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Abstract: During the early deployment phase of autonomous vehicles, autonomous vehicles will share roads with con-
ventional manually driven vehicles. They will be required to adjust their driving dynamically taking into
account not only preceding but also following conventional manually driven vehicles. This paper addresses
the challenges of adaptive braking to avoid front-end and rear-end collisions, where an autonomous vehicle
is followed by a conventional manually driven vehicle. We illustrate via simulations the consequences of
independent braking in terms of collisions, on both autonomous and conventional vehicles, and propose an
adaptive braking strategy for autonomous vehicles to coordinate with conventional manually driven vehicles
to avoid front and rear-end collisions.

1 INTRODUCTION

Today autonomous vehicles are equipped with sens-
ing technologies involving cameras, radars, lidars,
etc. and/or communication technologies like Vehicle
to Vehicle (V2V) or Vehicle to Infrastructure (V2X).
Most of the work on autonomous vehicles is based
on coordinated control decision making for intersec-
tion clearance, lane merging, etc. as found in a survey
by Torres (Rios-Torres and Malikopoulos, 2016) con-
sidering ideal circumstances. Now assume less than
ideal circumstances where an autonomous vehicle is
alerted to a potential collision with some delay and/or
coordination and negotiations with other vehicles fail
(leading to potential collisions). Such a scenario cre-
ates an emergency situation (Campos et al., 2014),
making it imperative to brake and to come to a halt
to avoid collisions. Thus, the objective changes from
coordinated control to safety critical braking.

Collision free braking becomes much more com-
plicated when a mix of autonomous and manually
driven vehicles need to come to a halt. It is more
likely that an autonomous vehicle will have a man-
ually driven vehicle as its neighbour, either in front
or behind, because of the higher number of manu-
ally driven vehicles compared to autonomous vehi-
cles. Thus the above described scenario of collision
free braking is an important concern today, as de-
picted in Figure 1 where vehicles A and B are au-
tonomous and manually driven respectively, and are

Figure 1: Mixed vehicular traffic scenario involving au-
tonomous and manually driven vehicles.

trying to avoid collision with a potential obstacle L in
front by braking.

More than one-fifth of accidents happen with a ve-
hicle immediately behind or ahead in longitudinal di-
rection (Kaempchen et al., 2009), primarily because
human drivers tend to react based on the vehicle in
front and prevent accidents with the vehicle in front
(front-end accident avoidance). Generally speaking,
the effect of the braking of a vehicle onto the fol-
lowing vehicle is not considered by humans leading
to rear-end collisions. On the other hand, an au-
tonomous vehicle can consider potential collisions at
both ends. If the following vehicle and ego vehicle are
both autonomous, a coordinated braking strategy can
be devised. Consider the scenario where a conven-
tional manually driven vehicle without any form of
automation is following an autonomous vehicle (ego
vehicle). The objective of this paper is to answer the



following question: How can an autonomous vehi-
cle anticipate the braking of a following conventional
vehicle, modify its controls considering the (antici-
pated) braking of the following vehicle and guarantee
both rear-end and front-end collision avoidance (with
the following vehicle and with the obstacle in front
respectively) in the above described scenario.

Our contributions are threefold: first we formu-
late a collision free adaptive (cooperative) braking
strategy as a multi-parameter objective based on brak-
ing distances and dynamics of following conventional
vehicles; second, we propose an adaptive ‘smooth’
braking strategy for autonomous vehicles and demon-
strate its capability to avoid rear and front-end colli-
sions. Finally, we vary the input parameters to illus-
trate their impact on our proposed coordinated brak-
ing strategy.

The rest of this paper is organized as follows: in
Section 2, we formulate the coordinated braking prob-
lematic with more details and provide related work.
In Section 3 we provide a detailed modelling of it,
whereas in Section 4 we evaluate our proposed strat-
egy. Finally, Section 5 concludes our work and sheds
light on future work.

