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Abstract

We consider a finite-buffer packet multiplexer to which traffic arrives from several indepen-
dent sources. The traffic from each of the sources is regulated, i.e., the amount of traffic that can
enter the multiplexer is constrained by known regulator constraints. The regulator constraints
depend on the source and are more general than those resulting from cascaded leaky buckets.
We assume that the traffic is adversarial to the extent permitted by the regulators. For loss-
less multiplexing, we show that if the origiral multiplexer is lossless it is possible to allocate
bandwidth and buffer to the sources so that the resulting segregated systems are lossless. For
lossy multiplexing, we use our results for lossless multiplexing to estimate the loss probability of
the multiplexer. Our estimate involves transforming the original system into two independent
resource systems, and using adversarial sources for the two independent resources to obtain a
bound on the loss probabilities for the transformed system. We show that the adversarial sources
are not extremal on-off sources, even when the regulator consists of a peak rate controller in
series with a leaky bucket. We explicitly characterize the form of the adversarial source for the

transformed problem. We also provide numerical results for the case of the simple regulator.



1 Introduction

Consider a finite-buffer packet multiplexer to which traffic arrives from several independent sources.
For the multiplexer to provide quality of service {(QoS) guarantees, such as imits on packet loss
probabilities, it must have some knowledge about the traffic characteristics of the sources. Because
the reliability of statistical models of traffic is questionable for many source types, in recent years
there have been several studies on the performance of packet-switched nodes that multiplex requlated
traffic, e.g., traffic which conforms to known constraints imposed by leaky buckets. These studies
suppose that the traffic from the sources is adversarial to the extent permitted by the regulators
[2] [1] [5] [6] (4] [3} (8] [7] [11] [13] [10]. Some of these studies assume that the multiplexer provides
deterministic QoS guarantees (e.g., no packet loss) whereas others assume that multiplexer provides
the less stringent probabilistic QoS guarantees (e.g., a limft on packet loss probability).

In a recent paper, LoPresti et al. [8] examine a packet-switched node with regulated traffic.
Motivated by earlier work of Elwalid et al. [3], LoPresti et al. consider both deterministic QoS
guarantees and probabilistic QoS guarantees. They assume that each source is regulated by a simple
requlator, namely, a regulator that consists of a peak-rate controller in series with a leaky bucket.
For deterministic QoS, LoPresti et al. show that if the multiplexer has sufficient link bandwidth and
buffer capacity to provide lossless multiplexing, then the multiplexer’s buffer and bandwidth can be
allocated among the sources so that the resulting segregated systems are lossless. For probabilistic
QoS, they develop a new approach to estimate the loss probability. Specifically, they transform
the two-resource {bandwidth and buffer) allocation problem into two independent single-resource
allocation problems; they then analyze these simpler, independent resource problems, taking on-off
periodic sources for their adversarial sources.

Although the simple regulator is a popular policing mechanism within several standards bodies,
it has been observed that it can often be a poor characterization of a source’s worst-case traffic.
A tighter and more powerful characterization is given by a more general regulator consisting of a
cascade of multiple leaky buckets [5] [4]. For example, when the sources are VBR video sources,
it is often possible to admit significantly more connections by replacing the simple regulator with
cascaded-leaky-bucket regulators [5]. It is therefore desirable to extend the imporfant work of [§]
and {3] to the case of more general regulators.

In this paper we reexamine the model of 8] in the context of generalized regulators, which are

even more general than cascaded leaky buckets. We first reexamine the lossless multiplexer of



LoPresti et al., and extend their lossless results to generalized regulators. Using elementary tools
from calculus, we show that if the original multiplexer is lossless, then it is possible to allocate
bandwidth and buffer to the sources so that the resulting segregated systems are also lossless. We
determine the optimal resource allocations and show that the buffer-bandwidth tradeoff curve is
convex for generalized regulators. We also show that the segregation result does not necessarily
hold for the delay-based QoS metric, even when the regulators are the simple regulators.

We then examine the multiplexer for probabilistic loss guarantees. We use our results for
lossless multiplexing to estimate the loss probability of the multiplexer. As in [8], our estimate
involves the following three steps: (i) choose a point on the buffer-bandwidth tradeoff curve and
transform the original system into two independent resource systems; (i) use adversarial sources
for the two independent.resources to obtain a bound on the loss probabi]ities-for the transformed
system; (i#i) minimize the bound by searching over all points on the buffer-bandwidth tradeoff
curve. Qur principle contribution for probabilistic loss guarantees is an explicit characterization of
the adversarial source for the transformed problem in Step (i7). Importantly, the most adversarial
source is not a periodic on-off source for the transformed problem consisting of two independent
resources. In fact, even in the case of simple regulated sources as studied in [8], the most adversarial
source is not a periodic on-off source. Thus, in addition to generalizing the theory in [8] to the
case of general regulated sources, we provide the true adversarial source for the case of the simple
regula.tof. We also provide an algorithm to ca.lcula.te the estimate of loss probability, assuming the
truly adversarial sources.

We mention here that in [3] the original multiplexor problem is transformed into a bufferless
multii)lexer problem, and then the loss probability is bounded with the Chernoff bound. In this
case, the worst-case adversarial sources are indeed on-off periodic sources. But when the original
problem is transformed into a problem consisting of two independent resources, one bufferless
resource and one buffered resource, the worst-case sources are no longer on-off periodic sources,
even for simple regulators.

This paper is organized as follows. In Section 2 we define the model and the generalized
regulators. In Sectin 3 we address lossless multiplexing. In Section 4 we address lossy multiplexing.
In. Section 5 we provide numerical results for lossy multiplexing of simple regulators, i.e., regulators

consisting of a peak rate controller in series with a leaky bucket.
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Figure 1: Link of capacity C, buffer of capacity B, and J regulators.

