Hash Routing for Collections of
Shared VWeb Caches

Keith W. Ross
University of Pennsylvania

Abstract

Shared Web caches, also referred to as proxy Web servers, allow multiple clients
to quickly access a pool of popular Web pages. An organization that provides
shared caching to its Web clients will typically have a collection of shared caches
rother than just one. For collections of shared caches, it is desirable 1o coordinate
the caches so that all cached pages in the collection are shared among the organi-
zation's clients. In this article we investigale two closses of protocols for coordinat
ing a collection of shared caches: the [CP protocal, which has caches ping each
other to locate a cached object; and the hasﬁ roufing protocols, which place objects
in the shared caches as a function of the objects” URLs. Our contribution is twogold.
Firsl, we compare the performance of the protocols with respect to cache-server
overhead and object retrieval latency; for a collection of shared caches, our analy-
sis shows that the hash-routing schemes have significant performance advantages
over ICP for both of the performance metrics. The existing hash-routing protocols
assume that the cache servers are homogeneous in storage copacity and processing
capability, even though most collections of cache servers are vastly heterogeneous.
Our second conkibution is to extend a robust hash-routing scheme so that it bal-
ances requests among the caches according to any desired distribution; the extend-
ed hash-routing scheme is robust in the face of cache failures, is tunable for
heterogeneous caches, and can have significant performance advantages over ICP.

hared Web caches, also referred to as proxy Web

servers, allow multiple clients to quickly access a

pool of popular Web objects. They are increasingly

used in organizations (corporations, universities, gov-
ernment agencies, Internet service providers, etc.) whose Web
clients can be connected directly to a shared cache over a
high-speed local area network (LAN). Because many such
organizations are connected to the Internet over lower-speed
congested links, the average response time for requested Web
objects can be substantially reduced if a significant fraction of
the objects are available in the organization’s shared cache.
Moreover, by servicing a document from its own storage, a
shared cache reduces the load on the link from the organiza-
tion to the Internet, on the links within the Internet, and on
the originating Web server. Shared caches have been success-
fully used by universities, research centers, and even countries
(e.g., New Zealand) [1}. Hit rates up to 50 percent are not
uncommon for shared caches [1]. The hit rate is even higher
when hits from the local caches in the client hosts (PCs and
workstations) are included in the hit rate. Emerging push
technologies which push popular Web pages into shared
caches should further increase the hit rates.

An organization that provides shared caching to its Web
clients will typically have a collection of shared caches rather than
just one. A collection of shared caches is desirable for several
reasons. First, it eliminates the single point of failure: if one or
more of the caches goes down, then the clients will still be
able to retrieve popular objects from the other caches in the
collection. Second, each department within the organization
may have its own shared cache, and the processing and storage
capabilities of the caches may vary enormously; it is desirable to
coordinate the departmental caches so that all cached objects
can be shared among the organization’s clients. Third, a single
shared cache simply may not be able to handle the demand
from the organization’s clients, due to the limited processing
power and storage capacity of a single shared cache. Coliec-
tions of shared Web caches can also be organized into a hier-
archical topology [1], for example, a collection at the
organizational level, a collection at the regional Internet ser-
vice provider (ISP) level, and a collection at the national level,

In this article we study protocols for coordinating a collec-
tion of shared caches. The focus of this article is on the
important and popular caching topelogy in Fig. 1. In this sin-
gle-tier topology, an organization has a collection of shared

caches which are tied together by a high-speed network. When
a client requests an object, a search is first performed over the
entire collection of shared caches; if the object is not found in
the shared caches, one of the shared caches retrieves the
object from the originating server and then forwards the
object to the requesting client. All of the caches in the tier
are siblings; that is, none of the caches are parents to any of
the other caches in the tier. At the end of this article we will
briefly discuss more complex hierarchical topologies.

One popular protocol which allows Web clients to coor-
dinate and share a hierarchy of Web caches is the Internet
Caching Protocol (ICP), which is defined in an Internet
Draft [2, 3}. ICP is an application-layer protocol which runs
on top of User Datagram Protocol/Internet Protocol
(UDP/IP). It is the engine of the Harvest caching software,
which has been adopted by many organizations, including
the country of New Zealand and the National Laboratory
for Applied Network Research (NLANR). (The Squid
caching software is the free derivative of Harvest.) In brief,
in the context of the single-tier hierarchy ICP works as fol-
lows, The Web client requests a page from one of the
shared caches. If the shared cache cannot satisfy the
request, it simuitaneously queries all the other sibling
caches to see if any of them have the object. This querying
is not done over Hypertext Transfer Protocol (HTTP) but
over the customized ICP application-layer protocol. If at
least one of the siblings has the object, the shared cache
requests the object {using HTTP) from the first sibling
cache to respond with an ICP hit message; upon receiving
the object, the shared cache stores a copy of the object and
sends the object to the client. If none of the siblings have the
object, the shared cache fetches the object from the originat-
ing Web server, places a copy in its cache, and delivers the
object to the client. One of the properties of ICP is that mul-
tiple copies of the object can be present in the collection of
shared caches.

One alternative to IC? is to use hash routing schemes to
retrieve objects from a hierarchy of shared caches. Hash rout-
ing schemes for collections of Web caches have recently been
proposed by several research teams [4-8], and one hash rout-
ing scheme forms the basis of the Cache Array Routing Pro-
tocol (CARP), defined in an Internet Draft [7]. A simple hash
routing scheme operates as follows. All the clients store a
common hash function which maps URLs to a hash space.l
The hash space is partitioned, and each set in a partition is
associated with one of the sibling caches. When a client
desires an object, it first hashes the object’s URL and then
requests the object from the sibling cache whose set contains
the hash value. If the cache cannot satisfy the request, it
retrieves the object from the originating server, places a copy
in its cache, and forwards the object to the client. One of the
important properties of all hash routing schemes is that at
most one copy of an object resides in the collection of caches.
Thus, with hash routing the caches in the collection are effec-
tively aggregated (rather than replicated, as with ICP), leading
to higher hit probabilities.