2 RELATED WORK

In this paper we use various braking strategies and
vehicular mobility models to simulate different sce-
narios for front-end and rear-end collision avoidance
in longitudinal motion. First subsection looks at the
work related to vehicular mobility models and brak-
ing strategies whereas the latter part of this section
looks at work related to collision avoidance.

2.1 Vehicular mobility models

In literature, there are lots of vehicular mobility mod-
els. Psycho-physical model by Wiedemann (Wiede-
mann, 1974), is one such mobility model imple-
mented in VISSIM simulator (Fellendorf and Vor-
tisch, 2010). It states that a manually driven vehicle
is in one of the following driving modes: free driving,
approaching, following or braking. An approaching
vehicle would continue at the same velocity until it
enters a deceleration perceptual threshold which stim-
ulates the driver to brake. Whereas Trebier proposes
Intelligent Driver Model (IDM) (Treiber et al., 2000)
in which he suggests that the ego vehicle adjusts its
driving dynamics according to that of the vehicle im-
mediately in front to avoid front-end collisions. Sub-
sequent extensions of IDM like Enhanced IDM (Kest-
ing et al., 2010a) and IDM+ (Schakel et al., 2010)

optimizes traffic capacity and flow. In such Follow-
the-Leader models the presence of following vehicles
is not considered leaving a big risk of rear-end colli-
sions. 1

Kesting assumes IDM or a modified version of
IDM to be a good basis for implementation of
Adaptive Cruise Control (ACC)/ Cooperative ACC
(CACC) (Kesting et al., 2010b), thus we assume
in this paper, autonomous vehicles implement IDM.
IDM can be modelled as in equation 1.

aα = amax (1− (
vα

v0
)δ− (

s∗(vα,∆vα)

sα

)2)

s∗(vα,∆vα) = s0 + vα τ+
vα ∆vα

2
√

amaxbmax

sα = xα−1− xα− lα−1

∆vα = vα− vα−1

(1)

Where α is the vehicle being considered, α−1 is the
vehicle in front and so on. aα,vα,xα represents accel-
eration, velocity and the location of vehicle α. amax,
bmax are maximum acceleration and braking values of
the vehicle. sα, ∆vα, τ represent distance, velocity dif-
ference and desired time gap with the vehicle in front.
δ is the free acceleration exponent. s0 is the desired
safety distance between two vehicles and v0 is the de-
sired velocity of vehicle in free traffic. lα−1 is the
length of the vehicle α−1.

On the other hand, human drivers in manually
driven vehicles are assumed to show realistic charac-
teristics like having a reaction to a situation after some
perception response time tprt . In other words, tprt is
the measure of attentiveness and responsiveness of a
driver. When travelling at high speeds, and noticing
the vehicle in front close and braking, humans would
tend to immediately hit the brakes. We assume, as
this situation is a sudden surprise, the magnitude of
applied brakes is maximum. In this paper, we set
the value of tprt to 1.3 s, which is the mean value
of human perception response time (National High-
way Traffic Safety Administration, 2009). To summa-
rize, manually driven vehicles are assumed to brake at
maximum braking strength, 1.3 s after the vehicle in
front starts braking until they come to a halt. In future,
autonomous vehicles with sensors could learn about
the tprt of the driver in vehicle behind based on the
observed driving behaviour.

1Through simulations we show a rear-end collision of
an autonomous vehicle with a manually following vehicle.
Refer to Figure 11, explained in Subsection 4.2.



2.2 Collision avoidance strategies

Most of the work till date has been on collision avoid-
ance between ego vehicle and vehicle in front and
comparatively little on the influence of actions of ego
vehicle onto following vehicle.