2 Regulated Traffic

We consider a link of rate C which is preceded by a finite buffer. Let J be the number of sources that
send traffic to the buffer, and let = 1,...,J index the sources. Each source j has an associated
regulator function, denoted by £;(t), ¢ > 0. The regulator function constrains the amount of traffic
that the jth source can send over an time interval of length ¢ to £;(t). More explicitly, if A;(t) is
the amount of traffic that the jth source sends to the buffer over the interval [0,t], then A;{-) is
required to satisfy

A;(t+ 1) - Aj(r) < &(t)forall 7 >0, ¢t 20.

Figure 1 illustrates a multiplexer consisting of a link of rate C', a buffer of capacity B, and J sources
with regulated traffic functions, £;(¢), j=1,...,J.
A popular regulator is the simple regulator, which consists of a peak-rate controller in series

with a leaky bucket; for the simple regulator, the regulator function takes the following form:
£;(t) = min{p}t ,0? + p}t}.

For a given source type, the bound on the traffic provided by the simple regulator may be loose

and lead to overly conservative admission control decisions. For many source types (e.g., for VBR
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video [5]), it is possible to get a tighter bound on the traffic and dramatically increase the admission

region. In particular, regulator functions of the form
. - m} 1 2 2 L; L;
£;(t) = min{p;t,0; + pjt,...,0;7 + p,; 7t}

are easily implemented with cascaded leaky buckets and can lead to improved admission regions
(see [5]).

In this paper we shall consider extremely general regulator functions, which include as special
cases the forms mentioned above. To avoid certain trivialities, however, we shall always assume
that £;(0) = 0, £;(t) is non-decreasing in ¢, and that £;(t} is subadditive in ¢ (i.e., £;(t; + t;) <
Ei(t1) + €;(t2) for all ¢, and t3). Also, unless explicitly mentioned otherwise, we shall assume that

each £;(t) is concave in £. Let

J
E(ty=) &)

i=1
be the aggregate regulator function. Due to the concavity of the £;(¢)’s, the aggregate regulator
function £(t) is also concave. | '

Before preceding with our analysis of the lossless systems, it is convenient at this point to
introduce some notation and state a few technical facts. Let E}'(t) denote the right derivative
for £;() and £ (t) denote the left derivative for £;(¢). Let £}(t) denote the derivative of £;(t)
whenever the derivative exists at . Similarly define EX(t), £7(t) and &'(t). We will make use of
the following fact: If £(t) is differentiable at ¢*, then all of the £;(t)’s are differentiable at #* (due
to the concavity of the £;(2)'s).

3 Guaranteed Lossless Service and Optimal Segregation
It is well known [2] that the amount of traffic in the buffer does not exceed Bpin, where
Broin = rglggc{'f(t) - Ct} . (1)

(To avoid trivialities we assume that the maximum is attained in (1).) Furthermore, due to sub-
additivity, it is possible to define traffic functions A4;(t), j = 1,...,J, such that the buffer contents
will attain Bin. Thus the minimum buffer size that will guarantee lossless operation is B;,.
Throughout the remainder of this section we assume that the multiplexer is lossless, i.e., we assume

that the multiplexer buffer B satisfies B > Bun.



It will be useful to write (1) in a more convenient form. If £(t) is differentiable then from (1)

we have

Bmin = E(tmax) — Clmax (2)

where £, is any solution to £'(¢) = C. More generally, there exists a tmax such that
£ (tmax) < C < £ (tmax) » 3)

and any fg.x Which satisfies (3) also satisfies (2). Throughout the remainder of this section, fix a
tmax that satisfies (3) (and therefore (2} as well).
. We now address the following question: Is it possible to allocate bandwidth and i)uffer to the
J sources so that each of the resulting segregated systems is also lossless? We shall see that the
answer to this question is yes, but depends critically on the concavity of the £;(2)’s. )
To address this issue, consider a new gystem which consists of a link of rate ¢ preceded by a
finite buffer. Suppose only the traffic from source j is sent to this system. The minimum buffer

size that will ensure lossless operation is
Bunin(j; €) = max{&;(t) — et} . (4)

We say that a collection of J positive numbers cy, . . ., c7 is a bandwidth allocationif 1 +---+¢5 = C.
For a given bandwidth allocation, we create J segregated systems, with the jth segregated system

having link rate ¢; and receiving traffic only from source j.

Theorem 1 1. For all allocations By < Zle Buin(J, ¢5)-

2. If one or more of the £;(t)’s is not concave then we may have By < Z}']=1 Bnin(J,¢;) for

all allocations ¢1,...,cy.

3. If each £;(t) is concave then Bupin = E;Ll Buin(j, ;) where ¢; = £(tmaz) if E(1) is differen-

tiable at t = tmax and where
c; = Sj(tmx) + €7 (tmax) — gj_(tmax)]

with
o= C — E¥(tmax)
T € (tmax) = £ (tmax)

if £(t) is non-differentiable al t = tax.




Proof. The proof of the first claim follows from (1) and (4):

Bmin

J
max{£(t) - Ct} = Igggi;{fj(f) - ¢jt}

J J
< Zm&){{gj(t)—cjt} = Y Bumin(d, ;)

i=1 20 =1
For the second claim, we offer the following counterexample with J = 2, C = 1. The envelope

function for the first source is:

[ fo<t<1
1 if1<t<3
E1(t) = ¢ nrats
1+(t-3) if3<t<4
| 2 ift>4. :

The envelope function for the second source is:

2% f0<t<2
4 ift>2.

gg(t) =

It is easily seen that Bpin = 3 whereas Bmin(1,¢1) + Bmin(2,¢2) > 10/3 for all allocations. Note

that both £,(t) and £;(t) are non-decreasing and sub-additive. However, £,(t) is not concave.
For the third claim, we first show that ¢,...,c} is a feasible allocation. Suppose that £(2) is

differentiable at ¢max. Due to the concavity assumption, this implies that each of the £;(¢)’s is

differentiable at ¢,,x. Thus

J J
D6 = 2 € (tmax)
i=1 i=t

= E'tmax) =C .