Simple hash routing has, however, a serious drawback. If
one of the caches fails, or if a new cache is added to the col-
lection, then the hit probability will drop dramatically and
instantaneously. The hit probability will eventually climb back
to its original level, but this could take days or even weeks,

! A hash function is a deterministic mapping whick maps inputs to the
hash space. The resulting oulputs of the hash function are seemingly ran-
dom, with the outputs uniformly scattered over the hash space. Small
changes in the input create arbitrary “random” changes in the output.

Originating servers

Sibling caches

¥
Shared Shared Shared
cache cache cache
_1 2 N

(e]

L IE N A]

| Client 1

W Figure 1. Collection of sibling caches, which are tied together with

a high-speed network (e.g., Ethernet or ATM technologies).

depending on the nature of the request traffic. To resolve this
problem, Thaler and Ravishankar [4] and Smith and Vallop-
pillil [5] have independently developed a robust hash-routing
scheme that overcomes this disruption problem. The robust
hash-routing scheme of Smith and Valloppillil is part of
CARP [7,9].

The contribution of this article is twofold. First, we provide
simple analytical models for several coordination protocols,
enabling a performance comparison of ICP with respect to the
hash-routing schemes. We provide this analysis for two perfor-
mance metrics: overiead at a shared-cache server, and average
latency to satisfy a client request for an object. For both metrics
we show that a hash-routing scheme, such as CARP, performs
favorably compared to ICP. Our second contribution is to
extend robust hash routing to the case of heterogeneous
caches, that is, to caches with differing processing power and
storage capacity. This extension enables the hash-routing
scheme to distribute the numbers of objects among the caches
according to any desired distribution; caches with larger pro-
cessing capacity and/or storage capacity can be allocated a
larger fraction of the objects in a precise manner. This exten-
sion to heterogeneous servers is also part of CARP [7, 9]

This article is organized as follows. In the second section
we describe ICP and two implementations of a simple hash-
routing scheme, In the third section we provide an analytical
performance comparison of ICP and the simple hash-routing
schemes. In the fourth section we briefly review how a hash
routing scheme can be made robust. In the fifth section we
extend the robust schemes to handle a collection of heteroge-
neous caches. In the sixth section we briefly discuss multi-tier
hierarchies of caches. We summarize in the final section.

Shared Web Caching Protocols

An organization such as a corporation, university, or ISP
often has a high-speed network (at rates of 10 Mb/s and
up) which interconnects the organization’s clients and servers.
When a client requests a Web page from one of the servers

38

IEEE Network * November/December 1997

on the high-speed network, the response is often instanta-
neous because the network is fast and uncongested. But when
a client requests a page from a remote server, the response is
often slow and annoying. Several factors can contribute to this
slow response: a relatively low-speed link existing between the
organization and the distant Web server; congested links
between the organization and the Web server; or the Web
server itself being overloaded with requests. These factors can
collude, further exacerbating the response time. Web page
caching can help reduce the delay, or latency, for the remote
pages. There are two types of Web caching mechanisms that
are extensively used in practice: local client caching and
shared caching. In this article our attention is focused on
shared caching.

If an organization has a single shared cache on its high-
speed network, all its clients send all their HTTP request mes-
sages directly to the shared cache. If the shared cache has a
requested object, the shared cache forwards the object to the
requesting client, in which case the latency is typically small
since the organization’s network is fast and uncongested. If
the shared cache does not contain the requested object, the
shared cache retrieves the object from the originating server
and then forwards the object to the requesting client; the
shared cache also stores a copy of the object, so it will be able
to rapidly deliver the same object to any other client that
requests it in the future. The cache is said to be shared
because clients share all the objects in the cache. When the
shared cache’s storage becomes full, the storage device must
replace objects according to some replacement policy. A pop-
ular replacement policy is least recently used, whereby a newly
requested object replaces the object in the cache that has not
been requested for the longest period of time; see [10] for an
overview of Web cache replacement policies,

As discussed earlier, there is great incentive for an organi-
zation to have more than one shared Web cache. In this sec-
tion we discuss two important classes of protocols for
coordinating multiple shared caches.

Internet Caching Protocol

ICP is based on pinging the caches in an attempt to locate
objects [1-3). ICP is an application-layer protocol which runs
on top of UDP/IP. An ICP message contains a 20-byte head-
er plus a variable-sized payload; the payload typically con-
tains a URL.

Each Web client is configured to connect to a particular
shared cache. (This is typically done by configuring the
browser in the client so that its proxy server is a specific
shared cache. In this manner, all the client’s HTTP requests
are sent directly to the shared cache.) When a cache receives
a request from a Web client, it will first check itself to see if
it can satisfy the request. If the object does not exist in its
cache, the cache queries all the sibling caches. A cache will
query the sibling caches by sending a query message to each;
the query messages are sent to siblings in parallel. Upon
receipt of a query message, a sibling cache will extract the
URL and check to see if the object is in its own cache. If a
match is found, the sibling cache will return a hit message to
the requesting cache; if the requested object is not in the sib-
ling cache, the sibling cache will return a miss message. The
query, hit, and miss messages are all part of the ICP applica-
tion-layer protocol,

If the requesting cache receives a hit message from a sib-
ling, it immediately issues an HTTP request to the first sibling
cache that returned the hit message. If none of the sibling
caches contain the requested object, the requesting cache
waits until all the miss messages have been received (uptoa
configurable timeout whose default is 2 s5); the requesting

cache then retrieves the object from the originating Web serv-
er in the Internet. Once a cache obtains the object from a sib-
ling cache or from the originating Web server, a copy of the
object is placed in its own storage; the cache then forwards
the object (within an HTTP response message) to the request-
ing client.

