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Abstract—A novel approach entitled ”Joint Angle and De-
lay Estimator and Detector”, or simply JADED, is presented.
This approach allows simultaneous estimation of number of
coherent/non-coherent sources and joint estimation of the angles
and times of arrival of each source. The system is composed of a
Uniform Linear Array (ULA) receiving known OFDM symbols
from a user in an indoor environment, which is rich in multipath.
Therefore, the objective is to apply the JADED approach to this
scenario, which allows extraction of the Line-of-Sight component
based on the first arriving path. The first method, called JADED-
RIP, makes use of the Rotational Invariance Properties (RIP)
of ULAs and OFDM symbols, detects the number of multipath
components, and estimates the angles and times of arrival of
each path by performing a 2D search. The second method is
a Computationally Efficient Single Snapshot (CESS) version of
the JADED-RIP, i.e. it requires a 1D search followed by a least
squares fit, and can only be used when a single OFDM symbol
is available. Future insights are given in the Conclusions section.

Index Terms—JADED, Angle-of-Arrival, Time-of-Arrival,
Joint Estimation, Detection

I. INTRODUCTION

Localization has been one challenging topic over the past 60
years. In fact, the location can be determined by estimating
signal parameters that are directly related to the users posi-
tion, such as Angle-of-Arrival (AoA), Time-of-Arrival (ToA),
and so forth [1]. To estimate these signal parameters, the
Maximum Likelihood (ML) technique was one of the first
to be investigated [2]. However, it is highly computational,
as it requires a multidimensional search. Moreover, subspace
methods, such as MUSIC [3] and ESPRIT [4], were proposed
as computationally efficient solutions to estimate signal pa-
rameters. However, they perform poorly in case of a single
snapshot or coherent sources, i.e. multipath propagation or sig-
nal jamming. The spatial smoothing preprocessing technique
[5] was discovered to overcome this issue, but it reduces the
effective number of antennas. Additionally, ML and subspace
techniques require the knowledge of number of sources.

Inspired by the idea of resolving more sources using fewer
antennas, Joint Angle and Delay Estimation (JADE) was
proposed in [6], which makes joint use of spatial and temporal
diversity. As a response, methods were implemented so as
to solve the JADE problem, such as [7], [8]. Even these 2D
methods couldn’t estimate the signal parameters of multiple
sources using a single snapshot, unless a 2D preprocessing

technique is applied, such as spatio-frequential smoothing [9].
Nevertheless, algorithms that are based on an efficient ML
estimator [11] can jointly estimate ToAs and AoAs in the
presence of coherent signals and a single snapshot. Other
methods that use 2D-Matrix Pencils (2DMP) operate only
with a single snapshot, thus coherent sources is not issue for
these type of methods. Unfortunately, all these methods require
the knowledge of the number of sources or multipath, which
is generally unavailable and has to be estimated from data.
Source detection is a well known problem in signal processing,
where one has to estimate the number of superimposed signals
observed by an array. There exists numerous methods on
source detection, like AIC and MDL [12], Modified MDL
[13], the Benjamin-Hochberg procedure [14], etc. However,
these methods assume un-coherent sources, which is not the
case in multipath propagation scenarios. Other approaches
address source detection in the coherent case, such as [15]–
[17]. Unfortunately, they are highly multidimensional, as one
has to test all possible number of sources and estimate their
corresponding signal parameters. In other words, if one has to
test for the presence of three sources, then three AoAs have
to be estimated through a 3D search, and so on.

In this paper, we propose a novel approach called Joint
Angle and Delay Estimator and Detector, or simply JADED.
Unlike traditional methods, JADED allows efficient source
detection and joint angle and delay estimation. Additionally,
the algorithm operates with a single or multiple snapshots,
and in the presence of coherent sources. This is of crucial
importance in applications, such as Wi-Fi systems [18] in
an indoor environment, where a users location should be
estimated. The Wi-Fi is equipped with multiple antennas that
receive known OFDM symbols1 from the user. Since indoor
environments are rich in multipath (hence coherent sources)
and the number of multipath contributions are unknown,
then the proposed methods in this paper, which are JADED-
based, seem to be suitable for the aforementioned scenario.
We, hereby, make use of Rotational Invariance Properties
(RIP) of subcarriers in OFDM systems and Uniform Linear
Arrays (ULAs), which are known to have a Vandermonde
structure in their respective dimensions. The first algorithm,

1These known OFDM symbols are usually found in the preamble of the
OFDM frame, such as the Short-Training-Field (STF).



JADED-RIP, requires a 2D search to estimate the number
of multipath and their respective AoAs/ToAs. Furthermore,
the second algorithm, named Computationally Efficient Single
Snapshot-JADED-RIP (CESS-JADED-RIP), is a faster version
of JADED-RIP, as it requires a 1D search followed by a Least
Squares fit, and is dedicated for single snapshot scenarios only.