If £(t) is not differentiable at ¢ = #y,x, then it is easy to show directly from the definition of the ¢}'s
that ¢} + -+ + ¢J = C. It remains to show that By, = Z}Ll Bumin{J, ¢}). For a fixed transmission

rate ¢, the concavity of the £,(¢)’s and (4) imply
Bmin(j': C) = gj(t‘) - Ct* [}

where t* is any t that satisfies
+ -
ET() e &7 (1) (5)
By the definition of cj,

gj(tnmx) < C; < 53—(tmax) .
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Thus, tmax is a ¢t that satisfies (5) for ¢ = ¢]. Therefore,
men(]a C;) = gj(tmax) - c;tmx ’

which in turn implies

J J
E Brin(3, c;) = Z[“:J'(tmax) - c;tmu]

j=1 7=1
= &(tmax) — Ctmax = Bmin -

[

¥From Theorem 1 we know that it is possible to allocate bandwidth and buffér so that the

resulting segregated systems are lossless, provided that the regulator functions 'a.re concave. This

result generalizes a result in [8], in which all regulators were assumed to be simple regulators. This

result also provides a motivation for the approach we take in Section 4 when we study probabilistic
QoS.

Theorem 1 also gives fairly explicit formulas for these optimal allocations. In the followiné

subsection we outline an efficient algorithm for calculating the allocations.

3.1 Algorithm to Calculate Allocations

In this subsection suppose that each of the regulator functions takes the form of cascaded leaky
buckets:
£;(t) = min{pjt,o? + p3t,.. .,crf"' + pfit} .

Without loss of generality we may assume that

0=a}<a§<---<cr_f" (6)
and
L‘
py>pi> > p7 . (7)
Let +1 _
T!-i_:ﬁ [=1.2 L:—1
- ’ I Bk B R | .
TPk — it

In order to avoid trivialities we assume that

2 Li—1
TH<T?<---<T;77 . (8)

With these assumptions, T} < T? < --- < TJ.LJ' ~! are the breakpoints of £;(t).



Here is an efficient algorithm for determining the optimal allocations cf, ..., ¢} defined in Theo-
rem 1. First sort TJ‘,! =1,...,L;j=1,...,J,in increasing order. Number them as T}, T3, ..., Y.
These points are the break points of £(¢). Let k be the maximum ! such that £~(T}) < C. Note
that to calculate £~ (7}) it suffices to calculate £ (T} for j = 1,...,J; and to calculate £ (Ty), we
can determine the /; such that T;’ <Ti < T;"H and then set £ (T7) = p;f"'l if T;’ < T and set

- .
£5(T) = p; T} =T

The #max in Theorem 1 is T;. Once having determined k, find &; such that T;c’ <T: < Tf’ +t

and set ¢} = p'-" i Tf’ < Ty or set ¢} = pf-‘ + a(p;rﬁl - p;.‘i) if TJ-k 7 = T, where o is defined in

Theorem 1 and can also be determined directly from the pg- ’s.

3.2 The Buffer-Bandwidth Tradeoff Curve -

For a given link rate C let Buin(C) be the maximum buffer contents defined by (1).The function
Brin(C) is called the buffer-bandwidth tradeoff curve. For a probabilistic analysis in the next
section, it will be useful to understand the behavior of the buffer-bandwidth tradeoff curve. To
this end, for each fixed C let ¢(C) be a value of t,ac that satisfies (3) It is easily seen that ¢{C) is

non-increasing in C.
Theorem 2 Bnin(C) is non-increasing and convez in C.
Proof. We first show that Buis(C) is non-increasing. Let h > 0. From (2) we have
Buain(C) = Bemin(C' + b} = E(H(C)) - E(UC + R)) + (C + ) (C + k) - HC)C . (9)

From the concavity of £(t) we have

E(t(C)) — EUC + h))

E(HC) < t(C)— t(C + k)

(10)

From (3) we have
C < E7(HC)). (11)
Combining (9)-(11) gives
Buin(C) = Bain(C + h) 2 E-(HCNHC) = tC + h)] + HC + h)(C + k) - HC)C
> CIHC) - 1C + h)] + t(C + h)(C + k) — t{(C)C
HC + h)h > 0,

It

which proves the first statement.



For the convexity of Bnin(C), let C; < C7 and let A > 0. We must show
Bnin(Cz 4 ) = Bmin(C2) > Bmin(C1 + k) = Buin(C1) . (12)
By (2) it is equivalent to show

EX(C2+ h)) = E(t(C)) + £(2(C1)) — E(H(C1 + h))
> t(Cg + h)(02 + h) —t(Cq)C2 - t(Cl + hYC1 + h) +t(Cy)Cy . (13)

Using the arguments in the proof of monotonicity, we have

E(t(C3)) - E(UCa 1 1))

(Co-tCrtw SOt (14)

and -
E((C1)) — E(K(Cy + h))

WCy—HCithy 2O (15)

Combining (13), (14) and (15) we obtain (12). =

From Theorem 2 we know that Bpin(C) is a decreasing convex function of C. If each of the
regulator functions £;(t) is piecewise linear, then it is easily shown that Bmin(C) is a decreasing
convex piecewise-linear function. Using the arguments in the proof of Theorem 2, it is straightfor-
ward to show that the optimal allocation ¢} for the jth segregated system is increasing in C and

that the buffer requirement for the jth segregated system, Bumin(J, c‘;), is decreasing in C.

3.3 Delay Metric

In Subsection 2.1 we showed how to allocate bandwidth so that, for lossless operation, the collecti—e
buffer requirements of the segregated system is equal to the buffer requirement of the multiplexed
system. In other words, for the buffer metric we can find a bandwidth allocation such that the
segregated system performs as well as the multiplexed system. In this subsection we briefly consider
a natural delay metric. We show that it is not generally true that the segregated system performs
as well as the multiplexed system for the delay metric.