An important property of ICP is that there may be more
than one copy of any given object in the collection of sibling
caches. Replication occurs because a cache may obtain a copy
of an object from a sibling cache in order to satisfy a client’s
request. This property creates a mirroring effect, whereby
objects (especially popular objects) tend to get replicated
across all the sibling caches. One unfortunate consequence of
this property is that only a fraction of the total sibling storage
capacity contains unique objects; the remainder of the capaci-
ty is wasted with multiple copies of the objects. One nice con-
sequence of this property is that if one of the sibling caches
fails, most of its cached objects will be available in the remain-

- ing sibling caches. :

As the sibling caches become perfectly mirrored, the probability
of receiving a hit message from a sibling cache approaches 0. A
similar observation is made in [4], in which the rate of replication
is shown to be large for a more general class of caching schemes.

ICP generates additional network traffic (i.e., ICP mes-
sages) which must be processed by the caches. We refer to
this additional traffic as overhead. We shall quantify the
extent of the overhead in the third section; in particular, we
show that with ICP a shared cache will have to process many
more ICP messages than HTTP messages.

We mention here that our description of ICP as a pinging
protocol is consistent with the descriptions in the literature and
in the Request for Comments (RFC) [2]. However, some
implementations of ICP permit a form of simple hash routing;
for example, a simple form of hash routing can be found in the
code of NetCache 3.1 f11]. Nevertheless, the majority of ICP-
based caching systems use pinging rather than hash routing.

Hash Routing Protocols

The hash routing (HR) schemes are deterministic hash-based
approaches for mapping an object to a unigue sibling cache
[4-8, 11]. Hashing distributes the URL space among the sibling
caches, creating a single logical cache spread over many caches.

The simple iR scheme works as follows. Let 4(-) be a hash
function which maps URLS to a hash space H. The hash space
could be, for example, the set of all 32-bit binary numbers.
The same hash function &(-) is stored in all the clients. The
hash space, H, is partitioned into N sets, where N is the num-
ber of siblings. When a client desires an object, the client cal-
culates h(u), where u is the object’s URL. The value of the
hash function, h(u), will belong to one of the sets in the parti-
tion. If 4(u) belongs to the nth set, the client sends an HTTP
request message to the nth sibling cache. The sibling cache
then examines its own cache to see if it has the object. If it
does, it returns the object to the client within an HTTP
response message. If it does not, the sibling cache sends an
HTTP request message to the originating Web server in the
Internet. When the sibling cache receives the object from the
originating Web server, it places a copy of the object in its
own cache and forwards the object to the client as part of an
HTTP response message.

One important property of HR schemes is that the collec-
tion of sibling caches never contains more than one copy of an
object: objects are not replicated across the sibling caches as
with ICP. (This property may be briefly violated if a new
shared cache is added to the collection, as discussed later.)
Thus, hash routing creates a single logical cache spread across
the collection of sibling caches; the effective storage capacity

of the collection of siblings is the sum of the storage capaci-
ties of the individual caches. Another important property, a
key component of CARP, is that all communication among
clients, caches, and originating Web servers is over HTTP; no
additional application-layer protocol is needed [6].

We refer to the implementation just described as HR-
client because the hashing of the URLs is done by the clients.
This approach requires modification of existing Web client
software, and therefore may be difficult to implement because
of legacy Web clients that do not hash. A variation on the
simple HR scheme, which we call HR-cache, is to instead
implement the hashing function in the shared caches {5, 61.
This approach would allow existing Web browsers to fully
participate in the protocol without modification. In HR-
cache, each Web client is configured to connect to a particu-
lar shared cache, as with ICP. When a client requests an
object, the HTTP request is sent to its configured shared
cache. The configured shared cache hashes the object’s URL
and determines which unique sibling cache might have the
object; the configured cache then requests the object from
the appropriate sibling cache (which might be itself). If the
sibling cache does not have the object, the sibling cache
fetches the object from the originating Web server, places a
copy in its cache, and forwards the object to the configured
cache. Once the configured cache receives the object from
the sibling cache, it forwards the object to the client, but does
not place a copy of the object in its own cache (unless the
configured cache is the appropriate sibling cache). Thus, with
HR-cache, the configured cache initiates the HR algorithm
on behalf of the requesting client; in the worst case, the
object is sent from the originating server, to a sibling cache,
to the configured cache, and finally to the client.

A minor variation of HR-cache uses the Domain Name
Service (DNS) to dynamically assign a cache to a client [5,
6]. In this variation the client is not statically configured to
a shared cache. When a client wants to send an HTTP
request message to the sibling caches, it first queries DNS
for an IP address. As the queries for IP addresses arrive
from the clients to the DNS server, the DNS server rotates
the IP addresses of the sibling caches. Therefore, each time
a client requests an object, one of the caches is chosen
effectively at random to initiate the HR-cache protocol on
behalf of the client. This variation helps better distribute
the load among the sibling caches. There is an analogous
variation for ICF.

