
On the Impact of Virtualization
on the I/O Performance of Analytic Workloads

Son-Hai Ha
Orange Labs/EURECOM
sonhai.ha@orange.com

Daniele Venzano
EURECOM

daniele.venzano@eurecom.fr

Patrick Brown
Orange Labs

patrick.brown@orange.com

Pietro Michiardi
EURECOM

pietro.michiardi@eurecom.fr

Abstract—In this work we study the I/O performance of long,
sequential workloads that mimic those of Big Data applications,
to understand the implications of system virtualization on data-
intensive frameworks such as Apache Hadoop and Spark, which
are frequently run in clusters of Virtual Machines (VMs). We do
so through an experimental measurement campaign that collects
low-level traces and metrics, to show the role played by important
parameters such as the I/O schedulers and caching mechanisms
involved in the I/O path, and the VM configuration in terms
of dedicated resources. Our findings are important, especially
for determining appropriate deployment strategies for today’s
emerging Analytics Services hosted both on public and private
clouds.

Index Terms—Virtualization, I/O performance, Analytic Work-
loads, Big Data, Cloud Computing

I. INTRODUCTION

As modern large-scale analytics applications – that we call
Big Data workloads – have grown mainstream in the last years,
more and more companies [1]–[3] are offering Analytics-as-
a-Service to their users. Such services offload users from the
burdens of setting up and configuring clusters of computers,
and installing and tuning the parallel processing frameworks
that execute their data analysis. Today, most of such analytics
services are hosted by cloud computing providers, such as
Amazon Web Services, and run their frameworks – what we
call Big Data applications – in clusters of VMs.

This is in sharp contrast with the common best practice of
running such systems on bare-metal clusters, for performance
reasons. Indeed, “data intensive” scalable computing systems
such as Apache Hadoop [4] and Spark [5], have been originally
designed for I/O bound workloads, where both network and
disk performance are crucial for fast executions [6]–[8].

It is thus natural to investigate what the potential perfor-
mance loss is – if any – in executing applications and work-
loads in virtualized environments. However, understanding the
low-level implications of system virtualization is currently
missing in the literature, that has focused predominantly on
application-level views of system performance [9]–[12].

In this work we focus on I/O performance of the disk
subsystem, when I/O bound Big Data applications run in VMs.
We do so using a thorough measurement methodology: we
collect low-level traces from measurements and perform our
experiments on a single physical server, which runs several
“flavors” of VM configurations. In this work we emulate
the I/O pressure produced by Big Data applications to avoid

overheads and gain control on low-level operations. We study
the impacts on I/O performance of the disk subsystem of
parameters such as the concurrency level of the I/O request
pattern, the kernel modules that implement I/O scheduling,
and the kernel-level caching mechanisms that are present on
the I/O path of a disk request.

We use as a baseline the performance of a bare-metal
system supporting the same kind of workloads ingested by the
VMs, which is characterized by a sequential access pattern. In
addition, we vary also the access mechanisms used to perform
I/O requests, to understand the performance implications of the
current trend in modern Big Data applications of shifting from
synchronous to asynchronous mechanisms.

Our results allow us to draw some important observations
on i) the role played by the various OS-level caching layers,
ii) the importance of the host-level I/O scheduler and iii) the
lack of a model to optimize VM configuration, that is to
determine automatically their “flavor”, to achieve the best I/O
performance, given a physical system configuration.

The remainder of the paper is organized as follows. In
Section II, we review the related work on the topic. In section
III, we provide some background information required to
interpret our results. In Section IV we describe the details
of our measurement methodology and the system under mea-
surement. Finally, we present our results in section V and draw
the conclusion in Section VI.

II. RELATED WORK

The literature is rich of studies on the performance and
optimization of Big Data applications [5], [8], [13]–[21]. How-
ever, most of such works focus on bare-metal deployments
of applications such as Apache Hadoop and Spark. Only
lately, some works [9], [11], [12] tackled the problem of
understanding the performance of such large-scale systems
when deployed in an environment using virtualization.

The rapid evolution and adoption of virtualization in both
academia and industry contribute to the optimization of virtual
machine execution [22]–[24]. There have been many signifi-
cant works around optimizing processing [25]–[28], memory
[29]–[31], and I/O operation [7], [32]–[35]. Although much of
the prior works focus on improving network I/O performance
[36]–[39], relatively little work has been done for disk I/O
[40]. Studying the storage subsystem is important, as it is



well known that disk I/O can be a severe bottleneck for data
intensive applications [6], [7].

In [41], Boutcher et al., demonstrated that choosing an
appropriate I/O scheduling algorithm at the guest OS level is
important to achieve performance gains, while scheduling I/O
at the host has no measurable advantage. In contrast, since
we focus on sequential rather than random I/O workloads,
we observe a fair difference in performance when switching
between I/O schedulers at the host and we explain this
behavior later in the paper.

In [9], the authors conduct an experimental measure-
ment campaign on three different hypervisors, with standard
MapReduce benchmarks workloads. They found that differ-
ences in the workload type (CPU or I/O intensive), work-
load size and VM placement yield significant performance
differences among the hypervisors. In particular, they observed
significant performance variations for I/O-bound benchmarks.
Our focus in this work is on a single hypervisor, and dedicated
to disk I/O performance only: our metrics use lower level
information to compute performance, and our parameters are
system instead of application level ones. This allows us to
establish an “upper bound”, that the system underlying the
application can deliver.

