−1(z) dz

=

∞∫
0

F‖H(n)‖2

 1

P̃

 1

dth
− 1

λ̄+
|λmax(A)|2αmax

1 + zαmax




× fγn−1
(z) dz,

which by substituting the Taylor series expansion results in

Puout(dth) =
1

(NK)!
P̃−NK×

∞∫
0

 1

dth
− 1

λ̄+
|λmax(A)|2αmax

1 + zαmax


NK

fγn−1(z) dz

+

∞∫
0

o(P̃−NK)fγn−1
(z) dz.

=
(σ2
vNKPx)NK

(NK)!
SNR−NK×

∞∫
0

 1

dth
− 1

λ̄+
|λmax(A)|2αmax

1 + zαmax


NK

fγn−1(z) dz

+

∞∫
0

o(SNR−NK)fγn−1
(z) dz. (29)

We can now calculate the diversity order for the bounds in
order to show their equality and thus prove the diversity result

for the outage probability function. For the lower bound, we
have that

dlord = − lim
SNR→∞

log(P lout(dth))

log(SNR)

= KN. (30)

This is due to the fact that when SNR→∞, o(SNR−NK)�
SNR−NK and thus the o(SNR−NK) term in (28) vanishes
before the first term containing SNR−NK , resulting in a
diversity order of NK.

The analysis for the upper bound is also similar. We note
that when SNR → ∞, the term o(SNR−NK) can be upper-
bounded by κSNR−NK , with κ being an arbitrary constant.
Therefore, it is possible to deduce that

∞∫
0

o(SNR−NK)fγn−1(z) dz

<

∞∫
0

κSNR−NKfγn−1
(z) dz

= κSNR−NK
∞∫
0

fγn−1
(z) dz

= κSNR−NK .

As a result, the second integral term containing o(SNR−NK)
in (29) vanishes much faster than SNR−NK and we can say

duord = − lim
SNR→∞

log(Puout(dth))

log(SNR)

= KN. (31)

As duord = dlord = NK, we deduce from Lemma 4 that the
diversity order for the outage probability is also equal to NK
and the analysis is complete. It is worthwhile mentioning
that the maximum diversity order is dependent on the MIMO
channel and its achievability only on the space-time code. The
source structure does not play any role on the diversity order.
However, as we will see next, the source structure plays an
important role on the coding gain.

Next, we consider the coding gain for the outage probability.
We know that both P lout(dth) and Puout(dth) have the same
diversity order, but possibly different coding gains. We may
by the diversity order results deduce that

P lout(dth) < Pout(dth) < Puout(dth)

(G1 · SNR)−KN + o(SNR−KN ) < (G · SNR)−KN

+ o(SNR−KN )

< (G2 · SNR)−KN

+ o(SNR−KN ) (32)

This results in

G−NK1 + o(1) < G−NK + o(1)

< G−NK2 + o(1). (33)
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In the high SNR regime, the term o(1) vanishes quickly com-
pared to the constants G1, G,G2. As a result, the relationship
in (33) simplifies to

G2 < G < G1, SNR→∞, (34)

which provides upper and lower bounds for the coding gain
by setting Gl = G2 and Gu = G1. Note that a higher coding
gain means a better SNR performance, i.e. a lower outage
probability for a given SNR. That is the reason we obtain the
upper bound for coding gain from the lower bound on the
outage probability and vice versa. The constants Gu and Gl

may in turn be extracted from (28) and (29) as

Gu =
(NK)!

1/(NK)

(σ2
vKNPx)

(
1

dth
− 1

K

K∑
l=1

1

λl(Cu)

)−1
(35)

and

Gl1 =
(NK)!1/(NK)

(σ2
vNKPx)

×
∞∫
0

 1

dth
− 1

λ̄+
|λmax(A)|2αmax

1 + zαmax


NK

fγn−1
(z) dz


−1/(NK)

.