For the multiplexed system the maximum delay is € := Bmin/C. For the jth segregated system
with bandwidth ¢; the maximum delay is d(j,¢;) := Bmn(J, ¢j)/cj. For a given allocation, we
define the maximum delay of the collective segregated system to be the maximum of the maximum

delays of the individual segregated systems, that is,

dseg = lrélja.sx-] d(]? Cj) .
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The following theorem draws comparisons between the maximum delay of the multiplexed system,

d, and the maximum delay of the collective segregated system, d,.,.
Theorem 83 1. For all allocations d < max;¢;j<s d(j,¢;) .
2. There ezist concave £;(t)’s such that d < maxi<j<yd(J,¢;) for all allocations.
3. If £4(t) = - - - = £4(t) (homogeneous regulator functions), then d = mé-xlgng d(j,c/J).

Proof. From Theorem 1 we have
' J
Brin < EBmin(j: c,-) .
i=1 :
Dividing both sides of the above by C = ¢1 + ...+ ¢; and using the inequality

o R 2 PR/
ittty 1 Y

we obtain

4 < Tl Buin(d,¢5) < max {Bmin(jjscj)}

- Y e € Tgs g
= )

which establishes the first claim.
For the second claim we offer the following example: C =1, J =2, £1(¢t) = 10 for all £ > 0 and

2% f0<t<5
10 ift>5.

gz(t) =

From (1) we have d = 15, d(1,¢1) = 10/¢;, and d(2,¢3) = 10/cy — 5. It is easily seen that for all
allocations max(10/¢y, 10/e2 — 5) > 15.
The third statement follows directly from (1) and the definitions of d and d(j, C/J). =

For the remainder of the paper we will use the original buffer metric.

4 Statistical Multiplexing with Small Loss Probabilities

For VBR sources the admission region can typically be made significantly larger by allowing loss to
occur with minute probabilities, e.g., loss probabilities on the order of 10~8. In this section we use
our results of Section 3 to derive the worst-case loss probabilities for the multiplexer with regulated

traffic.
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We consider the same system defined in Section 2: The multiplexer consists of a link of rate
C which is preceded by a finite buffer. There are J sources and the jth source has an associated
regulator function, denoted by £;(t), t > 0. In this section we suppose that the system resources
are not sufficient to provide guaranteed lossless service. In other words, we assume B < Brin(C),
so that there exists arrival processes which meet the regulator constraints but which cause the
buffer to overflow. Let B, denote the expected fraction of time during which the buffer overflows.
Our goal is to determine a bound for B, that holds for all combinations of arrival processes which
meet the regulator constraints. To this end, we follow the methodology in [8] (which in turn is
inspired by the paper (3]).

Let a;(t) be the rate at which source j transmits traffic at time . We view {a;(t), t > 0} as
a stochastic process. Our goal js to find independent rate processes {e;(t), t>20},5=1,...,J,

which maximize the loss probability over the class of all rate processes that meet the regulator

constraints. To simplify the analysis, however, we only consider rate processes of the form
aj(t) = b;(t + 6;),

where ;(t) is a deterministic periodic function with some period 7}, and 6; is a random variable,
uniformly distributed over [0,7;]. We assume that the phases #,,...,8; are independent, which
implies that the rate processes {a;(t), t > 0}, j = 1,...,J, are also independent. We refer to b;(t)
as a source-j rate function.

We say that a source-j rate function b;(t) is feasible if
t+r
] bj(s)ds < () forall T >0, t>0. (16)

Note that for a given rate function b;(t) and phase §; the amount of source-j traffic sent to the

multiplexer over the interval [0,¢] is
t
A1) = /0 b,(s + 6;)ds.
Thus the regulator constraint
Aj(t+1)—Aj(r) < Ei(t)forall T>0, >0

is satisfied if and only if b;(t) is a feasible rate function.
As in 8], our derivation of a bound for P involves the following three steps: () choose a point

on the buffer-bandwidth tradeoff curve and transform the original system into two independent
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resource systems; (i) use adversarial rate functions for the two independent resources to obtain a
bound on the loss probabilities for the transformed system; (ii¢) minimize the bound by searching
over all points on the buffer-bandwidth tradeoff curve. LoPresti et al. use an on-off rate function
for their worst case rate function. Our approach differs from that of [8] in two respects. First,
we allow for generalized regulators as opposed to simple regulators. Second, we derive the true
adversarial rate functions, and employ these true adversarial rate functions in the bound for B,

for both simple and generalized regulators.

4.1 The Virtual Segregated System

Fix a point (C,, B,) on the buffer-bandwidth tradeoff curve, and consider a lossless multiplexer
with total amount of bandwidth C, and buffer space B,. Because the system resource pair (B, C)
lies below the buffer-bandwidth tradeoff curve, we must have either C, > C or B, > B or both.
For this lossless system we use Theorem 1 to allocate bandwidths ¢f,...,c} from C, and buffers
b¥,...,b4 from B, such that each of the corresponding J segregated systems is lossless. This
collection of J segregated systems is called the virtual segregated system [8].

For each j = 1,...,J, fix a feasible rate function b;(¢). Each rate function generates a stochastic

arrival process

A1) = fo by +8;)ds.
For this arrival process, let U; be a random variable that corresponds to the steady-state utilization
of the jth segregated system; similarly, let V; be the random variable that corresponds to the steady-
state buffer contents of the jth segregated system. Because the #;’s are independent across the
sources, U, ...,y are independent of each other and Vj,...,V; are independent of each other.

For these fixed rate functions it can be argued [8] that

J J
Boss <P Ui >C)+ P(D_V; > B). (17)

i=1 i=1
{(The argument in (8] is for a simple regulator. It can be easily extended to our generalized regula-
tors.) The equation (17) is the starting point of our own analysis.