Prior studies showed that data locality affects the throughput
of Hadoop jobs significantly [14]. Thanks to the flexibility
of virtual infrastructure, the authors in [11] introduced a
reconfiguration technique to “hot-adjust” VM’s size during
runtime, allowing more tasks to be scheduled on the node that
has local data. This technique improves throughput of Hadoop
jobs up to 41% on the cluster with constrained network
connection. The study showed that data locality is important,
and improving the I/O throughput for VMs is of paramount
importance. Our work complements this study with a deeper
understanding on what are the low level parameters affecting
most I/O performance of virtualized systems.

Conley et al., studied the performance of Map-Reduce
applications with many different types of VMs on Amazon
public cloud using a cost model [12]. They focused on I/O
bound workloads, and showed that network attached storage
backed by a very high-speed network fabric and flash storage
devices can deliver performance levels comparable to that of
a traditional local storage deployment. Now, local (ephemeral)
flash storage can provide far higher levels of I/O performance
but it is not (yet) used as popularly as magnetic hard drive.
One avenue for our future work is to study I/O performance
with modern storage drives.

III. BACKGROUND

This section introduces fundamental concepts required to
understand our work and to interpret our experimental results.

A. The path of a VM’s I/O request

When a VM is created, QEMU (the userspace process that
performs the device emulation to serve the guest) forks a
vCPU thread for each virtual CPU and an ”iothread” thread
for serving I/O requests. These dedicated vCPU threads use

Fig. 1: The path of the I/O request

the kvm.ko module in the kernel to execute guest code.
Application and guest kernel work similarly to bare metal.
Host kernel treats guest I/O like any user space application.
QEMU presents emulated storage interfaces to the guest.

We next describe how a guest I/O request is processed
between the guest and the host. The guest issues I/O request
to the virtual device; this device then fills in the request
descriptors which are then written to the buffer in ”vring”.
QEMU issues I/O request from ”vring” to the block device
on behalf of the guest like other applications. Later, when
the requested data arrives at QEMU buffer, QEMU fills in
the request footer and injects completion interrupt to the
guest kernel. Guest receives the interrupt and executes handler.
Application is then notified to read data from the guest buffer.

Inside the guest or the host, applications submit I/O requests
using kernel system calls, that convert I/O requests into a
data structure called block IO. They are transferred to either
“libaio” for asynchronous IOs or directly to the block layer
for synchronous IOs. Once an IO request is submitted, the
corresponding block IO is buffered in the staging area, which
is implemented as a request queue. The block layer then
performs IO scheduling and adjusts accounting information
(as described in Section III-B) before sending IO requests to
the appropriate storage device driver. When the IO requests
complete at the device driver, this driver calls up to the
block layer generic completion function. The block layer then
calls an IO completion function in the “libaio” library, or
returns from the synchronous read or write system call, which
provides the IO completion signal to the application.

B. Linux IO Schedulers

At the block layer, IO requests are scheduled to access the
block device. Next, we describe the IO schedulers that we
consider in our experiments.



CFQ scheduler. The CFQ I/O scheduler places synchronous
requests submitted by processes into a number of per-process
queues and then allocates time slices for each queue to
access the disk. The length of time slices depends on the
scheduling priority of the process. This helps dividing the
available I/O bandwidth among the processes in fine-grained
control. The scheduler maintains at most 64 per-process
queues. Asynchronous requests for all processes are batched
together in fewer queues, one per priority. After the CFQ I/O
scheduler moves requests to the dispatch queue, it sorts the
requests to minimize disk seeks and then services the requests
accordingly.
Deadline scheduler. The Deadline I/O scheduler maintains
the deadline queues by the expiration times, or deadlines, of
the I/O requests and the sorted queues by the positions of the
requests on the disks, or sector numbers. Each set of queues,
deadline queues and sorted queues, includes read queue and
write queue. Because processes often block on read operations,
the Deadline I/O scheduler prioritizes read requests over write
requests and assigns read requests shorter expiration times than
write requests. Based on prioritization and expiration times,
this scheduler determines which request from which queue to
dispatch. It also prioritizes deadline queues over sorted queues.
To improve disk efficiency, the Deadline I/O scheduler not
only services one but a batch of requests taken at the top of
the queue in each round.
NOOP scheduler. The NOOP scheduler inserts all incoming
I/O requests into a simple FIFO queue without re-ordering
requests. The scheduler assumes that the requests may be
re-scheduled at the lower level, resequencing I/O request at
the host level has no productive reason. Indeed, merging
of requests does happens, however, as its simple form of
coalescing the adjacent requests only.

C. The caching system

Figure 2 is the view of our cache stack. At guest and
host, Page Cache is maintained by the OS to improve I/O
performance. In the KVM environment, both the host and
guest OSes can maintain their own page caches, resulting in
two copies of data in memory. We disable the host’s page
cache so the guest’s application can access directly the storage
device when it is desirable.