To avoid front-end collisions, for manually driven
vehicles, traditionally proposed solution is to have
larger inter vehicular distances, (Ashley, 2013) states
the recommended headway in Germany is 1.8 s. For
vehicles with V2V communication capacities, (Liu
and Ozguner, 2003) suggests increasing communica-
tion range to warn about a potential collision over
a larger range. Where as for autonomous vehicles,
(Llorca et al., 2011; Durali et al., 2006) propose
front-end collision avoidance based on steering rather
than braking. Brandt proposes an innovative elas-
tic band theory based approach involving non lin-
ear algebraic equations for collision avoidance sys-
tems (Brandt et al., 2005). Intent prediction based
front-end collision avoidance is proposed by Ham-
let in (Hamlet et al., 2015). An approach for col-
lision avoidance during automated lane changing is
presented by (Jula et al., 2000). Lu proposes a cen-
tralized coordinated braking strategy for ACC vehi-
cles using Model Predictive Control (Lu et al., 2014).

On the other end, to avoid rear-end collisions, ei-
ther the following vehicle should be informed as to
when by latest it should start braking as suggested by
Zhang (Zhang et al., 2006) or leading vehicle should
be informed the latest moment by when it must accel-
erate as suggested by Cabrera (Cabrera et al., 2012).

All the cited work assumes homogeneous traffic
with vehicles having the same level of automation.
Little attention has been given to rear-end collision
avoidance as evident from above. Most of the accom-
plished work, requires V2V communication to inform
neighbouring vehicles about control strategies. What
happens when the following vehicle doesn’t have nei-
ther any V2V communication nor sensing technol-
ogy? Are collisions inevitable?

3 MODELLING ADAPTIVE
BRAKING STRATEGY

Without loss of generality, we simplify the scenario
described in Figure 1, consisting of a potential obsta-
cle L, an autonomous vehicle A and a manually driven
vehicle B following A, to a 1D representation in Fig-
ure 2. de, dla represents the distance covered during
an emergency brake at maximum braking strength by
vehicle A and the distance at which vehicle A becomes
aware of the potential danger by object L over V2X

Figure 2: Simplified 1D scenario where autonomous vehi-
cle A detects an obstacle L via V2X communication.

Figure 3: Relation between ∆t and Trange.

communication respectively. We assume dla is strictly
bigger than the sensing range of vehicle A’s sensors.
WiFi-based ITS-G5/DSRC technology communicat-
ing over a 5.9GHz frequency band (V2X/V2V), usu-
ally has a communication range(dla) of a few hun-
dred meters, but harsh communication conditions (i.e.
Non-Line-of-Sight, channel congestion. . . ) restricts
this range dla. We consider in this paper dla to be
strictly bigger than de (dla > de), so that vehicle A
may use the distance ds = dla− de to adjust its brak-
ing strategy. dab is distance between A and B.
To ensure collision avoidance at both ends, we pro-
pose a braking strategy for leading vehicle A (ego ve-
hicle) consisting of two phases: weak and hard. We
illustrate this concept with Figure 3. T is the time
any vehicle takes to come to a full halt once it starts
braking (Ta is the time vehicle A takes to come to a
full halt), and covers a distance shorter than dla. The
weak braking time interval is represented as Tweak,
which lasts for ∆t s, during which the vehicle will
gradually increase its braking magnitude from zero
and eventually reach maximum braking strength. Be-
yond Tweak, for a duration of T −Tweak s, the vehicle
maintains maximum braking strength until it comes to
a halt. This time duration is the hard braking phase.
The challenge is to determine the braking duration ∆t
which signals the shift from weak to hard braking ma-
noeuvre. ∆t is not unique and can take multiple values
within a time interval Trange[tlow, tup] as shown in Fig-
ure 3. tup corresponds to an upper bound to avoid col-
lision with obstacle L and tlow corresponds to a lower
bound to avoid collision with vehicle B. The same is
derived next.

To determine the values of tup and tlow, we analyse
the deceleration behaviour of vehicles A and B in Fig-
ure 4. This image can be understood by decompos-
ing the braking manoeuvres of both vehicles into four
phases (or intervals): Phase A, corresponds to vehicle



Figure 4: Deceleration profile of vehicles.