(36)

Remark 1. The value of Gl introduced in (36) (subscripted by
1) is computationally more demanding to calculate than the
value for Gu, especially because one should also consider the
limit behavior of fγn−1(z) when P →∞. It is relatively easy
to show that Gl1 itself may be lower bounded by the following
value

Gl2 =
(NK)!1/(NK)

(σ2
vNKPx)

(
1

dth
− 1

λ̄+ |λmax(A)|2αmax

)−1
,

(37)

which is less accurate, but is of a much simpler form than Gl1.
As we can see from (35), (36), and (37), the coding gain

depends on the source structure and the threshold. It is the
eigenvalues of A and Cu which play a significant role. We
observe e.g. that smaller dth leads to smaller coding gain. This
is due to the fact that lower thresholds lead to higher outage
probabilities and for fixed diversity order, this leads to smaller
coding gains. Also, if the eigenvalues of Cu are large, the
coding gain decreases, i.e. the outage probabilities increase
in the asymptotic limit. Heuristically, such values imply more
randomness in the process, resulting in higher distortion for
the Kalman filter and consequently higher outage value.
Remark 2. There are limits for dth for which (35), (36) and
(37) are valid. In (35), it is required that

1

dth
− 1

K

K∑
l=1

1

λl(Cu)
> 0 (38)

so that the lower bound is meaningful. This leads to

dth 6
K∑K

l=1

1

λl(Cu)

, (39)

which equals the harmonic mean of the eigenvalues of Cu.
Similarly, it is also possible to show that a sufficient condition
for (36) and (37) to be valid is that

dth 6
1

K

K∑
l=1

λl(Cu). (40)

Therefore, a sufficient condition on dth in order to get valid
bounds can be obtain from

dth 6 min


K∑K

l=1

1

λl(Cu)

,
1

K

K∑
l=1

λl(Cu)

 , (41)

which basically requires that dth is smaller than the minimum
of mean and harmonic mean of the eigenvalues of the process
noise covariance matrix. The limiting regime in both cases is
when the eigenvalues of Cu are small. This happens when the
randomness in the process from u(n) is too slow compared
to the process memory from A. In realistic applications, this
can be solved by adjusting the sampling rate of the original
continuous-time process, if necessary. One might argue that
lowering the sampling rate in very slow varying processes in
order to get better bounds would eventually increase the outage
probability. However, if the application is critically sensitive in
that regard, the interesting regime is already small dth, because
it is the regime which results in higher outage probabilities.
For small dth however, the bounds would be functioning. This
shows that the limiting behavior in (41) is not a serious issue
for the bounds in most practical cases.

Remark 3. For well-conditioned Cu, the bounds perform better
than the case when Cu is ill-conditioned. In fact, for the case
when Cu = σ2

uI , the bounds are tight. This is elaborated more
in Appendix C.

For the numerical evaluation of the accuracy of the coding
gain expressions and related discussions, please see Sec. V.

V. NUMERICAL EVALUATION OF THE BOUNDS AND
DIVERSITY RESULTS

In this section, we provide simulation results to accompany
the presented theory in the previous sections. We begin the
numerical evaluations with the following system parameters.
We take K = 2 and N = 1 to keep the simulated outage values
practically calculable. This necessitates a maximum diversity
order of KN = 2. We select

A =

[
0.6 −0.8
0.7 0.6

]
has the eigenvalues {0.6 ± j

√
0.56}. This corresponds to

the case where x1(n) and x2(n) are relatively highly cross-
correlated in time. We select σ2

v = 1 and dth = 0.1. As for the
orthogonal space-time code we use the Alamouti code from
[20], while for simplicity we calculate Px from simulations.
We consider two cases for Cu, namely C1

u and C2
u as follows

C1
u =

[
0.25 0

0 1.44

]
, C2

u =

[
0.53 0.28
0.28 0.53

]
.
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Fig. 2. Outage probability and the corresponding bounds for K = 2,
N = 1, dth = 0.1, σ2

v = 1, and for λ1,2(Cu,1) = 0.25, 1.44.
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Fig. 3. Outage probability and the corresponding bounds for K = 2,
N = 1, dth = 0.1, σ2

v = 1, and for λ1,2(Cu,2) = 0.25, 0.81.
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Fig. 4. Comparison of accuracy of the coding gain bounds for K = 2,
N = 1, dth = 0.1, σ2

v = 1, and for λ1,2(Cu,1) = 0.25, 1.44.
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Fig. 5. Comparison of accuracy of the coding gain bounds for K = 2,
N = 1, dth = 0.1, σ2

v = 1, and for λ1,2(Cu,2) = 0.25, 0.81.