1n our definition of hash routing we stated that the hash
function takes into account the entire URL object. This
implies that objects (HTML text, images, applets, etc.) within
the same page will likely be scattered over the N cache
servers. The scattering helps to spread the load of frequently
requested pages over the N caches. An alternative to hashing
the entire URL is to onty hash the hostname portion of the
URL, in which case all the objects in a particular page are
routed to the same sibling cache. In fact, with hostname hash-
ing all the objects of an entire site are routed to the same sib-
ling cache. The sibling caches that house the most popular
sites could have a relatively high request load. Moreover,
because HTTP/1.0 establishes a separate Transmission Con-
trol Protocol (TCP) connection for cach object, hostname
hashing does not generate fewer TCP connections than URL
hashing. Therefore, for HTTP/1.0, we feel that URL hashing
is superior to hostname hashing. On the other hand,
HTTP/1.1, with its persistent connections, may give a reduced
number of TCP connections for hostname hashing. Although
beyond the scope of this article, it would be interesting to
study the benefits and drawbacks of hostname routing within
the context of persistent connections.

Performance Comparison of ICP and Hash
Routing Schemes

ln this section we compare the performance of the HR proto-
cols with that of ICP. We shall perform this comparison in
the context of the common single-tier hierarchy of Fig. 1. The
reader should be careful not to extrapolate the conclusions for
the single-tier hierarchy to more complex topologies; see the
sixth section. '

We consider two performance metrics: overhead at a
caching server and average latency to satisfy a client request for
an object. Throughout this section we shall make the following
assumptions:

* The ICP caches are perfectly mirrored. This is a reasonable
assumption for steady-state operation [4, theorem 6], and it
simplifies the analysis. We will also briefly consider in this
section the case of the sibling caches being only partially
mirrored. -

» All IP addresses exist in the DNS caches of the shared
caches and Web clients (i.e., we ignore DNS lookups).

» Local client Web caching is ignored.

The last two assumptions can be relaxed at the expense of a

more complicated and less insightful analysis.

For ICP, denote P-p for the steady-state probability that a
requested object is present in the collection of sibling caches;
denote Pyg for the analogous probability for the hash routing
schemes. The hit probabilities Prcp and Py depend on a myr-
iad of factors, including the storage capacities of the caches,
user request patterns, and object replacement strategies for
full caches. As mentioned earlier, for large storage capacities
hit probabilities of 50 percent are not uncommen [1]. Because
hash routing effectively aggregates the individual caches, we
can safely assume that Pyg > Pop. Let N denote the number
of sibling caches.

Let H denote the amount of effort required by a cache to
process an HTTP message; for simplicity we assume that the
effort to process any HTTP request or response message is .
The quantity H also includes the effort to establish and main-
tain the TCP connection associated with an HTTP response-
request pair. With persistent HTTP (e.g., HTTF/1.1 {121},
TCP connections to each of the N caches could be kept per-
manently open, reducing the cache server effort H.

Traffic Processing at a Shared Cache

In this subsection we determine the expected load placed on
a cache server by a single client HTTP request. First, consid-
er HR-client. Mark one of the caches, which we refer to as
the marked cache. We now calculate the marked cache’s
expected effort for a client HTTP request. With probability
1/N, the hash of the URL directs the request to the marked
cache. If the request is not directed to the marked cache, the
expected effort is zero. Throughout the remainder of this
paragraph, suppose that the request is directed to the marked
cache. With probability Pyg, the object is present in the
cache, in which case the marked cache must process one
HTTP request from the client and one HTTP response to the
client, giving a total effort of 2H. The probability is 1 - Pyg
the object is not in the cache, the marked cache must fetch
the object from the originating server; in this case the marked
cache must process one HTTP request from the client, one
HTTP request to the originating server, one HTTP response
from the originating server, and one HTTP response to the
client, giving a total effort of 4H. Therefore, the expected
effort of HR-client is

Enir-cliene = UN[Pyg - 2H + (1 - Pyg) - 4H]

= HIN[4 - 2Pyg] W

40

IEEE Network * November/December 1997

e

Having analyzed HR-client, we now proceed to analyze ICP
and HR-cache. To this end we define the overhead ratio of
each of the protocols as

Ex
EHR—cIiem

where Ey is the expected overhead of the protocol (ICP or
HR-cache). We shall see that HR-client requires the least
amount of cache server effort. The overhead ratio compares
the effort of scheme X to that of HR-client. For example, if
the overhead ratio for scheme X is 3, scheme X requires three
umes the effort of HR-client.

Now consider ICP. Because all the siblings are assumed to
be perfectly mirrored for ICP, Pycp is the probabitity that any
specific cache has the object. We calculate the marked cache’s
expected effort associated with an arbitrary client HTTP
request. Let [denote the effort required to process an ICP
message (query, hit or miss). The probability is 1/N that the
client is configured to the marked cache; the probability is (M
— 1)/N that the request arrives at one of the other sibling
caches. Assuming that the client is configured to the marked
cache, with probability P;cp the marked cache will have the
requested object, in which case the marked cache processes
one HTTP request from the client and one HTTP response to
the client, giving an effort of 2F; with probability 1 - Pjcp, in
addition to processing a request from the client and response
to the client, the marked cache has to send and receive N — 1
ICP messages, and retrieve the object from the originating
server using HTTP, giving an effort of 4/f + 2I(N - 1). Now
assuming that the client is configured to one of the other sib-
ling caches, the marked cache will, with probability 1 - Pycp,
receive and send an ICP message; and with probability P;cp
the marked cache will not get involved in the transaction.
Therefore, the expected effort of the ICP protocol is

1
EIC.P Z-E[})[CP '2H+(1_P[CP)(4H+21(N—]))]

OHX=

1

+¥(1 ~ Prep)2l)

N-1
N

H
=ﬁ[4—2p,c,,]+[)(I-P,Cp)cu

USil’]g PHR > PfCP= we obtain

{1 Pyg)
OHep > 1+ 2(N - 1)———22 3
icr {)H(z—PHR) ()

We see that the overhead ratio for ICP grows linearly and
without bound as the number of caches increases. Thus, ICP
pinging scales poorly as the number of siblings increases.