Notations: Upper-case and lower-case boldface letters de-
note matrices and vectors, respectively. (.)T and (.)H represent
the transpose and transpose-conjugate operators, respectively.
The matrix IIIN ∈ CN×N is the identity matrix. The operators
‖XXX‖, <(XXX), and =(XXX) denote the Frobenius norm, the real
part, and the imaginary part of XXX . The symbol ⊗ denotes
the Kronecker product. We index the kth entry of a vector xxx
as [xxx]k. For a given vector xxx, the operator diag [xxx], returns
a diagonal matrix with diagonal entries equal to those of xxx.
Similarly, blkdiag[.] takes a set of matrices as input and outputs
a block diagonal matrix. The abbreviation ”w.r.t” stands for
”with respect to”.

II. SYSTEM MODEL

Consider an OFDM symbol composed of M subcarriers
and centered at a carrier frequency fc, impinging an array of
N antennas via q multipath components. Each path arrives at
AoA θi and ToA τi. After applying an FFT and equalization,
we can express the lth OFDM symbol as follows [10]:

xxx(l) = AAAγ(l) +www(l), l = 1 . . . L (1)

where xxx(l) ∈ CMN×1 is given as

xxx(l) = [X
(l)
1,1 . . . X

(l)
1,N . . . X

(l)
M,1 . . . X

(l)
M,N ]T (2)

with X
(l)
m,n being the data at the nth antenna and mth

subcarrier in the lth OFDM symbol. AAA ∈ CMN×q contains
the ToA/AoA information as

AAA = [cccM (τ1)⊗ aaaN (θ1) . . . cccM (τq)⊗ aaaN (θq)] (3)

where

aaaN (θ) = [1, zθ . . . z
N−1
θ ]T with zθ = e−j2π

d
λ sin(θ) (4)

cccM (τ) = [1, zτ . . . z
M−1
τ ]T with zτ = e−j2πτMf (5)

where 4f is the subcarrier spacing, d is the inter-element
spacing, and λ is the signal’s wavelength. The q × 1 vector
γγγ(l) is composed of the multipath coefficients

γγγ(l) = [γ1(l) . . . γq(l)]
T (6)

Note that we have made explicit the dimensions of vectors
cccM (τ) and aaaN (θ), i.e. it should be understood that for any in-
teger K ≥ 1, the vectors

(
cccK(τ), aaaK(θ)

)
∈ CK×1. The vector

www(l) is additive Gaussian noise of zero mean and covariance
σ2III , assumed to be white over space, and frequencies. We are
now ready to address the problem:
”Given the data {xxx(l)}Ll=1, estimate the number of multipath
components q and the signal parameters {(τj , θj)}qj=1.”

III. JADED-RIP ALGORITHM DERIVATION

A. Data Manipulation

Let XXX(l) be a matrix formed from the entries of xxx(l)

XXX(l) =


XXX

(l)
1 XXX

(l)
2 · · · XXX

(l)
KM

XXX
(l)
2 XXX

(l)
3 · · · XXX

(l)
KM+1

...
...

. . .
...

XXX
(l)
PM

XXX
(l)
PM+1 · · · XXX

(l)
M

 (7)

where XXX(l)
i is an PN ×KN Hankel matrix given by

XXX
(l)
i =


X

(l)
i,1 X

(l)
i,2 · · · X

(l)
i,KN

X
(l)
i,2 X

(l)
i,3 · · · X

(l)
i,KN+1

...
...

. . .
...

X
(l)
i,PN

X
(l)
i,PN+1 · · · X

(l)
i,N

 (8)

with
KM = M − PM + 1 and KN = N − PN + 1 (9)

For simplicity of notation, define the following integers

K , KMKN and P , PMPN (10)

The matrix XXX(l) can be written as

XXX(l) = LLLΓΓΓ(l)RRRT +WWW (l) (11)

where LLL ∈ CP×q and RRR ∈ CK×q are given as

LLL = [hhhP (τ1, θ1) . . .hhhP (τq, θq)] (12)
RRR = [hhhK(τ1, θ1) . . .hhhK(τq, θq)] (13)

with
hhhP (τ, θ) = cccPM (τ)⊗ aaaPN (θ) (14)
hhhK(τ, θ) = cccKM (τ)⊗ aaaKN (θ) (15)

The matrix ΓΓΓ(l) ∈ Cq×q is a diagonal matrix, i.e.

ΓΓΓ(l) = diag [γ1(l), γ2(l) . . . γq(l)] (16)

Finally, the matrixWWW (l) ∈ CP×K is background noise defined
in a similar manner as XXX(l).