The choice is mainly to show how the accuracy of the bounds
will change as we use different values for Cu, and also that
different values for Cu will result in different coding gains.
Also, the eigenvalues of C1

u are equal {1.44, 0.25} and the
eigenvalues of C2

u are equal to {0.81, 0.25}. The Pout vs.
SNR graph is depicted in Figures 2 and 3. We simulate the
Kalman filter for n 6 107 and numerically calculate the
outage probabilities after discarding the first 400 samples.
The upper and lower bounds are visibly good for both cases
and seem to be quite accurate for a large range of SNR
values, compared to the simulated result from the Kalman
filter. The numerical evaluation for the coding gain bounds is
also depicted in Figures 4 and 5. We note we plot the simulated
outage probabilities along with a linear function with a slope
of 2 and with calculated values for Gl, Gu1 , G

u
2 . The upper

and lower bounds for the coding gain become visibly accurate
from SNR’s close to 30 dB. This shows that for the high SNR
analysis to be correct, one needs at least an SNR of the same
value or higher. A slope of 2 corresponding to the diversity
order div = 2 is quite visible in both cases as well. One can
also notice in Figures 4 and 5 that the lower bound for coding

gain is more accurate than the upper bound and that Gl1 is a
much better lower bound that Gl2, as expected.

In order to observe the performance of the system for
higher dimensions, we now take K = 3, N = 1 and use
the space-time code construction from [15, Eq. 39]. This
leads to Nc = 4 and r = 3/4 as well. We also modify
other system parameters to Cu = diag{0.5, 0.75, 0.65} and
A = D diag{0.95, 0.9, 0.98}D−1, with D representing the
normalized discrete cosine transform matrix, and then simulate
the system for n 6 108. The results for outage probability
bounds and the coding gain bounds and the diversity order are
presented in Figures 6 and 7. A diversity order of 3 is visible
in both figure and the bounds are visibly very accurate.

VI. CONCLUSION

In this paper, we propose a new method for analog transmis-
sion of Gauss-Markov sources over MIMO fading channels,
which incorporates the use of complex orthogonal space-time
codes. By decoding the real and imaginary parts of the code
separately, we allow any complex orthogonal space-time code
with arbitrary rate to be used for analog transmission. We
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then show that for Rayleigh fading channels, the distortion
outage probability can achieve the maximum diversity order
allowed by the number of antennas. By considering process
memory only limited to two previous steps, we are able to
provide bounds for the distortion outage probability which are
applicable for any SNR, and also present bounds for the coding
gain in the high SNR regime. We also outline how the coding
gain depends on the eigenvalues of the state transition and the
process noise covariance matrices, and the outage threshold.

APPENDIX A
ORTHOGONALITY FOR THE EQUIVALENT REAL CHANNEL

MATRIX

In this section, we denote the elements of the arbitrary
matrix W as W [i, j], where i denotes the row position and
j the column position. The i-th row of W from columns j1 to
j2 is denoted by W [i, j1 : j2] and the whole row is denoted
by W [i, :]. Similar rules hold for the j-th column.

We first define Tl = T [2(l − 1)K + 1 : 2lK, 1 : 2K], l =
1, 2, . . . , Nc, i.e.