Using the Chernoff bound we get

[T M (o) | T MY (a)
Hms?é%{_‘:’leT%__ +I;1§g _';':_QBVJ_ (18)
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where My () and M} (a) are the moment genrating functions of U; and V; repectively, i.e.,
My (a) = E[e*Vi] and My (a) = E[e*¥]. Since (18) is valid for all points (C,, B,) on the buffer-

bandwidth tradeoff curve, we have

. [T MY (@) i AC
Boss < (cl‘ly]‘%ly) {ﬂ]é%{ : leaOUJ +Ianég~ : leaBVJ( ) (19)

We emphasize that the right-hand side of (19) depends on the fixed feasible rate functions. In
order to give a bound that holds for all feasible rate functions we need to maximize the right-hand
side of (19) over the set of all feasible rate functions. To this end, we introduce the notion of a
_source-j adversarial rale function.

Corresponding to each choice of (v, &), we say that a source-j rate function is adversarial if (1)
it is feasible, and (i%) it has theia._rgest value of My, (a) and M“}j(a) among all feasible source-j rate
functions. Now suppose that we can find the source-j adversarial rate functions for each choice of
(a)let U, V5, i=1,...,J, be the corresponding steady-state random variables. We then have
the following bound on Hg.s: -

[ (MaMe@) [T My(e)
Plosss min min T + min { — _eaB (20)

a>0 x>0

Note that by using Mi‘},(a) and M¥.(a), which corresponds to the source-j adversarial rate func-
F) 2
tion, we have obtained in (20) a bound on P, that is valid for all combinations of feasible arrival

functions. We now proceed to characterize the adversarial rate functions.

4.2 Adversarial Sources

Throughout this subsection fix a v, @ and j. We now focus on determining a feasible rate function
which maximizes both My (a) and My {a) over the set of feasible rate functions. We assume that

the regulator functions have the form
E.(t) = mindplt, o2 24 L Li't
;(t) = min{p;t, 07 + pjt,. .., 07 + p; }.

Note that £;(t) is non-decreasing, concave, piecewise-linear and sub-additive. (The analysis that
follows can easily be extended to the case of more general £;(t) which are non-decreasing, concave
and sub-additive.) Without loss of generality we also assume that (6), (7) and (8) hold. Note
that the manner in which the allocations (c,...,c%) are chosen (see Theorem 1) ensures that

L;

P; <t <piforalj=12,...,7J.
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For a given feasible rate function ;(¢) with period T}, the arrival rate at time t is a;(t) = b;(t+6;)
where §; is uniformly distributed over [0,7}]. Corresponding to this a;(t) arrival rate process, let
vj(t) be the buffer contents and u;(¢) be the link utilization at time ¢. Note that v;(t) and u;(t) are
periodic with period T;. Also the steady-state random variables corresponding to v;(t) and u;(t)

have distributions

TJ
P(V; <z)= Ti jo 1(v;(s) < z)ds

7
- and

P(U; < 2) = Tl"} /o " Luy(s) < 2)ds .

Note that these distributions do not depend on the phase 8; and are completely determined by the
rate function b;(¢) and the link rate c¥.
Throughout the remainder of this subsection we treat the case cf > pfj. In the following

subsection we deal with the simpler case ¢} = pf’. Let

£it)
t

6; = max{t>0: > ¢’} (21)

Note that since pfj < < p} and since £;(-) is an increasing concave function, §; is a uniquely
defined, finite and strictly positive number. We now define an important class of rate functions.
Let Tof be such that 0 < Tog < §; and let

£i(Tom)

L,

P

T; =

Now consider a rate function ;(¢) with period T; defined as follows:

EHt) 0Kt < T

bi(t) =
0 Tog <t < Tj

Such a rate function is pictured in Figure 2.

This rate function is completely characterized by the parameter T,g. Note that the average
arrival rate for this rate function is simply pf’ . Let §; be the collection of all rate functions of this
form. Each rate function in §; is identified through its Tog parameter.

We will show that the set S; has the following important properties:
1. Each member of 5; is a feasible source-j rate function.

2. All members in §; have identical My (a), and the members of §; maximize My; () over the

. set of all feasible source-j rate functions.
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b;(t)

; + . —t ' _j : 1 P—
toff TJ‘ QTJ' t

Figure 2: Example of a rate function in Set §; when t,g = 3 and £;(¢) = min{3¢,2.5 + 0.5¢}.

3. The member in §; which has the largest My () has, in fact, the largest My () among all

feasible source-j rate functions.

Hence, we will have shown that in order to find the source-j adversarial rate function corresponding
to each choice {v, @) we need only consider the rate functions in the set §;. Further, since the rate
functions in §; are characterized by a single parameter, T, this essentially involves a single-
parameter optimization problem. We now proceed to formally state and prove the properties listed

above.
Theorem 4 Fvery member of §; is e feasible rate function.

Proof. Fix a Tog and let b;(¢) be the corresponding member of §;. It follows immediately from

the definition of b;(t) that

t
/ by(s)ds < £;(t) for all 0 < t < T;. (22)
0
We can, in fact, show that
t
/0 by(s)ds < £;(¢) for all ¢ > 0. (23)
To see this consider any arbitrary ¢t = nT;+ s, where n is some non-negative integer and 0 < s < T}.
i T; nT; nT;+s
f b;(s)ds = j bi(s)ds + ...+ b(s)ds + b;(s)ds
0 H] n—-1)T; nT;
< nlyp)? +&5(s)
< (Ei{(nTj+ 8) — €5(5)) + £5(s)

£i(t).