Linux supports several flags to manage the caching behavior.
O DIRECT flag implies no caching at kernel space, DMA is
used, and write request is supposed to return after data was
written at storage device. O DSYNC flag ensures each write
request returns only after data has been written to the physical
storage by issuing the flush() command after each issued
request. However, the device layer may lie to the application
after data was placed in its buffer. By tweaking O DIRECT
and O DSYNC flag when loading the VM image, QEMU uses
the host’s page cache to offers these cache types:
None. VM image is opened with O DIRECT flag so the host
page cache is bypassed and I/O happens directly between
the guest and the storage device. However the real storage
device may immediately report a write as completed when

Fig. 2: The cache system of the host with running VMs

placed in its buffer only. The guest’s virtual storage adapter
is informed that there is a write-back cache, so the guest
application can send down flush commands to commit data
to disk permanently.
Writethrough. This mode causes QEMU to interact with the
disk image file or block device with O DSYNC flag, where
writes are only reported as completed when the data has been
committed to the storage device. However, host’s page caching
is used so written data can be re-read more efficient if there
is application requesting for it soon after.
Writeback. This mode causes QEMU to interact with the
disk image file or block device with neither O DSYNC nor
O DIRECT semantics, so writes are reported to the guest as
completed when placed in the host’s page cache.
Directsync. QEMU interacts with the disk image file or
block device with both O DSYNC and O DIRECT semantics.
Writes are reported as completed only when the data has been
committed to the storage device, and host page cache is not
used. The guest is informed there is write-through cache at
the virtual device so applications do not need to send flush()
for data integrity.

The RAID controller also maintains its own cache space.
Write-back cache returns the system calls when I/O placed in
the cache. Write-through places the I/O request in cache, but
only returns the system call after the data has been committed
to disk. Write-around writes I/O requests to the hard disk first.
A copy is only promoted to cache if access is frequent.

IV. ANALYSIS OF BIG DATA WORKLOADS

We now present our approach to measure the impact of
virtualization on the workloads that characterize many Big
Data applications. As such, we focus on long, sequential and
concurrent I/O operations, which capture well how applica-
tions like Hadoop and Spark interact with storage subsystems
[21], [42].



A. The system under measurement

We perform our measurements on one server with a dual,
octa-core Xeon E5-2650L CPU with hyper-threading enabled,
clocked at 1.8GHz. The server has 128GB of RAM and 10 x
1TB SEAGATE ST91000640SS disks. The RAID controller is
configured with RAID 0 for each disk with a 512MBs write-
back cache enabled. To stress the system by high concurrency
workloads, we only experiment on one disk.

Both the host and the VMs run the long term support Ubuntu
14.04 distribution, updated with the most recent patches and
used with out-of-the-box settings. QEMU is used as the
virtualizer to execute the guest code directly on the host
CPU using the KVM kernel module in Linux. The host is
configured to use LVM for VM storage. VMs are set up to use
para-virtualization device drivers (virtio and vhost_net)
to boost performance. In addition, the host’s Page Cache is
bypassed to prevent “double caching“.

The guest operating system (OS) uses an EXT4 file-system
and does not use LVM. It is configured to use the Noop I/O
scheduler. The VM’s Kernel Page Cache is only bypassed
when we study I/O performance with no caching mechanism
enabled, neither at the host, nor at the guest.

B. Methodology and Metrics

Tools, Scenarios and Workloads. In our work, we use FIO
[43], which is a flexible tool that allows designing a variety
of workloads and that provides detailed statistics to compute
our metrics. FIO is widely used in academia and industry for
standard benchmarking, stress testing and for I/O verification
purposes.

We run FIO on the physical host with different numbers of
concurrent threads. Then with the same configuration, we run
FIO on 5 different VM flavors as shown in Table I. Finally, we
also study the case of multiple active VMs being instantiated
on the same physical host, each with one FIO thread per-
forming I/O operations. We use identical OS and settings for
consistency across different measurement scenarios. The same
fixed amount of data, namely 4 GBs, was used and distributed
evenly across all the threads in our experiments. Our reported
performance figures are the result of 10 runs with error bars
to verify results variability. 1

Resource SVM1 SVM2 SVM4 SVM8 SVM16
vCPU 1 2 4 8 16
Mem.(GB) 1 4 8 16 16

TABLE I: VM specs

In summary, we consider the following scenarios:
• Single VM with multiple threads (SVM): in this case, a

single VM is active on the host system, running several
concurrent I/O tasks. Our experiments are performed on
5 different VM “flavors”, as shown in Table I. For clarity
of presentation, we only show results for SVM2, SVM4,
and SVM16. Note that this scenario is particular stressful

1We also performed experiments with larger data chunks, however, the
results are not quatitatively different

for the guest OS scheduler since it has to switch between
active threads that perform IO operations.

• Multiple VMs with a single thread (MVM): in this case,
we consider that many “slim” VMs are active on the
host system, each with only one thread dedicated to
I/O tasks. In this case, due to the underlying system
configuration, each VM is of flavor “SVM1”, which
allows accommodating 16 VM on the same host without
overcommitting CPU and memory. Note that this scenario
stresses the hypervisor scheduler, since the host has to
switch very frequently between active VMs.