T = [TT1 |TT2 | · · · |TTNc
]T . (42)

Note that each block Tl then maps the variable xr to the l–
th column of the matrix Xr, i.e. Xr[:, l] = Tlxr. In order to
show that Heq can in fact be orthogonalized, we first see that

xTr H
T
eqHeqxr = xTr T

T (INc
⊗ H̃)T (INc

⊗ H̃)Txr

= xTr T
T
(
INc ⊗

(
H̃T H̃

))
Txr

=

Nc∑
l=1

xTr T
T
l

(
H̃T H̃

)
Tlxr (43)

The matrix H̃T H̃ is of dimension 2K × 2K, whereas the
matrix H̃ is of dimension 2×2K. For that reason, the rank of
H̃T H̃ is equal to the rank of H̃ , which for i.i.d. Rayleigh
fading is equal to 2 with probability one. In addition, the
eigenvalues of H̃T H̃ are the same as those of H̃H̃T , with
additional 2K − 2 zeros. It is easy to see that

H̃H̃T = ‖hk‖2I2. (44)

Therefore, we can write the eigenvalue decomposition of
H̃T H̃ as

H̃T H̃ = Q diag{0, 0, . . . , 0, ‖hk‖2, ‖hk‖2}QT

= ‖hk‖2QZQT , (45)

with QQT = I2K and Z = diag{0, 0, . . . , 0, 1, 1}. Note that
the position of ones in Z is only for the simplification of the

proof, as the equivalent matrix QZQT will be the same for
any positioning. Inserting (45) into (43), we obtain that

xTr H
T
eqHeqxr = ‖hk‖2

Nc∑
l=1

xTr T
T
l QZQ

TTxr

= ‖hk‖2
Nc∑
l=1

xTr (QTTl)
TZ(QTTl)xr

= ‖hk‖2
Nc∑
l=1

xTr T
′

l

T
ZT

′

l xr

(a)
= ‖hk‖2

Nc∑
l=1

xTr (T
′

l

T
Z)(ZT

′

l )xr (46)

where T
′

l , l = 1, 2, . . . , Nc may be assumed to be the building
blocks of a matrix T

′
(same as for T), which maps xr to

the matrix QTXr in the same way as T maps xr to Xr. In
addition, (a) holds because Z2 = Z. The positioning of the
ones in Z is such that it is only the last two columns of T

′

l

T

which remain non-zero after multiplication by Z. The last two
columns of T

′

l

T
correspond to the last two rows of T

′

l (also
visible in the structure of ZT

′

l in (46)). In order to provide
better intuition into (46), we see that (46) can be rewritten as

xTr H
T
eqHeqxr = ‖hk‖2

Nc∑
l=1

xTr T
′

l

T
(Z2K−1 + Z2K)T

′

l xr

= ‖hk‖2
Nc∑
l=1

xTr T
′

l

T
Z2K−1T

′

l xr

+ ‖hk‖2
Nc∑
l=1

xTr T
′

l

T
Z2KT

′

l xr, (47)

where Z2K−1 and Z2K are all-zero matrices, except for
Z2K−1[2K − 1, 2K − 1] = Z2K [2K, 2K] = 1. We can then
rewrite (47) as

xTr H
T
eqHeqxr = ‖hk‖2

Nc∑
l=1

xTr (T
′

l

T
Z2K−1)(Z2K−1T

′

l )xr

+ ‖hk‖2
Nc∑
l=1

xTr (T
′

l

T
Z2K)(Z2KT

′

l )xr. (48)

In that sense the result of (48) and equivalently (46)is basically
the sum of the squares of the last two rows (row 2K − 1 and
2K) of X

′

r = QTXr. This can be written as

xTr H
T
eqHeqxr = ‖hk‖2

(
Nc∑
l=1

X
′

r

2
[2K − 1, l] +X

′

r

2
[2K, l]

)
.

(49)

It is easy to see that X
′

r = QrXr, where Qr is a matrix of
dimension 2× 2K, which consists of the last two rows of the
matrix QT (transpose of the last two columns of Q). From
the definition of the eigenvalue decomposition for H̃T H̃ and
given that H̃T H̃ only has two non-zero eigenvalues (with the
corresponding eigenvectors as the last two columns of Q, equal
to QTr ), it is readily established that

H̃T H̃ = ‖hk‖2QTr Qr, (50)
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which basically means that H̃ = ±‖hk‖Qr, i.e. Qr is a
normalized version of H̃ . This is a property we will use later
on in the proof.