The first inequality follows from (22) and from the fact that the average rate of b;(t) over any

period is pL’ . The second inequality follows because the slope of £;(¢) is never less than L
J J Pj
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Also, because b;(t) is non-increasing over each of its periods, we have
t+1 t
/ bi(s)ds < j b;(s)ds for all 7 > 0, ¢ 3> 0. (24)
T 4]
Combining (23) and (24) gives the desired result. m
Theorem 5 Each member of 5; mazimizes My () over the set of all feasible rate functions.
Proof. Each rate function in §; leads to the following form for u;(t), the utilization of the jth

segregated system: u;(2) is periodic with period T;; and

u;(t) =

ek
IA
[ ™

AN
&
=]

Ei(Tom Pl
where Dy = =835 = (-‘—c;, )T;.
bl

The corresponding steady-state random variable is
Lj
¢; with probability fg;f
Uj = S ¥ (25)
0  with probability (1 — fg';—
Note that E[Uj] = pf‘f.
For any feasible source, the steady state rate at which traffic leaves the jth segregated system,
U J' (say), must have a peak value less than or equal to ¢}. Further, because the segregated system
is lossless, the long-run average rate at which traffic departs the jth segregated system must equal
the long-run average rate at which traffic enters the system, which is at most pf’ . Hence, we must
have E[U ;] < pfj. Among all random variables which have a peak value less than or equal to ¢¥ and
a mean value less than or equal to pf’, U; as defined in (25) has the highest moment generating
function, M['}J_(a). This is shown in the following argument (adapted from [9]). Let U ;, be any
non-negative random variable with distribution FU;_(x) with a peak value ¢ < ¢/ and mean value

u < pf’. Then, since e > 0,

P P ¢
M (o) - Myle) = (Zyed =B [" emary ()
1 1

i

”" act  H ¢

> (e B _ [* (e~ 1)dF,.

> (et -5 - [ - DaFy )
1 c' ac? v ax

= ;;jo [2(e = 1) = (e = D]dFy(2)
2

> 0.
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Let b7(¢) be a rate function in S that has the largest My (o).
Theorem 6 b}(t) mazimizes M"}j(a) among all feasible rate functions.

Proof. Consider any feasible source-j rate function b;(¢) with period 7;. The actual arrival rate
at time t is a;(t) = b;(¢t + 6;) where 8; is the random phase. Here, we are concerned only with
*he steady-state distributions of the buffer contents and the utilization rate of the jth segregated
system which are independent of the phase. Hence, in the rest of the proof, we will, without
loss of generality, set the phase to zero and consider b;(t) to be the arrival rate at time t. The
corresponding buffer contents process, v;(t), is also periodic with period Tj.

In general, both b;(t) and v;(t) can have rather complicated forms with several intervals within
a period where each is non-zero. However, we will first show the desired result fér feasible rate
functions that give a buffer content process of the form v;(t) > 0 for 0 < t < 7; and v;(¢) = 0 for

1; < t £ T, for some 0 < 7; < T;. For rate processes of this form we have

fibi(s)ds ~ est 0<t<T;
o T ST,

vi(t) =

Note that, since v;(¢) > 0 for all 0 < ¢ < 7;, we must have
T <65 (26)

We show next that My, (a) corresponding to such a feasible rate function is smaller than that
corresponding to b7(t). We do this by showing that there is a rate function in set 5, b;(2), with
steady-state buffer contents f", which is stochastically larger than V; and which, hence, has a larger
MGF (moment generating function).

Let Toi be such that £;(Tog) = ¢j7;. From (26) and (21) we get, £;(Tog) < &;(m;) if 73 < §;
and £;{Tog) = £j(é;) if 7; = é;. Hence, since £;(-) is non-decreasing and §; is uniquely defined,
Tof < 1j < 8;. By definition, the rate function in §; corresponding to this T, is periodic with

period TJ = QJLLTJ:“’—‘Q and has the form
pJ

Sj(t) 0<t<LTog

bi(t) = ]
0 Ta<t<T;.
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The corresponding buffer contents at time ¢, ¥;(¢), is given as

Eit) -t 0<t< Top
Bi(t) =9 Ei(Tog) —cit TogSt< T
0 T5 S t S Tj

Denote the corresponding steady-state random variable as 173
Clearly, v;(t) < #;(t) for all 0 < ¢t < T,g. Note, also, that we cannot have v;(t) > %;(t) for any
Tog £ t < 7 since that would require v;(t) to decrease at a rate strictly faster than ¢}, in order for

both v;(¢) and #;(t) to be zero at r;. Hence, we get

‘Uj(t) < !_)J'(t) foral0 <t < Ti. (27)

Also, we can show that
T;27T;. (28)
To see this, note that the utilization rate of the jth segregated system with arrival rate b;(t) is ¢f

whenever v;(t) is non-zero. Hence, P(U; = ¢¥) > ﬂ- Also, since the average utilization rate must

be equal to the average arrival rate, which in turn is smaller than pf’ ,

L v 14 IJT‘
p;” 2 E[Uj} 2 c{P(U; = ¢§) 2 ¢
J

and so,

S i - 55(?91‘) =T
}
P; Pj
Equations (28} and (27) imply that

P(Vi>z)< P(V;>z)forallz > 0.

We have thus shown that V; is stochastically smaller than V; and hence has a smaller MGF. It
is immediate from the definition of b7(¢) that My (a) is smaller than that corresponding to b3(¢).
We now extend this argument to the case of a general feasible rate function b;(t). Assume,
without loss of generality, that the corresponding buffer content process »;(f) has m (some posi-

tive integer) non-zero portions within a single period, identified by v},v2,...,v" in the following
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manner:
.

0 0<t <l
vit—tl) <t 4o
sy=1 S Gt
v;n(t—t;-“) tr<t< 4T
| 0 TS T,
where 7} > 0,4 =1,2,...,m, and t: > tj'_l + T;_l, i=2,...,m. Here, ! and t} + ! represent the

_ endpoints of the ith non-zero portion.

We can express each non-zero portion vj—(t) as a periodic function, with period Tj, of the

following form:

2

/:}+tb (2)d .
. (8)ds—cit 0<t< 7!
vje)=q 8 7 ’ ’
0 T, ; <tLT;.
Let V} denote the corresponding steady-state random variable with MGF My, ().
7

It is easily seen that

1 : il i ;
V! with probability (E:i_";") T;
V*  with probability (m) T;

and hence,

m i
My ()= (—-,—n-lw;) Mi(a) . (29)

=1 =17y
Now, the ith non-zero portion, when viewed in isolation, has the simple form assumed in the

earlier part of the proof, and can be viewed as the buffer contents at time ¢ of the jth segregated

system subject to the following arrival rate:

bi(ti+1) 0<t<

bi(t) = .
1'; St_(_TJ' .