B’s reaction time during which it doesn’t brake where
as vehicle A is in weak braking phase. Phase B, is the
time after tprt , when vehicle A is still in weak braking
phase and vehicle B has started to brake at maximum
strength. Phase C corresponds to both vehicles brak-
ing hard, while phase D is when both vehicles come
to a halt (collision or not).2 Now, to ensure collision-
free ride, the following conditions need to be ensured:

#1 – dla > 0 to avoid front-end collision: corresponds
to upper bound of Trange (tup)

#2 – dab > 0 to avoid rear-end collision: corresponds
to lower bound of Trange (tlow)

Ensuring #1: Total distance covered by vehicle A
before halting must be smaller than initial distance
dla(t=0). (L is stationary in longitudinal direction).
Simplifying kinematic equations for #1 we get:

∆t2 (
bmax,a

24
)+∆t (

va

2
)+(

v2
a

2 bmax,a
−dla(t=0))< 0

(2)
where va is the initial velocity and bmax,a is the maxi-
mum braking strength of vehicle A.
Ensuring #2: As vehicles A and B behave differently
in different time phases, but within a phase their brak-
ing behaviour remains constant, we split our analysis
for #2 into four intervals previously described:

• Interval A: t ∈ [0, tprt)

dab(t) = dab(t=0)+
bmax,a t3

6 ∆t
> 0 (3)

where dab(t=0) is the initial distance between ve-
hicles A and B.

2Not always would both vehicles come to a halt at the
same time

Table 1: IDM constants and their values

Parameter description value
Desired speed (v0) 96 km/h
Free acceleration exponent (δ) 4
Desired time gap (τ) 0.1 s
Maximum acceleration (amax) 1.4 m/s2

Maximum braking strength (bmax) -0.6g m/s2

Length of vehicle (la) 4 m
Desired minimum distance (s0) 5 m

• Interval B: t ∈ [tprt ,∆t)

dab(t) = dab(t=0)+
bmax,a t3

6 ∆t

−
bmax,b (t− tprt)

2

2
> 0 (4)

where bmax,b is the maximum braking strength of
vehicle B.

• Interval C: t ∈ [∆t,T =min(Ta,Tb) or T = Ta = Tb]

dab(t) = dab(t=0)+
bmax,a (∆t2−3 t ∆t−3 t2)

6

−
bmax,b (t− tprt)

2

2
> 0 (5)

• Interval D: t ∈ [Ta,Tb] ... for Tb > Ta:

dab(t) = dab(t=T )+(
(vb +bmax,b (Ta− tprt))

2

2 bmax,b
)

(6)
or interval t ∈ [Tb,Ta]... for Tb < Ta:

dab(t) = dab(t=T )− (
(va +bmax,a (Tb−0.5 ∆t))2

2 bmax,a
)

(7)

where dab(t=T ) is the distance between vehicles A and
B at time T .

Solving equations mentioned under #1 and #2 re-
turn a set of possible values which define the time
interval Trange. The value ∆t (between tlow and tup)
that vehicle A takes depends on its driving strategy
but this is out of scope of this paper. The mean
value is being taken by default in our calculations:
∆t = (tup− tlow)/2.

4 PERFORMANCE EVALUATION

We split our experiment into two cases implementing
three braking strategies:
Case 1. Vehicle A implements IDM whereas vehicle
B implements human behaviour (manual braking)



Figure 5: Calculating lower bound for Trange.

Case 2. Vehicle A implements the proposed brak-
ing strategy whereas vehicle B implements human be-
haviour (manual braking)
IDM and manual braking were introduced in Sec-
tion 2 and the new proposed strategy was introduced
in Section 3. Values of different parameters used in
IDM are summarized in Table 1.3 We evaluate us-
ing Matlab proposed braking strategy against IDM by
analysing these two cases.

4.1 Adaptive Braking Strategy

In order to illustrate the role of different parameters
influencing Trange in the proposed approach, we con-
sider three sets of evaluations: (I) we fix all param-
eters and focus on choosing the right value of ∆t;
(II) we change initial speed of the vehicles and keep
rest of the parameters as before; (III) we consider the
influence of environmental and road conditions (ice,
rain, etc..).