• Bare-metal (BM): in this case, multiple FIO threads
concurrently run I/O operations on directory placed on
the same disk used by the VMs. The bare-metal system
is used as the baseline to understand the impact and
overheads of virtualization.

Workloads. To mimic the typical workload of a Big Data
application, we configure FIO as follows:

• I/O mode: we focus on long, sequential I/O operations.
This stems from the application scenario we consider in
this work: typical analytics tasks executed by scalable
processing frameworks involve batch processing for data
transformation, and large-scale machine learning algo-
rithms, for example. These applications operate on data
stored in distributed file systems, which is split in large
blocks, representing the access “unit” of a parallel task.
In this context, Big Data applications perform full scans
of the data, which is accessed sequentially [21], [42], to
favor throughput over access latency.

• size: FIO operates on a 4 GBs data file, both for read and
write access. This data is split evenly across the active
FIO threads: so, for example, with 16 active threads, each
has to read or write 256 MBs of data.2

• direct I/O: I/O operations performed on files opened
with O DIRECT bypass the kernel’s page cache, writing
directly to the storage. We examined both situations when
direct I/O is set and unset.

• iodepth: accounts for how many IO requests to keep in
flight. This parameter is only available in asynchronous
experiments. We set it to 256 since this is the default size
of the I/O scheduler submit queue’s size, which ensures
we can fill the whole queue with only one thread.

• ioengine: indicates the type of I/O library to call. We
ran our experiments with Synchronous IO (sync) and
Native Asynchronous I/O (libaio). Synchronous IO is a
blocking mechanism whereas Native Asynchronous IO
is non-blocking. Our results revolve around synchronous
and asynchronous modes: the former is representative of
the current Hadoop distributed file system, which uses
the synchronous Java IO [21], [42]; the latter access
method is gradually being adopted by modern parallel
frameworks such as Spark [44].

The metrics. In this work we mainly focus on aggregate
throughput, corresponding to the rate that data is transferred

2This is a typical block size for the Hadoop distributed file system.



1 2 4 8 16

Concurrency

0

20

40

60

80

100

120

140

160

T
h
ro

u
g
h
p
u
t 

[M
B

p
s]

SEQUENTIAL READ - THROUGHPUT

1 2 4 8 16

Concurrency

0

20

40

60

80

100

120

T
h
ro

u
g
h
p
u
t 

[M
B

p
s]

SEQUENTIAL WRITE - THROUGHPUT

(a) With cache’s disabled

1 2 4 8 16

Concurrency

0

20

40

60

80

100

120

140

160

T
h
ro

u
g
h
p
u
t 

[M
B

p
s]

SEQUENTIAL READ - THROUGHPUT

1 2 4 8 16

Concurrency

0

20

40

60

80

100

120

T
h
ro

u
g
h
p
u
t 

[M
B

p
s]

SEQUENTIAL WRITE - THROUGHPUT

(b) With 128MBs limited cache

1 2 4 8 16

Concurrency

0

20

40

60

80

100

120

140

160

T
h
ro

u
g
h
p
u
t 

[M
B

p
s]

SEQUENTIAL READ - THROUGHPUT

1 2 4 8 16

Concurrency

0

100

200

300

400

500

T
h
ro

u
g
h
p
u
t 

[M
B

p
s]

SEQUENTIAL WRITE - THROUGHPUT

(c) With cache to memory size

Fig. 3: Aggregate throughput with different cache sizes for synchronous access.

across all threads or all VMs being evaluated on the system.
We also evaluate system fairness using the Jain Fairness

Index. [45]. Studying fairness across concurrent tasks is es-
pecially important when considering Big Data workloads.
Indeed, an unfair distribution of system resources to I/O
threads could lead to the well-known straggler problem [13].
Since analytics jobs are composed of tasks that concur in
advancing the work they need to do, a slow task – because of
a mistreatment in I/O allocation – can lead to bad overall job
performance. Due to lack of space, we do not report details of
our results: overall, we observe that fairness indexes are close
to optimal value, for all our experiments. This indicates the
systems achieve high fairness.

V. EXPERIMENTAL RESULTS

We present the I/O performance of our system using two dif-
ferent access mechanisms. First, we focus on Synchronous I/O,
which is the default disk access mechanism used mostly by
current Java-based applications. Then, we study Asynchronous
I/O, which is often used for system benchmarking and that
modern “Big Data” frameworks are gradually adopting.

In particular, we study the impact of the following param-
eters: the concurrency level (i.e., the number of concurrent
threads performing I/O requests), the use of OS-level caching,
and the kernel I/O schedulers.

A. Synchronous I/O

With Synchronous I/O, each reader/writer is blocked be-
tween I/O requests. We focus on the role played by caching at
the guest OS-level, use the Deadline I/O scheduler in the host,

and the Noop I/O scheduler in the guest OSs, respectively.
When caching is disabled (O DIRECT is set), the application
(FIO) running in the guest OS bypasses the intermediate kernel
buffer and accesses the backing store directly (the RAID 0
controller, in our setup). When caching is enabled, applications
can use the Kernel Page Cache of the guest OS.