Note that b;(t) is also a feasible source-j rate function with period T;. Hence, from our earlier
argument, we know that M};(a) is smaller than the MGF that corresponds to b7(¢). Hence, from
(29), we get that My (o) is a,iso smaller than that corresponding to b7(t). We have thus shown that
b3(t) maximizes M{’G(a) over the set of all feasible source-j rate functions. n

From Theorems 5 and 6 the following corollary is immediate.
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Corollary 1 There ezists a rate function belonging to S; which mazimizes both My (@) and MY ()
2
over the set of all feasible source-j rate functions. This rate function is the required source-j

adversarial rate function corresponding to (v, a).

L; . . . .
Thus, when ¢; > p,”, in order to find the source-j adversarial rate function corresponding to any

choice of (v, a) we need only consider the rate functions in set S;.

Vo Ly
4.3 The Case of ¢/ = p;’

We now deal with the special case of ¢} = pf". When ¢} = pfj it is easily seen that the adversarial

source-j rate function has the following form:

bi(t) = £F(t) forall t > 0.

Clearly, this rate function satisfies (16). We will drop the requirement of periodicity for this special
case and consider this rate function to be feasible. (Alternatively, we could consider this rate
function to be trivially periodic with a period of +00.} This rate function leads to the following

degenerate form of the corresponding steady-state random variables:
Ur =c¢; with probability 1
Vi =1b! with probability 1
with corresponding MGFs

1’3

Mp(a) = €79
J

Mbu(a) =
J

which are clearly the largest possible values for these quantities.
In the next section we consider input sources that are constrained by simple regulators and

describe a heuristic procedure to efficiently compute P for this case.

5 Simple Regulators

In the last section we showed that for each segregated system there exists a rate function in 5
which is adversarial to the greatest extent possible permitted by the regulator constraint £;(2).
The set S; includes the extremal periodic on-off rate functions studied in LoPresti et al. [8]. It
is therefore natural to pose the following question: Is the extremal periodic on-off rate function

adversarial?
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Rate Function | Ton | Tog | T Don D.g
g a aP gP 1-p4+P(1-1/c
1 P |lo | sP-a) | TPa) | T 5P
2 e | a ac _a. z
e=p | P plc=p) | c=» )
g g | ctup (upt+oi(c—n)
3 u 2 u+ y - e

Table 1: On and off times of rate functions and corresponding segregated systems.

In this section we focus our attention on simple regulators £;(¢) = min{p},o? + p2t}. We
first show that the adversarial rate function in S; is not the extremal on-off rate function used in
LoPresti et al. This implies that the use of on-off rate functions, as in LoPresti et al., can lead to
overly optimistic admission regions. We then present an algorithm for calculating Foes using the
adversarial rate functions for each of the sources. This involves, for each source jf, a search to find

the Tog that leads to the most adversarial behavior.

5.1 Sub-Adversariality of On-Off Rate Functions

Fix a segregated system j. For ease of notation, let P; = Ph i = p? and 0; = a}-; the traffic
constraint function is thus given by £;(t) = min(P;t, o; + p;t). We study 3 different rate functions,
all complying with the imposed traffic constraint function. All these rate functions belong to §;.
Figure 4a gives the plots of the traffic constraint function, £;(t), and the actual arrivals, A;(t), of
the studied rate functions. Figure 4b depicts the arrival rate function b;(t). Figure 4c gives the link
utilization u;(t). Figure 4d shows the buffer contents of the segregated system. Note that traffic
leaves the segregated system at rate ¢; whenever the buffer is nonempty. For the remainder of this
section, we remove the subscript j from all notations.

Rate function 1 is the extremal on-off rate function used by Elwalid et al. [3] and LoPresti et
al. [8]. It transmits at peak rate P for Ton, = /(P —p), at which time the token pool is completely
emptied. The rate function then turns off and waits for To, = o/p, allowing the token pool to
be refilled with ¢ tokens. The rate function then transmits the next burst of size PT,n, at peak
rate. The buffer is filled at rate P — ¢ while the source transmits at rate P. The maximum buffer
contents is therefore b = (P — ¢)Ton, - After the source has turned off, the buffer is drained at rate
¢. The utilization of the segregated system is ¢ for Don, = Ton, + bfc and 0 for Doy = Tom — bfc.
Rate Function 1 along with the other two rate functions are summarized in Table 1.

Rate function 2 transmits at peak rate P for Top,, it then continues sending traffic at rate p
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Figure 3: Mlustration of rate functions 1, 2 and 3. (a)} Amount of traffic arriving to the segregated
system A;(t). (b) Arrival rate process b;(t). (c) Utilization process u;(t). (d) Buffer content process

vj(t).
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into the segregated system until the corresponding buffer process hits zero. As is the case for rate
function 1, the buffer is filled up to & at rate P — ¢; it is now however drained at rate ¢ — p. The
source transmits therefore greedily for Ton, = Ton, + b/(c — p). It then shuts off, waits until the
token pool is replenished and repeats the described transmission pattern.

Rate function 3 generalizes the rate function behaviors discussed so far. It transmits greedily
for 4, Ton, < 4 < Ton,, that is, it transmits at rate P for T,,,, and then at rate p for u — Tp,p,,. The
corresponding buffer process is depicted in Figure 4d. The buffer is filled to b at rate P — ¢. It is
then drained at rate ¢ — p during the interval {T,,,,, u]. Let v(u) denote the buffer contents at time
u; clearly, v(u) = o + u(p ~ ¢). The remaining traffic v(u) is drained at rate ¢. Loosely speaking,
rate function 3 lies between the extremes of rate function 1 and rate function 2: it is equivalent to
rate function 1 for u = T,,, and is equivalent to rate function 2 for u = Ty, .