Finally, we consider HR-cache. The analysis of this proto-
col is a bit more complicated. The probability is 1/N that the
client is configured to the marked cache; it is (N - 1)/N that
the client is configured to one of the other sibling caches. Let
A denote the expected effort given that the client is config-
ured to the marked cache; let B denote the expected effort
given that the client is configured to one of the other sibling
caches. Focusing on the calculation of A4, with probability 1/N
the request is for an object mapped to the marked cache; in
this case the effort is 254 if the marked cache has the object,
and 44 if the marked cache does not have the object and
fetches it from the originating server. With probability (N -
1)/N the request is for an object mapped to one of the other
sibling caches; in this case, the effort of the marked cache is
4H. Thus,

N-1

1
A= —{Pup - 2H+(1-Pyp) 4H1+ X" aH
w (= Fug) 4HI+ =0

—ay - 2t

Now, focusing on the calculation of B, the probability is /N
the request is for an object mapped to the marked cache; it is
Pyg that the marked cache has the object and returns it
directly to the requesting cache; it is 1 — Pyg that the marked
cache docs not have the object and requests it from the origi-
nating server. Thus,

B:%[PHR 2H 4+ (1= Pyp)-4H]

1
= -A—/(tlH —2PypH)

The expected effort for HR-cache is therefore
1 N-1

ElR-cache = FA + T B

H 4H
=S u-2p)+ 2 a—yn
N(HR) N({N)

The overhead ratio for HR-cache is
21-1/N)

OHHR—Cacﬁre =1+ 2_ PHR (4)

In the worst case (N = 1 and Pyp = 1) the overhead ratio
for HR-cache is 3. In the more likely case of large N and Pyp
= 0.5, the overhead ratio is 2.33. Therefore, we can expect the
cache server effort of HR-cache to be two to three times
greater than the effort for HR-client.

In conclusion, compared to HR-client, HR-cache places lit-
tle additional effort on the cache servers. In contrast, ICP can
introduce significant additional processing overhead, particu-
larly when the number of sibling caches is large. With ICP, for
each requested object that is not present in the sibling caches,
each cache will have to process at least two ICP messages, a
property which is true even if the sibling caches are not per-
fectly mirrored. Therefore, with respect to cache server load,
ICP performs poorly respect to hash routing, even if the
caches are far from being perfectly mirrored.

Average lalency

We now determine the average latency to satisfy a client
request for the ICP and hash-routing schemes. For this laten-
¢y analysis we make the fotlowing additional assumption:
When an object is requested by a shared cache, the object
must be fully received before it can be forwarded (1o either a
client or another shared cache). The validity of this assump-
tion depends on the specific implementation of shared
caching; the analysis can be modified for shared caching sys-
tems which forward packets while the object is being received.

We now define several expected round-trip delays between
host pairs. Let delaycs be the expected delay to request and
transfer an object from a sibling cache to a client assuming
that the requested object is in the sibling cache. The clock for
this delay begins when the client requests the object and ends
when the client receives the entire object; the delay includes
TCP connection establishment, propagation delays, transmis-
sion delays, server processing delays, queuing delays, and TCP
slow-start delays. Similarly, define delaygs and delaygg to be
the expected delay to request and transfer an object between
two sibling caches and between the sibling cache and originat-
ing server, respectively. The delays delaygg and delayg also
include all the components named above. Finally, let delayping
be the expected pinging delay in ICP. The clock for this delay
begins when a sibling cache issues an ICP query until when
the sibling cache receives the first ICP hit message; if none of
the siblings has the object, this delay is until all the ICP miss

messages have been received or the ICP timeout (whose
default value is 2 s), whichever comes first. Because ICP runs
over UDP, delaypin, does not include a delay component for
TCP connection establishment; also, the processing and trans-
mission components of this delay are relatively small because
ICP messages are simple and short.

Now consider the average latency for ICP. A client requests
an object from its configured shared cache, and this shared
cache will eventually deliver the object to the client. This will
account for delaycs. The probability that the shared cache will
not have the object is 1 - Pycp. In this case, the shared cache
will send ICP query messages to all the sibling caches and will
receive ICP miss messages from all the siblings (since the sib-
lings are perfectly mirrored in steady state); the shared cache
will then request the object from the originating server. Thus,
the average latency is

Ticp = delaycs + (1 - Prep){delayp,g + delay_;o}.

Similarly, it can be shown that the average latency for HR-
client is

ThR-cliens = Gelaycs + (1 - Pyg)delayso,
and the average latency for HR-cache is

THr cache = delaycs + (1 - UN)delaygs + (1 - Pyg)delayso.

Let us now compare the average latencies for ICP, HR-
client, and HR-cache. Typically, the sibling caches are in close
geographic proximity and connected by high-speed links;
therefore, we may safely assume delaysp >> delayping and
delaygy >> delaygs. Under these conditions, the average
latency for ICP is

Ticp = delayes + (1 - Picp)delaysos
and the average latency for the two HR schemes is

Tug = delast + (1 - PHR)delay_gO.