Figure 3 shows the aggregate throughput of sequential I/O
for 3 scenarios: BM, SVM, and MVM. In general, we observe
that caching plays an important role in I/O performance, even
with very simple workloads. In addition, we observe that high
concurrency levels – which are expected for I/O requests
stemming from data intensive frameworks like Hadoop and
Spark – also yield substantial benefits for the I/O performance.
Read performance. The top stripe in Figure 3a indicates
read performance. When caching is disabled, virtualization
overheads are prohibitive: we remark a performance drop
of 50%-60% in aggregated throughput, due to the long I/O
path taken for requests originating in the guest. Instead, when
using the page cache, the “read-ahead“ mechanism offers
substantial benefits to I/O performance, especially for the kind
of workloads we expect from “Big Data” applications, which
are sequential in nature. Due to the simple nature of our
workload, increasing the page cache size has no substantial
impact on performance. Our workloads are read one time only,
so caching and cache size would not have any effect.
Write performance. The bottom stripe in Figure 3a indicates
write performance. The kernel page cache also plays a crucial
role for I/O performance. When caching is disabled, the
overhead of virtualization is severe. Instead, when caching
is used, applications write data to the page cache and the



1 2 4 8 16

Concurrency

0

20

40

60

80

100

120

T
h
ro

u
g
h
p
u
t 

[M
B

p
s]

SEQUENTIAL READ - THROUGHPUT

1 2 4 8 16

Concurrency

0

20

40

60

80

100

120

140

T
h
ro

u
g
h
p
u
t 

[M
B

p
s]

SEQUENTIAL WRITE - THROUGHPUT

(a) CFQ

1 2 4 8 16

Concurrency

0

20

40

60

80

100

120

T
h
ro

u
g
h
p
u
t 

[M
B

p
s]

SEQUENTIAL READ - THROUGHPUT

1 2 4 8 16

Concurrency

0

20

40

60

80

100

120

140

T
h
ro

u
g
h
p
u
t 

[M
B

p
s]

SEQUENTIAL WRITE - THROUGHPUT

(b) Deadline

1 2 4 8 16

Concurrency

0

20

40

60

80

100

120

T
h
ro

u
g
h
p
u
t 

[M
B

p
s]

SEQUENTIAL READ - THROUGHPUT

1 2 4 8 16

Concurrency

0

20

40

60

80

100

120

140

T
h
ro

u
g
h
p
u
t 

[M
B

p
s]

SEQUENTIAL WRITE - THROUGHPUT

(c) Noop

Fig. 4: Aggregated throughput with the three I/O schedulers for asynchronous access.

page is marked dirty: disk I/O does not happen immediately,
and I/O performance increases. Indeed, a synchronous write()
call returns soon after the data is on the page cache without
blocking the application from waiting for the data arrive at
the disk. The memory-management subsystem tries to limit
dirty pages to a maximum of 15% of the memory on the
system. When this threshold is surpassed, or the number of
dirty pages is large, or the dirty page reaches its timeout, the
kernel starts flushing the dirty pages to disk [46]. So systems
have more memory tend to get higher performance. Figure 3c
also exposes a limitation in current systems: when the page
cache memory is very large, individual VMs, even with a large
number of cores, cannot achieve bare-metal throughput. Only
multiple VMs (the MVM case) exhibit high performance when
the concurrency level is high.
Summary. Our results indicate that caching is crucial. For
read operations, the “read-ahead” technique and in general
caching hot files drastically improves performance, because
virtualization overheads due to “long data paths” are mitigated.
However, current best practices for Big Data application de-
ployments indicate to avoid OS caching, favoring application-
level optimizations. We believe such practices can be chal-
lenged by our results. In addition, caching mechanisms for Big
Data applications are still in their infancy, with some examples
such as HDFS 2.0 and Tachyon [17], and more research is
required. For example, memory backed systems (implemented
in Java) often suffer from issues due to the garbage collector
of the JVM, which is pushing research into off-heap mem-
ory management [47], [48]. For write operations additional
considerations are in order. While our results indicate the

benefits of caching in reducing virtualization overheads, failure
tolerance should not be sacrificed. Data persistence on disk
should be ensured by either direct calls to flush() primitives,
or by similar methods at the application-level.

Finally, we observe that “fat” VMs perform poorly: we
conjectures that this is the consequence of current NUMA
architectures where we do not “pin” VMs to specific cores,
and of bad scheduling decisions that allocates compute cores
and data far from each other3. Thus, Big Data applications
deployed in virtual machines should use many “slim” VMs
instead of few “fat” ones.

B. Asynchronous I/O

Asynchronous I/O is believed to deliver superior perfor-
mance by enabling higher level of IO concurrency [33].
In this series of experiments, we investigate the impact of
I/O schedulers, since the role of caching is similar to the
synchronous setting. In what follows, we disable caching
(O DIRECT is set). The guest OS I/O scheduler is set to noop,
and we examine the role of different I/O schedulers in the
host OS.

Figure 4 overviews the average aggregated throughput with
three I/O schedulers: CFQ, Deadline, and Noop respectively.
As a general remark, we observe that the host scheduler plays
a crucial role in the measured performance: a bad choice can
lead to degraded I/O performance. The Deadline and Noop
schedulers are friendlier to virtualization: for both read and
write operations, VMs outperform the bare-metal.