We now turn our attention to the buffer processes of the described rate functions. Let V4, V;
and V3 be random variables denoting the buffer contents corresponding to rate function 1, 2 and

3. It can be easily verified that V; and V; have identical distribution functions:
P(V1_<_:r)=P(V2§:c)=1—w+m% 0<z<b, (30)
where w = p/c is the long run probability that the segregated system is busy. The distribution

function of V; is given by

1—“’+’3%‘{”“T_5P-p})3;u+a for 0 < = € v(u)

P(V3<z)=
(Va<2) l-wtz¥r—7 4 i forv(u) <z <b
b (e~p)(upteo) T {c—p)(uota) — (c—p)c =T ="

Next we show that V3 is strictly stochastically larger than V; and V; whenever Ton, < u < T, .

First, note that
Pg
(P=p)(put o)

Furthermore, it can be shown that

<1 foru>Tg.

w co up? p* <Y
i

r—- + -
b(c—p)up+o) (c—p)upto) (c—p) b
for u < Ton, and z < b. Hence,

P(Va<z)< P(V1 <z) for0<z<hb (31)

Thus V3 is strictly stochastically larger than V; and V5. This implies that the moment generating
function of V5 is larger than that of V; and V;. The loss probability computed with rate function 3
is therefore larger than that corresponding to rate functions 1 and 2. Rate function 1, which is

used in LoPresti et al. , can therefore lead to overly optimistic admission decisions,
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My (o) |1-w+ grtzro{ e + cige™ - 75}

PR | et el = e + gy - Dewt + 5}

M) | gty (P lo®v(u) - 2av(u) + 20e*™ + (o2 - 20b + 2)e=® — BE )
P2 | s (5 epu + a0 + plem ) - 12oe + F2)

Table 2: The moment generating function of the buffer process V3 and its derivatives

5.2 Finding the most adversarial Rate Function

In this subsection we espouse the problem of finding the most adversarial rate function among the
rate funcions fitting the template of rate function 3. Toward this end we need to find the on-time
u that maximizes the moment generating function of V3. The moment generating functin of V3,
defined as My,(a) = E[e*"3], and its derivative with respect to u are given in Table 2. The table
gives furthermore the first and second derivative of My,(c) with respect to s. These expressions
are needed for the computation of B (see Section 5.3).

Setting & My, (a)/0u to zero, we obtain

w —a(c— u_(P—p)eab_'P(l‘_w)
) R s o s (32)

(apu + ao +

It can be shown that (32) has exactly one solution in [Ton,, Ton,]. It can be computed efficiently
with Newtons method [12] using (Ton, + Ton;)/2 as initial solution. We observed in our numerical
investigations that (Ton, + Ton, )/2 provides in many cases a good approximation of the solution of
(32). Rate function 3 with u = (Ton, + Ton,)/2 may therefore be used as an approximation of the

most adversarial rate function.

5.3 Numerical Examples

In this subsection we report on some numerical investigations with the most adversarial rate func-
tion. For the computation of Fes we essentially follow the numerical procedure outlined in LoPresti
et al. [8]. In addition to the computations conducted by LoPresti et al., however, we solve (32) in
order to find the most adversarial rate function.

We compare our approach with that of Elwalid et al. [3] and LoPretsi et al. in Figure 4. We
use the same two source classes (see Table 3) as LoPresti et al. in [8, Fig. 15]. They in turn use the

same parameters as Elwalid et al. in {3, Fig. 13]. The bandwidth and buffer size are C' = 45 Mbps
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class | p(Mbps) | P(Mbps) | o(cells)
1 0.15 1.5 225
2 0.15 6 24.4

Table 3: Leaky Bucket parameters of sources.

180 T T - T T T
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140 -
120 | .
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0 L L 1 1 1 Y
0 20 40 211) 80 100 120

Figure 4: Comparison of our approach with Elwalid et al. [3] and LoPresti et al. [8].
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Figure 5: P as a function of buffer size B.

and B = 1000 cells (1 cell = 53 bytes) in this example. The figure depicts the admission region
corresponding to the admission control criterion Ay < 1077, We observe that employing the truly
adversarial rate function results in an admission region that lies generally between that of Elwalid
et al. and LoPresti et al.. Because we are using the truly adversarial sources, our approach has a
smaller admission region than LoPresti et al.. Our approach admits slightly less connections than
the approach of LoPresti et al. in the range 0 < k; < 75. For &; = 0, we admit 172 connections of
class 2 while LoPresti et al. allow 175 connectjons. The gap between the two approaches widens
for k1 > 75. This is due to the fact that the optimal resource allocation according to Theorem 1
allocates ¢4 = p; in this region. Rate function 3 degenerates to the form described in Section 4.3
for this allocation. The moment generating function of this rate function is significantly larger that
that corresponding to rate function 1, resulting in a noticably smaller admission region for our
approach. The gap is at its widest for k; = 81. Our approach admits 41 connections of class 2 wile
LoPresti et al. admit 51 connections.

In Figure 5 we consider a single source class with P = 5 cells/sec, p = 2.5 cells/sec and ¢ =

20 cells. (This choice of paramters is inspired by Oechslin [10].) We consider transmitting the -
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traffic of 200 of these sources over a link of capacity C' = 575 cells/sec. The figure shows B,
computed according to our approach (RRR) and LoPresti et al. as a function of the buffer size
B. We observe that both approaches give about the same loss probability for buffers smaller than
800 cells. For large buffers, however, the approaches differ greatly. For B = 1400 cells the loss
probability computed according to LoPresti et al. is about one order of magnitude smaller that
that computed with the most adversarial rate function. For B = 1700 cells the gap widens to
roughly two orders of magnitude. We conclude from the figure that the approach of LoPresti et al,

can significantly underestimate the loss probability.
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