The ratio of these two latencies is
T[Cp - delay(_—s +(1 - PICP)dclaysa (5)
Tyr delaycg +(1— Pygldelaygy

Consider Eq. 5 for the two most common scenarios:

= The clients are connected to the network of sibling caches
through high-speed LAN links, as is typically the case in a
LAN office environment. For this case we typically have
delaysg >> delaycs.

» The clients are connected to the network of sibling caches
through low-speed modem links, as is often the case for res-
idential access to an ISP. In this case, the client-sibling
delays may be comparable or even substantially greater
than the sibling-origin delays.

If the client-sibling delays are larger than the sibling-origin

delays, the ratio of the latencies will be approximately 1; that

is, the latency for ICP will be roughly the same as the latency
for hash routing. If, on the other hand, we are operating in
the first scenario (which is very common), then

Tice _1-Ficr

Tyg 1= Pug
Thus, in the first scenario, if the miss rate of ICP is twice that of
HR, the average latency of ICP will be twice that of HR.

There is some empirical evidence that shows that increasing
the cache size beyond a critical amount does not significantly
increase the hit probability {13]. This implies that if each ICP
cache size is at least as large as this critical value, the hit rates
for ICP and HR will be approximately the same. However, it
may be costly to provide the requisite storage capacity to each
sibling. For example, it may be desirable to use RAM (as

opposed to disk) for Web caching in order to minimize
retrieval latencies out of a cache server. Also, as large audio
and video objects become more prevalent in the Web, it will
become more difficult to store all the most commonly refer-
enced objects in a single ICP cache. For these reasons, as the
Web evolves we expect hash routing, with its factor of N
increase in effective storage capacity, to have significantly
higher hit probabilities, implying significantly lower average
latency for the common first scenario.

We also mention that we have tacitly assumed the delay
between a cache and the originating server, delaysg, to be
independent of the hit probability. In actuality, delayse may
decrease as the hit probability increases, because the links
between the caches and the originating servers become less
congested. This phenomenon further increases the gap in
latency performance between the HR schemes and ICP.

Robust Hash Routing

We have argued that simple HR schemes have significant
performance advantages over ICP. Nevertheless, they
have a critical flaw: whenever a cache comes up or goes down,
the fraction of objects in incorrect caches can be large [4, 5].
Thaler and Ravishankar [4] refer to this fraction as the disrup-
tion coefficient. For simple modulo-N hash functions, they
show that the disruption coefficient is close to 1, In the simple
HR scheme described in this article, based on a partitioned
hash space, the disruption coefficient is 0.5, which is less than
1 but still too large.

To see that the disruption coefficient is 0.5, recall that the
hash space is partitioned into N sets; assume that these sets
are contiguous and of equal size. Without loss of generality,
assume that the hash space is the interval [0, 1]. Now sup-
pose we add a cache to the collection, increasing the number
of caches to N + 1. Then it is easily seen that only the fol-
lowing intervals in the hash space will agree with the updat-
ed mappings:

e Farest e R et
"Nei[Iw ' N«1JIN' N1l N TN+L

Adding the lengths of these intervals gives

N-1 no; N

N~-i _ 1 Zn
SON(N+1) N(N+D

n=1

Thus, after adding a new cache, only 50 percent of the
cached objects are in the correct caches. A similar calculation
shows that when a cache goes down, again, only 50 percent of
the cached objects are in the correct caches. Therefere, with
this simple scheme the hit probability will be cut in half imme-
diately after a disruption.

To overcome this unfortunate reduction in hit probability
after a disruption, robust hashing schemes have recently been
proposed [4, 5]. With robust hashing, for each sibling cache,
the URL and sibling cache name are used together to generate
a hash value or score; the object is then mapped to the sibling
cache with the highest score. More specifically, let A(u, c) be a
hash function which maps a URL u and a cache-server name
¢ to an ordered hash space. For a given u, robust hashing cal-
culates the scores A(x, ¢),...,2{(u, cy) for each of N sibling
caches; it then routes u to sibling cache n which has the high-
est h(u, ¢,) value. Thus, for robust HR-client, for a given
URL u the client calculates the N scores and requests the
object from the cache with the highest score. For HR-cache,
the cache finds the highest score on the client’s behalf, The

42

IEEE Network * November/December 1997

- . T T N R

cache-server name can be its hostname, its [P address, or
something informal, such as MarketingCache.

With simple hash routing, a minor disruption causes a large
fraction of the cached objects to reside in incorrect caches,
With robust hashing, the large majority of objects remain resi-
dent in the correct caches after a disruption. If a cache fails,
all the cached objects remain in their correct caches; if the
number of caches is increased from N - 1 to N, only the frac-
tion 1/N of the cached objects reside in an incorrect cache.
Thus, robust hashing gracefully adapts to disruptions in the
number of sibling caches.

Thaler and Ravishankar [4] examine robust hashing in
great detail for homogeneous caches, and discuss several spe-
cific hash functions. Smith and Valloppillil [5] also provide a
robust hashing function, which is implemented in CARP [7).

Heferogeneous Caches

Up to this point we have tacitly assumed that ali of the
caches have the same processing power and storage capac-
ity. Because an organization will likely want to add additional
caches to satisfy increasing demand, and because processing
and storage are improving at a phenomenal pace, the assump-
tion of homogeneous caches is unrealistic. We expect most
coliections of caches to be heterogeneous, and the processing
power and storage capacity to vary greatly among the caches.

It is therefore important to extend the hashing schemes to
the case of heterogeneous caches, with which it is no longer
desirable to map the fraction 1/N¥ of URLs to each cache.
Instead, caches with more processing power and storage
capacity should get a larger fraction of the URLs.