3This phenomenon is also observed at CERN’s cluster [49]



Read performance. The top stripe in Figure 4 indicates the
performance of asynchronous read operations. Clearly, the
CFQ host I/O scheduler damages the performance of VMs.
Instead, Deadline and Noop scheduler behave similarly: while
this is an artifact due to our simple workload, they both
share common observations. With the right choice of the host
I/O scheduler, VMs can outperform bare-metal configurations:
in our experiments, the VM flavor that reaches the best
performance is that with 4 vCores. In addition, we see that
for the MVM case, if I/O sharing happens between VMs
(which are typical of Big Data applications), performance
increases with concurrency levels. Howerver, the performance
is optimized when competing between VMs is not existed.
Write performance. The bottom stripe in Figure 4 indicates
the performance of asynchronous write operations. In this case,
the bare-metal configuration exhibit consistent performance
across schedulers. Instead, VM performance drastically im-
proves with Deadline and Noop schedulers, as compared to
the CFQ scheduler, reaching roughly the same throughput of
the bare-metal counterpart.4 We also observe that write is
superior to read performance: this can be due to the write-
back cache mechanism we use in our RAID controller, as
opposed to write-through operations, which acknowledges
write operations when data resides on the controller memory.
In addition, with write-back enabled, the controller can re-
order write requests to achieve better throughput.
Summary. The three main conclusions we draw from the
asynchronous set of experiments are as follows. First, as
modern Big Data applications are gradually adopting the
asynchronous model, it is important for cloud providers to
configure appropriately the I/O scheduler at the host operating
system: failure to do so, can severely impact read and write
performance. In addition, we see that choosing an appropriate
VM flavor is again crucial for performance. Our results
indicate that it is preferable to opt for “not-too-slim” or ”not-
too-fat” VMs.Besides, if there are VMs sharing I/O bandwidth,
either we prefer high concurrency or we improve sharing
model of the hypervisor to achieve better performance. More
research should be devoted to establish system models to map
VM flavors to their expected I/O performance.

VI. CONCLUSION

Understanding the implications of system virtualization has
been a long-standing goal for many years. Such questions are
even more relevant today, as many companies and services are
migrating their assets to Public and Private Cloud, especially
for large-scale data analytics applications.

The goals of our work were to understand the implica-
tions and overheads of virtualization on I/O performance,
focusing on the storage subsystem. Indeed, many Big Data
applications are I/O bound in nature, and a proper assessment
and understanding of I/O performance in Cloud environments
is essential. To answer our questions, we used an in-depth,
low-level measurement study and analyzed the behavior of

4This is also observed in [41], albeit for different kinds of workloads.

several configurations supporting the specific workloads that
characterize analytics applications, that is, long sequential
operations. Our findings are instrumental for defining how
to configure cloud computing environments to meet high I/O
performance demands by modern Big Data applications, and
to indicate areas requiring further research efforts.

We showed that current best practices for Big Data appli-
cation deployments are not reaping the benefits of decades of
research and engineering done at the OS level. The caching
layers and mechanisms embedded in most modern OSs sub-
stantially contribute to high-performance I/O, both for read
and write operations. However, critically, it is important to
understand the impact of write caching and tolerance to fail-
ures. An important avenue for future research is the design of
application-level caching mechanisms, that can better exploit
the application semantics to improve both read and write
performance, without sacrificing failure tolerance.

We also showed that the current trend of modern Big Data
applications of using the asynchronous I/O model could face
the drawbacks of a poor choice of the I/O scheduler of host
operating systems. It is important, for cloud providers, to know
that I/O schedulers dramatically affect VM performance: in the
asynchronous case, our results indicate that the CFQ scheduler
might “interfere” with the asynchronous calls coming from
applications running in virtual machines, resulting in perfor-
mance degradation.

Finally, our results indicate that, depending on the access
method, the choice of VM flavor to run Big Data applications
also plays a crucial role on performance. In both synchronous
and asynchronous case, size of virtual machines demonstrates
big impact on I/O performance. This indicates that there is the
need to develop models to map VM flavor performance to the
underlying physical system, to inform Big Data application
deployments.

In the future, we plan to conduct a new measurement study
to assess the performance of caching mechanisms such as
HDFSv2 and Tachyon, paying particular attention to under-
stand the benefits and overheads of application-level caching
with respect to OS-level caching mechanisms.

REFERENCES

[1] Amazon, “Amazon Web Services,” https://aws.amazon.com/.
[2] Cloudera, “Cloudera Hadoop on AWS,” http://www.cloudera.com/.
[3] DataBricks, “DataBricks Cloud,” https://databricks.com/product/

databricks.
[4] Apache, “Apache Hadoop,” http://hadoop.apache.org/, 2015, [Online;

accessed 01-June-2015].
[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: cluster computing with working sets,” Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, vol. 10, p. 10,
2010.

[6] A. Rasmussen, M. Conley, G. Porter, R. Kapoor, A. Vahdat et al.,
“Themis: an i/o-efficient mapreduce,” in Proceedings of the Third ACM
Symposium on Cloud Computing. ACM, 2012, p. 13.