In order to be able to calculate the value of the sum in
(49), we may convert the matrices Xr and Qr to complex
equivalent matrices. In that case, we are able to finally use
the orthogonality of the complex space-time code in order to
prove the orthogonality of the equivalent channel. This step is
necessary, as the code’s orthogonality is best described in the
domain of the complex numbers. We perform this procedure
as follows. For Xr, take all the consecutive odd and even real
rows, add the even row multiplied by i to the previous odd
row and then remove the even rows. The resulting matrix, of
dimension K×Nc is basically equal to X , the original space-
time code. For the matrix Qr, perform the same procedure
with odd and even columns, and call the resulting matrix, of
dimension 2 ×K as Qc. We further take the first row of the
matrix Qc to be equal to qT1 and the second row as qT2 . Note
that q1 and q2 are still orthogonal to one another and we still
have that qH1 q1 = qH2 q2 = 1. With these definitions, the sum
in (49) can be rewritten as

xTr H
T
eqHeqxr

= ‖hk‖2
(
Re(qH1 X) Re(qH1 X)T + Re(qH2 X) Re(qH2 X)T

)
or equivalently

xTr H
T
eqHeqxr

= ‖hk‖2
(
Re(qH1 X) Re(XHq1) + Re(qH2 X) Re(XHq2)

)
.

(51)

The following equalities are also easy to verify

‖x‖2 = qH2 XX
Hq2

= qH1 XX
Hq1

= Re(qH1 X) Re(XHq1)− Im(qH1 X) Im(XHq1)

= Re(qH1 X) Re(XHq1) + Im(qH1 X) Im(qH1 X)T .
(52)

If we convert the matrix H̃ to a complex equivalent matrix in
the same manner as for Qr and obtain H̃c, we see that due to
the structure of H̃ , we should have

Re(H̃c[1, :]) = Im(H̃c[2, :])

and

Re(H̃c[2, :]) = − Im(H̃c[1, :])

As Qr is only a scaled version of H̃ , then Qc is only a scaled
(by a real number) version of H̃c. Due to that, we should also
have for Qc that

Re(Qc[1, :]) = Im(Qc[2, :]) (53)

and

Re(Qc[2, :]) = − Im(Qc[1, :]). (54)

It is then straightforward to show using (53) and (54) to that

Im(qH1 X) = Re(qH2 X). (55)

That can be understood better by considering that if
Qr[1, :] = [q1,1, q1,2, . . . , q1,2K−1, q1,2K ]T and Qr[2, :] =
[q2,1, q2,2, . . . , q2,2K−1, q2,2K ]T , then we have from (53) and
(54) that e.g. q1,1 = q2,1 and q1,2 = −q2,1 and so on. This
can be considered within the multiplication operations of qH1 X
and qH2 X , in order to produce the result in (55). Inserting (55)
into (52) results in

‖x‖2 = Re(qH1 X) Re(XHq1) + Re(qH2 X) Re(XHq2),
(56)

which by comparing to (51) confirms that

xTr H
T
eqHeqxr = ‖hk‖2‖x‖2

= ‖hk‖2xTr xr
= xTr ‖hk‖2xr (57)

for all xr, which effectively results in

HT
eqHeq = ‖hk‖2I2K (58)

APPENDIX B
BOUNDS FOR THE INSTANTANEOUS DISTORTION

From (15), we have that M(n) = 1
γn

(
1
γn
P−1(n) + I

)−1
.