Using An’s work (An et al., 2011) we calculate
that by the time distance reduces to 95.9 m from
transmitter of the emergency notification message, re-
ceiver can be assumed to have received at least one
emergency message with 99.5% probability. We thus
set dla = 95.9 m. For (I) set of evaluation, we fix:
dab = 5m, length of vehicle A (la) is 4 m, Initial ve-
locities of both vehicles A (va) and B (vb) are as-
sumed to be equal v0 = va = vb. For a highway sce-
nario we assume v0 = 96 km/h. Moreover we as-
sume that both vehicles A and B can reach a maximum
braking capacity (bmax) of −0.6g, which is the mean
of maximum deceleration strengths of vehicles (Na-
tional Highway Traffic Safety Administration, 2002),
g is gravitational constant 9.88m/s2.

3For emergency braking situations like the one consid-
ered here, limitations on jerks or comfort are not considered
for analytical calculations

Figure 6: Calculating upper bound for Trange.

Set of equations 2- 7 can be used to derive the
value Trange = [2.4,2.8] s, refer Table 2. The same
range can also be obtained graphically. For different
∆t values, Figure 5 illustrates the variation of dab vs
time where as Figure 6 illustrates the variation of dla
vs time. Intersection of a plot with x-axis indicates
zero distance between vehicles. Thus ∆t should be
chosen such that the plot doesn’t intersect x-axis in
Figure 5, 6. The Upper bound tup can be determined
visually from Figure 6 (thus #1 resolved), while the
Lower bound tlow can be determined visually from
Figure 5 (thus #2 is resolved). Now, a value ∆t can
be chosen: ∆t ∈ Trange; Trange = [tup, tdown].

Note: in Figure 5, plots for ∆t > 2.8 s converge to
the same point as seen, because A has collided with L
and B comes to halt at the same position; thus dab at
the end of simulations for ∆t > 2.8 s is the same.

To further illustrate the consequences of an inac-
curate ∆t, we consider three different possibilities in
Figure 7. The first possibility corresponds to con-
ditions on ∆t are not respected, and ∆t is chosen
smaller than the acceptable Trange. In this case, it
can be seen that A collides with B (i.e. rear-end col-
lision for (∆t < tlow)).The second possibility corre-
sponds to the desired scenario where ∆t is chosen
from the calculated Trange, and collisions are avoided
(i.e. ∆t ∈ Trange). The third possibility corresponds to
the case, where ∆t is too big and A fails to brake and
collides into L (i.e. front-end collision for ∆t > tup).

For (II) set of evaluation, we change the initial
velocities of vehicle v0 (va = vb), keeping the same
dab = 5 m. The objective is to find the minimum dla
and the corresponding Trange for ∆t to be used by vehi-
cle A to avoid any collisions. Results are summarized
in Table 3.4

Approaches used in evaluations (I) and (II) as-

4x denotes either a rear-end or a front-end collision



Table 2: Distance between autonomous and conventional vehicle and corresponding time to reach maximum deceleration for
v = 96km/h; dla(t = 0) = 95.9m; highway scenario.

dab [m] 5 8 10 15
Trange [s] 2.4 to 2.8 2.1 to 2.8 2.0 to 2.8 1.6 to 2.8

Table 3: Trange corresponding to braking strategies for different vehicular speed.