[7] J. Shafer, “I/o virtualization bottlenecks in cloud computing today,” in
Proceedings of the 2nd conference on I/O virtualization. USENIX
Association, 2010, pp. 5–5.

[8] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.-G. Chun, and
V. ICSI, “Making sense of performance in data analytics frameworks,”
Proceedings of the 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI)(Oakland, CA, pp. 293–307, 2015.

https://aws.amazon.com/
http://www.cloudera.com/
https://databricks.com/product/databricks
https://databricks.com/product/databricks
http://hadoop.apache.org/


[9] J. Li, Q. Wang, D. Jayasinghe, J. Park, T. Zhu, and C. Pu, “Performance
overhead among three hypervisors: An experimental study using hadoop
benchmarks,” in IEEE International Congress on Big Data (BigData
Congress). IEEE, 2013, pp. 9–16.

[10] K. Ye, X. Jiang, Y. He, X. Li, H. Yan, and P. Huang, “vhadoop: a scalable
hadoop virtual cluster platform for mapreduce-based parallel machine
learning with performance consideration,” in IEEE International Con-
ference on Cluster Computing Workshops (CLUSTER WORKSHOPS).
IEEE, 2012, pp. 152–160.

[11] J. Park, D. Lee, B. Kim, J. Huh, and S. Maeng, “Locality-aware dynamic
vm reconfiguration on mapreduce clouds,” in Proceedings of the 21st
international symposium on High-Performance Parallel and Distributed
Computing. ACM, 2012, pp. 27–36.

[12] M. Conley, A. Vahdat, and G. Porter, “Achieving cost-efficient, data-
intensive computing in the cloud,” in Proceedings of the Sixth ACM
Symposium on Cloud Computing. ACM, 2015, pp. 302–314.

[13] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environments,”
in Proceedings of the 8th USENIX conference on Operating systems
design and implementation, ser. OSDI’08. Berkeley, CA, USA:
USENIX Association, 2008, pp. 29–42.

[14] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in Proceedings of the 5th European
conference on Computer systems. ACM, 2010, pp. 265–278.

[15] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation. USENIX Association, 2012, pp. 2–2.

[16] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: dis-
tributed, low latency scheduling,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. ACM, 2013, pp.
69–84.

[17] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon:
Reliable, memory speed storage for cluster computing frameworks,” in
Proceedings of the ACM Symposium on Cloud Computing. ACM, 2014,
pp. 1–15.

[18] A. A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker, and
I. Stoica, “Hierarchical scheduling for diverse datacenter workloads,” in
Proceedings of the 4th annual Symposium on Cloud Computing. ACM,
2013, p. 4.

[19] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at scale,”
in Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. ACM, 2013, pp. 423–438.

[20] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Choosy: Max-min
fair sharing for datacenter jobs with constraints,” in Proceedings of the
8th ACM European Conference on Computer Systems. ACM, 2013,
pp. 365–378.

[21] J. Shafer, S. Rixner, and A. L. Cox, “The hadoop distributed filesystem:
Balancing portability and performance,” in 2010 IEEE International
Symposium on Performance Analysis of Systems & Software (ISPASS).

[22] U. Drepper, “The cost of virtualization,” Queue, vol. 6, no. 1, pp. 28–35,
Jan. 2008.

[23] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Antfarm:
Tracking processes in a virtual machine environment,” in Proceedings of
the Annual Conference on USENIX ’06 Annual Technical Conference,
ser. ATEC ’06, 2006, pp. 1–1.

[24] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and
W. Zwaenepoel, “Diagnosing performance overheads in the xen virtual
machine environment,” in Proceedings of the 1st ACM/USENIX Inter-
national Conference on Virtual Execution Environments, ser. VEE ’05,
2005, pp. 13–23.

[25] L. Cherkasova and R. Gardner, “Measuring cpu overhead for i/o process-
ing in the xen virtual machine monitor,” in Proceedings of the Annual
Conference on USENIX Annual Technical Conference, ser. ATEC ’05,
2005, pp. 24–24.

[26] J. LeVasseur, V. Uhlig, M. Chapman, P. Chubb, B. Leslie, and G. Heiser,
“Pre-virtualization: Slashing the cost of virtualization,” Fakultät für
Informatik, Universität Karlsruhe (TH), Technical Report 2005-30, Nov.
2005.

[27] A. Sundararaj, A. Gupta, P. Dinda et al., “Increasing application
performance in virtual environments through run-time inference and

adaptation,” in Proceedings. 14th IEEE International Symposium on
High Performance Distributed Computing (HPDC-14). IEEE, 2005,
pp. 47–58.

[28] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski, “Towards
scalable multiprocessor virtual machines.” in Virtual Machine Research
and Technology Symposium. Citeseer, 2004, pp. 43–56.

[29] J. F. Kloster, J. Kristensen, and A. Mejlholm, “On the feasibility of
memory sharing,” Ph.D. dissertation, Aalborg University. Department
of Computer Science, 2006.

[30] M. Schwidefsky, H. Franke, R. Mansell, H. Raj, D. Osisek, and J. Choi,
“Collaborative memory management in hosted linux environments,” in
Proceedings of the Linux Symposium, vol. 2, 2006.