If we denote the eigenvalues M(n) by λl(M(n)), l =
1, 2, . . . ,K, and the eigenvalues of P (n) by λl(P (n)), l =
1, 2, . . . ,K, then we have that

d(n) =
1

K
tr(M(n))

=
1

K

K∑
l=1

λl(M(n))

(a)
=

1

K

K∑
l=1

1

γn
(

1

γn

1

λl(P (n))
+ 1)−1

=
1

K

K∑
l=1

1
1

λl(P (n))
+ γn

, (59)

where (a) holds because the eigenvalues of sum of an arbitrary
matrix and the identity matrix are equal to the sum of the
eigenvalues of that matrix and the identity matrix (this does
not hold in general for sum of two arbitrary matrices). As
P (n) is a covariance matrix, it is (semi)-positive definite.
Therefore, we have that λl(P (n)) > 0, ∀l. If we denote
the ordered eigenvalues of Cu by λl(Cu), ∀l (λ1(Cu) >
λ2(Cu) > . . . > λK(Cu)) and also order λl(P (n)) such that
λ1(P (n)) > λ2(P (n)) > . . . > λK(P (n)), we know from
Weyl’s inequalities [21, Ch. 3] that

λl(P (n)) > λl(Cu). (60)

This is due to the fact that P (n) = AM(n− 1)AT +Cu and
AM(n−1)AT is a positive definite matrix (because M(n−1)
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is positive-definite). Now combining (59) and (60), we obtain
that

d(n) =
1

K

K∑
l=1

1
1

λl(P (n))
+ γn

>
1

K

K∑
l=1

1
1

λl(Cu)
+ γn

.

It is easy to show that the function f(z) =
1

z + c
is convex in

z for any positive c. Now, invoking Jensen’s inequality from
[22, Ch. 2.6] leads to∑

l

plf(zl) > f

(∑
l

plzl

)
. (61)

Assuming then pl = 1/K and zl = 1/λl(Cu), we would have
that

1

K

K∑
l=1

1
1

λl(Cu)
+ γn

=

K∑
l=1

1

K

1
1

λl(Cu)
+ γn

>
1

1

K

∑K
l=1

1

λl(Cu)
+ γn

, (62)

which establishes the lower bound dl(n) as stated in Lemma
2 as

dl(n) =
1

1

K

∑K
l=1

1

λl(Cu)
+ γn

. (63)

For the upper bound, if we manage to find a series of
random variables which are greater than or equal to λl(P (n)),
we can then obtain the upper bound du(n) in the same manner
as we found dl(n). λl(P (n)) are functions of all filter memory,
and it is a cumbersome task to track the filter memory. Instead,
we decide to consider only the two previous time steps, i.e.
n−1 and n−2, and show that we are able to find reasonably
good bounds.

First, we consider n−1. Given that P (n) = AM(n−1)AT+
Cu, it is possible to obtain an upper bound on λl(P (n)) based
on λl(M(n − 1)). Based on Weyl’s theorem on eigenvalues
of sum of positive definite Hermitian symmetric matrices, we
can state that

λl(P (n)) 6 λmax(AM(n− 1)AT ) + λl(Cu). (64)

It is also easy to show from Weyl’s inequalities [21, Ch. 3]
that for two symmetric matrices A and B, we have that

λmax(AB) 6 λmax(A)λmax(B). (65)

Based on (65), we may extend (64) to

λl(P (n)) 6 λmax(AT )λmax(AM(n− 1)) + λl(Cu)

6 λmax(AT )λmax(A)λmax(M(n− 1)) + λl(Cu)

6 |λmax(A)|2λmax(M(n− 1)) + λl(Cu). (66)

The next step is to find an upper bound for λmax(M(n− 1)).
We know that

λl(M(n− 1)) =
1

1

λl(P (n− 1))
+ γn−1

. (67)

From that we conclude that

λmax(M(n− 1)) =
1

1

λmax(P (n− 1))
+ γn−1

. (68)

The next step is to find an upper bound for λmax(P (n − 1)).
Now, if we consider one more time step backwards, i.e. n−2,
we know that P (n − 1) = AM(n − 2)AT + Cu. Therefore,
we have as before that

λmax(P (n− 1)) 6 |λmax(A)|2λmax(M(n− 2)) + λmax(Cu).
(69)

In order to get an upper bound for λmax(M(n − 2)), we
assume the worst case scenario for M(n − 2). Obviously
M(n − 2) cannot be worse that Cx. That happens when
h(n

′
) = 0, ∀n′ < n − 2. As a result, an upper bound for

λmax(M(n− 2)) is λmax(Cx).