Let py, ..., py be given arbitrary target probabilities for
cach cache. (Each p,, is positive, and p; + ... + py = 1)Ifa
cache has target probability p,,, we desire the fraction Prof
URLs to be mapped to it. In this section we address the ques-
tion, how do we modify the hashing schemes so that the
URLs are mapped to the various caches with the desired tar-
get probabilities? For the simple hashing scheme, whereby the
hash space is partitioned into N sets, this problem has a sim-
ple solution: we simply partition the hash space so that the
size of the nth set is the fraction p, of the size of the entire
hash space. However, the solution to this problem is less
straightforward for the robust hashing scheme. Recall that the
robust hashing scheme is preferable to the simple scheme,
since it gracefully adjusts to disruptions such as the addition
or deletion of caches.

In the robust hashing scheme, for a given URL u we calcu-
late a hash value 4, = h(u, ¢,) for each of N caches. We then
map the URL to the cache that has the highest 4,. This
scheme will map /N of the URLs to each cache. To deal with
target probabilitics, we introduce multipliers xy, ..., xy and
multiply each 4, with the respective x,; we then map the URL
to the cache that has the largest Z,, = x,h, value. If the multi-
pliers are different, the fractions of URLs routed to the
caches will no longer all be the same.

But how do we choose the multipliers so that the fraction
of URLs routed to cache nisp, forn =1, ..., N? It is easily
seen that simply setting x, = p,, n = 1, ..., N does not give
the desired weights (and can be grossly incorrect). The follow-
ing provides a simple recursive algorithm to determine the
weights.

Theorem | — Let py, ..., py be given target probabilities.
Reorder the caches so that p; < -+~ € py. Let
xp = (Np))N

and let x;, ..., Xy be calculated recursively as follows:

1
N-n+l

= (N_n+1)(pn_pn—[)+xN—n+l

n n—1 n-I{
7 H,‘:l X

Then the robust hash algorithm with multipliers x;,... xy will
route the fraction p, of URLs to the nth cache forn = 1, ..., N.

Proof — Let xy, ..., xy be an arbitrary set of nonnegative mul-
tipliers satisfying x; € x; --- € xy. Let ky, ..., iy be the hash
values associated with each of the N caches. Because the A,s
are outputs of a hash function, they can be taken to be inde-
pendent, uniformly distributed random variables. Without loss
of generality, we take each A, to be uniformly distributed over
(0, 1]. Let Z, = x,h, be the nth multiplied hash value. Note
that the Z,s are independent and that Z, is uniformly dis-
tributed over [0, x,]. Let Ziy=max(Zy,., Lyt Zy 4 1aeves
Zpy). Let g, be the probability that n has the largest multiplied
hash value, that is, g, = P(Z(,) < Z,). Conditioning on Z,, =
X, we obtain

gn =Py <Z,)

1 ¢x,]
:Z jo P(Z(py < x)dx

- li [2 TT Pz, <)

I, Pzi<x , (6)

-1 [N
30 P(Z,<x)

"lNPz< dx
Io ;:'];[1 (Zj < x)

|4
X

where xp = 0. We must now get an explicit expression for the
product in the above expression,

1l
M=

f[P(z,- < x)dx,
i=]

R |-

Jj=1

Forx ;< x< x,
toi<j-1
P(Z;Sx)=4 x

X

—~.

2j
Thus, for X 1€ x< x,

N -1 N
[1PZ; s x)= {]‘[P(z,- < x)}l:HP(Z, < x)]
i=j

i=l i=1

. M
_l_N[x R xN—j+l
=[l-==5—
i=j%i Hi:jxf

Inserting Eq. 7 into Eq. 6 gives
Ry xS
=2 [——dx

; N
=

_$! 1

(NI Vv

N - -1
J'=1H;‘=jxi N-j+1! ’
] s
= X - .
it =l N-j+l1

We have one degree of freedom. Set

=LY N N-j+l)
(,-=|xa)(xj *j-1

n
= 8
@ El N—j+1 ®
From Eqg. 8 we have
H?_:llxi (x’fl\f—n+] _x'.;V_—lnH)
Qn=qp-1 7+ () : ©)

N—n+1l

The desired result follows by setting g, = p,,n =1, ..., N,
and solving for x,, in Eq. 9.

The algorithm in the theorem requires negligible computa-
tional effort and produces the correct multipliers. As a simple
example, suppose that N =3 andp; = p, = 1/8l and p3 =
79/81; then the algorithm gives xy = xp = 1/3 and x3 = 9.
Once we calculate the multipliers, we can multiply them all by
the same positive constant and use these scaled multipliers
instead (if we so desire). However, we must start with x; as
defined in Theorem 1 if we are to use the recursion in Theo-
rem 1; a different value of x; will provide incorrect results.

The robust hash function with multipliers x;, ..., Xy in the
above theorem is part of CARP [7]. The multipliers can be
used for other HR applications, such as rendezvous points in
multicast servers [4].

Multitier Hierarchies

e have presented an HR scheme which is robust in the

face of cache failures, tunable for heterogeneous caches,
and can have significant performance advantages over ICP for
a single-tier hierarchy of sibling caches. But what about more
complex multi-tier hierarchies?

Consider the following two-tier hierarchy. In a city and its
surrounding suburbs there are several universities, research
institutions, and corporate campuses; each of these organiza-
tions has its own collection of sibling caches; a common
regional ISP provides Internet access to all these organiza-
tions; the regional ISP has its own collection of sibling caches;
and the sibling caches in the regional ISP are parents to the
collections of sibling caches in the organizations.