[31] C. A. Waldspurger, “Memory resource management in vmware esx
server,” ACM SIGOPS Operating Systems Review, vol. 36, no. SI, pp.
181–194, 2002.

[32] B. H. Lim et al., “Virtualizing i/o devices on vmware workstation’s
hosted virtual machine monitor,” 2001.

[33] K. Huynh and A. Theurer, “KVM Virtualized I/O Performance: Achiev-
ing Unprecedented I/O Performance Using Virtio-Blk-Data-Plane Tech-
nology Preview in SUSE Linux Enterprise Server 11 Service Pack 3
(SP3),” IBM Linux Technology Center, Tech. Rep., 06 2013.

[34] R. Russell, “virtio: towards a de-facto standard for virtual i/o devices,”
ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 95–103,
2008.

[35] M. Kesavan, A. Gavrilovska, and K. Schwan, “Differential virtual time
(dvt): rethinking i/o service differentiation for virtual machines,” in
Proceedings of the 1st ACM symposium on Cloud computing. ACM,
2010, pp. 27–38.

[36] S.-H. Ha, D. Lopez-Pacheco, and G. Urvoy-Keller, “Networking in
a virtualized environment: The tcp case,” in IEEE 2nd International
Conference on Cloud Networking (CloudNet). IEEE, 2013, pp. 50–57.

[37] V. Chadha, R. Illiikkal, R. Iyer, J. Moses, D. Newell, and R. J.
Figueiredo, “I/o processing in a virtualized platform: a simulation-driven
approach,” in Proceedings of the 3rd international conference on Virtual
execution environments. ACM, 2007, pp. 116–125.

[38] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and A. Sivasub-
ramaniam, “Xen and co.: communication-aware cpu scheduling for
consolidated xen-based hosting platforms,” in Proceedings of the 3rd
international conference on Virtual execution environments. ACM,
2007, pp. 126–136.

[39] D. Ongaro, A. L. Cox, and S. Rixner, “Scheduling i/o in virtual machine
monitors,” in Proceedings of the fourth ACM SIGPLAN/SIGOPS inter-
national conference on Virtual execution environments. ACM, 2008,
pp. 1–10.

[40] S. R. Seelam and P. J. Teller, “Virtual i/o scheduler: a scheduler of
schedulers for performance virtualization,” in Proceedings of the 3rd
international conference on Virtual execution environments. ACM,
2007, pp. 105–115.

[41] D. Boutcher and A. Chandra, “Does virtualization make disk scheduling
passé?” SIGOPS Oper. Syst. Rev., vol. 44, pp. 20–24, Mar. 2010.
[Online]. Available: http://dx.doi.org/10.1145/1740390.1740396

[42] E. Sammer, Hadoop Operations, 1st ed. O’Reilly Media, Inc., 2012,
ch. 2.

[43] J. Axboe, “Flexible I/O Tester,” https://github.com/axboe/fio, 2015,
[Online; accessed 01-June-2015].

[44] Apache, “Spark 0.6.0 Release, Engine changes,” https://spark.apache.
org/releases/spark-release-0-6-0.html, 2012, [Online; accessed 01-June-
2015].

[45] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure Of
Fairness And Discrimination For Resource Allocation In Shared
Computer Systems,” Sep. 1998. [Online]. Available: http://arxiv.org/
abs/cs/9809099

[46] D. Bovet and M. Cesati, Understanding the Linux Kernel.
[47] A. Flink, “Off-heap Memory in Apache Flink and the curious JIT com-

piler,” http://flink.apache.org/news/2015/09/16/off-heap-memory.html.
[48] I. Gog, J. Giceva, M. Schwarzkopf, K. Vaswani, D. Vytiniotis, G. Ra-

malingam, M. Costa, D. G. Murray, S. Hand, and M. Isard, “Broom:
sweeping out garbage collection from big data systems,” in Proc. of the
Usenix HotOS Workshop, 2015.

[49] S. Crosby, A. Wiebalck, and U. Schwickerath, “NUMA and CPU Pin-
ning in High Throughput Computing,” http://openstack-in-production.
blogspot.fr/2015/08/numa-and-cpu-pinning-in-high-throughput.html,
2015, [Online; accessed 01-Feb-2016].

http://dx.doi.org/10.1145/1740390.1740396
https://github.com/axboe/fio
https://spark.apache.org/releases/spark-release-0-6-0.html
https://spark.apache.org/releases/spark-release-0-6-0.html
http://arxiv.org/abs/cs/9809099
http://arxiv.org/abs/cs/9809099
http://flink.apache.org/news/2015/09/16/off-heap-memory.html
http://openstack-in-production.blogspot.fr/2015/08/numa-and-cpu-pinning-in-high-throughput.html
http://openstack-in-production.blogspot.fr/2015/08/numa-and-cpu-pinning-in-high-throughput.html

	Introduction
	Related work
	Background
	The path of a VM's I/O request
	Linux IO Schedulers
	The caching system

	Analysis of Big Data workloads
	The system under measurement
	Methodology and Metrics

	Experimental Results
	Synchronous I/O
	Asynchronous I/O

	Conclusion
	References