λmax(P (n− 1)) 6 |λmax(A)|2λmax(Cx) + λmax(Cu). (70)

So far, we have proven that

d(n) 6
1

K

K∑
l=1

1
1

θl
+ γn

(71)

with

θl = λl(Cu) +
|λmax(A)|2
1

αmax
+ γn−1

, (72)

and

αmax = |λmax(A)|2λmax(Cx) + λmax(Cu). (73)

Now, similar to the approach used to establish the lower bound,

we may consider the function f(z) =
1

1/z + c
for arbitrary

positive c. It is easy to show that f(z) is a concave function.
Again invoking the Jensen’s inequality, we may say that

∑
l

plf(zl) 6 f

(∑
l

plzl

)
. (74)

Assuming then pl = 1/K and zl = θl, we would have that

1

K

K∑
l=1

1
1

θl
+ γn

=

K∑
l=1

1

K

1
1

θl
+ γn

6
1

1
1

K

∑K
l=1 θl

+ γn

, (75)
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Fig. 6. Comparison of accuracy of the coding gain bounds for K = 3,
N = 1, dth = 0.1, σ2
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Fig. 7. Outage probability and the corresponding bounds for K = 3,
N = 1, dth = 0.1, σ2
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which finally establishes the upper bound du(n) as stated in
Lemma 3 as

du(n) =
1

1
1

K

∑K
l=1 θl

+ γn

, (76)

with θl defined Lemma 3.

APPENDIX C
TIGHTNESS OF THE CODING GAIN BOUNDS

In this section, we outline how the gap between Gu and
Gl behaves as a function of system parameters and if it is
eventually tight. We try to evaluate the terms log(Gu/G

l
2)

and log(Gu/Gl1), which correspond to the gap (in dB) in the
log(SNR)-scale. For the simple lower bound Gl2, we have that

log(Gu/Gl2) = log


1

dth
− 1

λ̄+ |λmax(A)|2αmax
1

dth
− 1

K

∑K
l=1

1

λl(Cu)

 . (77)

This is a constant gap independent of the average SNR and

only a function of system parameters. We take
(

1

λ

)
=

1

K

∑K
l=1

1

λl(Cu)
. It is possible to show that for λl(Cu) > 0,

we have that

1

dth
−
(

1

λ

)
6

1

dth
− 1

λ̄
<

1

dth
− 1

λ̄+ |λmax(A)|2αmax
. (78)

Now for fixed λ̄ = 1/Ktr(Cu), it is easy to verify that
log(Gu/Gl2) can be minimized if λl(Cu) = const., i.e. the
gap is minimized when Cu = σ2

uI , for some σ2
u > 0.

Performing similar analysis for the other lower bound Gl1,
we obtain that

NK log(Gu/Gl1) =

lim
SNR→∞

log

∞∫
0



1

dth
− 1

λ̄+
|λmax(A)|2αmax

1 + zαmax

1

dth
−
(

1

λ

)


NK

fγn−1
(z) dz

6 lim
SNR→∞

log

∞∫
0


1

dth
− 1

λ̄+ |λmax(A)|2w
1

dth
−
(

1

λ

)

NK

fγ−1
n−1

(w) dw.

(79)

It is possible to show (similar to [11, Appendix D]) that when
SNR→∞, then fγ−1

n−1
(w)→ δ(w), i.e. Dirac’s delta function.

Consequently, we will have that

log(Gu1/G
l) 6

1

NK
lim

SNR→∞
log

∞∫
0


1

dth
− 1

λ̄+ |λmax(A)|2w
1

dth
−
(

1

λ

)

NK

δ(w) dw

= log


1

dth
− 1

λ̄
1

dth
−
(

1

λ

)
 , (80)

which is equal to zero iff λl(Cu) = const. or equivalently
Cu = σ2

uI . The best bounds are thus achieved for well-
conditioned Cu.
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