Velocity [km/h] dla[m] Trange [s]

v0 = 30; low speed limit scenario

10 x
15 1.6 to 2.5
20 1.6 to 4.6

v0 = 50; urban city with stricter speed limits

20 x
30 2.1 only
35 2.1 to 2.9
40 2.1 to 3.9

v0 = 70; urban city scenario

50 x
55 2.3 to 2.5
60 2.3 to 3.1
70 2.3 to 4.3

v0 = 96; highway scenario

90 x
95.9 2.4 to 2.8
100 2.4 to 3.1
110 2.4 to 4
120 2.4 to 4.9

Figure 7: Three cases - rear-end collision, no collision,
front-end collision.

sume decent road conditions. If a road surface with
some oil or sand spill (dirty) is considered, maximum
deceleration is physically restricted to −4 m/s2 (Bar-
bier, 2013). In (III) set of evaluation, we limit brak-
ing capacity to −4 m/s2. Simulations show if the ve-
hicles are travelling at 96 km/h with dab = 5 m, and
dla = 95.9 m collisions can not be averted (i.e. A will
collide with either B or L). For these reasons, the max-
imum speed limit should be capped, say to 80 km/h
(50 mph) which in turn returns Trange of [2.3,3.2]
s. Alternately, under optimal road conditions which
could support braking up to −8 m/s2, maximum ve-

Figure 8: Acceleration profile of vehicles; vehicle A follow-
ing: IDM (left) proposed algorithm (right).

locity permitted can be increased up to 110 km/h (68
mph) such that with ∆t values of [2.3,2.4] s, collisions
could be avoided.

4.2 Adaptive vs. IDM-ACC braking

We complete our evaluation with a comparison of
adaptive braking strategy (proposed algorithm, imple-
mented in Case 2) against the IDM-ACC mechanism
(implemented in Case 1) for the same set of param-
eters. Sub-plots on the right of Figures [8, 9, 10]
demonstrates the performance of our algorithm com-



Figure 9: Velocity profile of vehicles; leading vehicle fol-
lowing: IDM (left) proposed algorithm (right).

Figure 10: Locations of vehicles; leading vehicle following:
IDM (left) proposed algorithm (right).

pared to IDM’s on the left; these plots highlight accel-
eration, velocity and location comparison between the
two. IDM would demand an instantaneous increase
in braking strength from zero (to -2.5 m/s2 approxi-
mately in this case) as shown in Figure 8 where as
the proposed approach is more comfortable as brak-
ing strength is increased gradually. At 2.8 seconds,
the acceleration jumps from around -4 to 0 m/s2 in the
plot on the left in Figure 8, which is due to rear-end
collision of vehicle A with B. Same is the interpreta-
tion of Figure 9 which shows sudden fall of velocity
to zero after the accident between A and B. Figure
10 shows the vehicles maintaining their position af-
ter collision at 2.8 s. Whereas the plot on the right of
Figures [8, 9, 10] show smooth collision free braking.

Finally, from Figure 11 it is clear that front-
end collisions could be avoided but rear-end accident
could not be avoided as dab reaches zero for Case 1,
where as the proposed braking strategy implemented
in Case 2 avoids accidents at both ends. These figures

Figure 11: Inter-distance between vehicle A and B

clearly supports our claim that IDM indeed couldn’t
assure collision avoidance of the following vehicle
onto itself where as our proposed algorithm does.

5 CONCLUSIONS

When an autonomous vehicle needs to suddenly
brake, it should consider not only the possible front-
end collision, but also rear-end collision with the fol-
lowing vehicle. In this paper, we address this as-
pect and propose a braking strategy for a scenario in-
volving a manually driven vehicle following an au-
tonomous vehicle. First phase of the braking avoids
hard brake where as a second phase performs a con-
ventional hard brake.

The proposed approach also suggests that even at
high velocities (96km/h) and low inter vehicular dis-
tance (5m), safety is not compromised provided the
autonomous vehicle gradually increases its braking
strength to maximum. Most importantly, via simu-
lation, we show the superiority of the proposed algo-
rithm over ACC/CACC algorithms like IDM in brak-
ing circumstances, which usually only manages to
avoid front-end collision at the cost of a rear-end col-
lision.

Future work will focus on developing a control
theory based approach which would provide control
inputs for coordinated braking of multiple vehicles
with different levels of automation in a heterogeneous
traffic scenario, whilst optimizing a particular cost
function.
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