ICP has been designed to accommodate multi-tier hierar-
chies such as the one just described, but hash routing can
accommodate multi-tier hierarchies as well. For simplicity,
consider HR-client, and suppose that hash routing is per-
formed at both tiers in the hierarchy. Specifically, if a queried
organization cache does not have a requested object, it hashes
the URL and queries one of the ISP caches: the hash result at
the organizational cache determines which ISP cache is
queried. Thus, with hash routing, there is no replication
among an organization’s siblings, and there is no replication
among the 1SP’s siblings. There is, however, replication across
organizations as well as between each organization and the
ISP. With ICP, there is also additional replication within the
collections of sibling caches at both the organization and ISP
tiers. If, from each given organization cache, the response
times to ajl the ISP caches is roughly equal, hash routing
should still give superior performance with respect to the two
performance metrics considered in this article. On the other
hand, if the response times vary significantly, with the closest
ISP cache giving the lowest response time, then ICP, which
would parent an organization’s caches to the nearest ISP
cache, could have a lower average latency.

In summary, both ICP and hash routing can be adapted to

a hierarchy of caches. Neither ICP nor hash routing has supe-
rior latency performance for all topologies. When placing
caches in a complex topology, both the hierarchical organiza-
tion of the caches and the caching protocol should be careful-
ly considered.

Summary

/n this article we have used simple but realistic analytical mod-
els to compare the performance of ICP and HR schemes for a
single-tier hierarchy of sibling caches, We have found that ICP
cache servers typically process many more messages than hash
routing servers. We have also shown that, if a larger aggregate
cache translates into significantly higher hit probabilities, hash
routing gives clients significantly lower delays than ICP. As
the Web evolves, we expect large caches to correlate with high
hit rates due to increasing numbers of popular audio and
video objects that will be stored on the sibling caches.

We expect most collections of shared caches to consist of
servers with vastly different processing and storage capabili-
ties. In this article we have also extended robust hash routing
to the important case of heterogeneous caches. This extension
allows Web traffic to be distributed in a precise and equitable
manner among the Web caches. An interesting problem for
further research is to dynamically adapt the target probabili-
ties, pi, ..., py, in order to optimize a performance measure
such as overall response time.

Acknowledgments

I would like to thank Vinod Valloppillil of Microsoft Cor-
poration for having discussed hash routing at length with

me. I would also like to acknowledge discussions with Mike-

Sullivan of Lockheed-Martin in the early stages of this
research.

References

[1] Yeoger and McGrath, Web Server Technology, San Francisco: Morgan Kauf-
man, 1996,

[2] D. Wessels and K. ClaHy, “Internet Cache Protocol Version 2,” Internet Draft,
http:/ / ds.intemic.net/ internet-drafts/draft-wessels-icp-v2-00.ixt.

[3] A. Chankhunthod et af., *A Hierarchical Internet Object Cache,” Proc. 1996
Usenix Tech. Conf.

[4]} D. G. Thaler and C. V. Ravishankar, Using Name-Based Mappings te
Increase Hit,” to appear, IEEE/ACM Trons. Networking, 1997

[5] B. Smith and V. Vallappillil, personal communication, Feb.~June, 1997,

[4] V. Valloppillil and J. Cohen "Hierarchical HTTP Routing Protocol,” Internet
Draft, hitp:/ /www.nlonr.net/Cache/ICP/ draft-vinod-icp-traffic-dist-00.txt.

[71 V. Valloppillit and K. W. Ross, “Cache Array Routing Protocol v1.0,” internat
Draﬂ, hlfp://cls] .inl’ernic.nef/iniernet-drnﬁs}t’:lraFl-vinod-carp—v'I -Q2 xt.

[8] Super Proxy Script: How to Make Distributed Proxy Servers by URL Hashing,”
White Paper, http:/ /naragw.sharp.co.jp/sps, Aug. 1996.

{9] E. Sullivan, *CARP Divvies Up the Duties,” PCWeek Online, Sept. 1997;
hh‘p://www.zdnei.com/pcweef/reviews/O?l 5/1 5carp.himi.

{10} J-C. Bolot and P. Hoschka, “Performance Engineering of the World Wide
Web: Application to Dimensioning and Cucghe Design,” Proc. 5th Web
Conf,, Paris, France, 1994,

[11]) P. Banzig, Pers. Commun., Sept. 1997.

[12] R. Fielding et al., “Hyperiext Transfer Protocol - HTTP/1.1, RFC 2048
hitp:/ /ds.internic.net/rfc/rfc2068.txt, Jan. 1997.

[13] D. Morwood and B. Duska, “Squid Proxy Analysis,” http://www.cs.ube.ca/
spider/marwood/Prajects/SPA/Report/Report.himl, April, 1997,

Biography

KEITH W, ROSS {ross@seas.upenn.edu/~ross) is a professor in the Department of
Syslems Engineering at the University of Pennsylvania. As of Januory 1998 he
will be a professor in the Multimedia Department at Eurecom, Sophia Antipolis,
France. He received his B.S. from Tufts University [1979), Eis M.S. from
Columbia Universir{. {19811, and his Ph.D. from the University of Michigan
{1985}. He joined the University of Pennsylvanio in 1985. He was program
chair of the 1995 INFORMS Telecommunications Conference. He is the recipient
of numerous grants from NSF and ATAT, and has consulted for major telecom-
munication companies. His current research interests include muhimecjiu network-
ing, video on demand, Internet and Web protocols, ralfic modeling for
broadband networks, and asynchronous online leaming.

44

IEEE Network * November/December 1997