B. Introducing Orthogonal Projectors

Let RRRj be a matrix defined as RRR with omitted jth column.
Furthermore, define the orthogonal projector matrix that spans
the null space of the columns of RRRj as

PPP⊥j = IIIK −RRRj
(
RRRT
jRRRj

)−1

RRRT
j (17)

In other words, RRRT
jPPP⊥j = 000. Now, let fff j ∈ CK×1 be a vector

that lives in the null space of the columns of RRRj . Therefore,
there exists a non-zero vector zzz ∈ CK×1 such that

fff j = PPP⊥j zzz (18)

Post-multiplying the vector fff j with the data matrixXXX(l) yields

XXX(l)fff j =
(
LLLΓΓΓ(l)RRRT

)
fff j +WWW (l)fff j

= LLLjΓΓΓj(l)RRR
T
jPPP⊥j zzz + αj(l)hhhP (τj , θj) + w̃ww(l)

= αj(l)hhhP (τj , θj) + w̃ww(l), l = 1 . . . L

(19)



where LLLj is defined in a similar manner as RRRj and ΓΓΓj(l) ∈ C
is the same as ΓΓΓ(l) in equation (16) but with eliminated jth

row and column. Furthermore, αj(l) = γ
(l)
j hhh

T
K(τj , θj)fff j .

Finally, w̃ww(l) = WWW (l)fff j is the noise part, which is easily
verified to be colored noise.

Equation (19) is key to what follows. In other words, we know
that a vector fff j exists, which can select the contribution of
the jth source. Next, we derive a Least-Square (LS) estimator
of all the unknown parameters.

C. Least-Square Estimator

The parameters concerning the jth source are

ΘΘΘj = [fffT
j ,ααα

T
j , τj , θj ] (20)

where αααj = [αj(1) . . . αj(L)]T. Let’s stack all unknown
parameters into one vector ΘΘΘ, i.e.

ΘΘΘ = [ΘΘΘ1,ΘΘΘ2 . . .ΘΘΘq] = [fffT,αααT, τττ ,θθθ] (21)

where
fff = [fffT

1 . . . fff
T
q ]

T and ααα = [αααT
1 . . .ααα

T
q ]

T (22)

τττ = [τ1 . . . τq] and θθθ = [θ1 . . . θq] (23)

All parameters in ΘΘΘ have to be jointly estimated. In this sec-
tion, we propose to estimate these parameters by Least-Squares
(LS). In other words, we seek to optimise the following cost
function

Θ̂̂Θ̂ΘLS = arg min
ΘΘΘ

g(ΘΘΘ) (24)

where

g(ΘΘΘ) =

q∑
j=1

L∑
l=1

∥∥∥XXX(l)fff j − αj(l)hhhP (τj , θj)
∥∥∥2

(25)

and Θ̂̂Θ̂ΘLS is the LS estimate of ΘΘΘ. We re-write g(ΘΘΘ) in a
compact way as follows

g(ΘΘΘ) = fffH(IIIq ⊗QQQ)fff − 2 <
(
fffHCCC(τττ ,θθθ)ααα

)
+ P‖ααα‖2 (26)

where matrices QQQ and CCC(τττ ,θθθ) are given by

QQQ = XXXHXXX (27)
CCC(τττ ,θθθ) = blkdiag [SSS(τ1, θ1) . . .SSS(τq, θq)] (28)

and matrices XXX and SSS(τ, θ) are defined as

XXX =
[
XXXH(1) . . . XXXH(L)

]H
(29)

SSS(τ, θ) = XXXHHHH(τ, θ) (30)

where
HHH(τ, θ) = IIIL ⊗ hhhP (τ, θ) (31)

Fixing (ααα,τττ ,θθθ), we optimise the cost function g(ΘΘΘ) w.r.t fff .
Hence, setting the derivative of g(ΘΘΘ) w.r.t fff to zero, we get

∂g(ΘΘΘ)

∂fff
= 2
(
IIIq ⊗QQQ

)
fff − 2CCC(τττ ,θθθ)ααα = 0 (32)

which gives

f̂̂f̂fLS =
(
IIIq ⊗QQQ

)−1
CCC(τττ ,θθθ)ααα (33)

Now, we treat f̂̂f̂fLS as a nuissance parameter and plug it in the
cost function g(ΘΘΘ) in equation (26), namely

g(ααα,τττ ,θθθ) , g(f̂̂f̂fLS,ααα,τττ ,θθθ)

= αααH
(
PIIIqL −CCCH(τττ ,θθθ)

(
IIIq ⊗QQQ

)−1
CCC(τττ ,θθθ)

)
ααα

(34)

Due to the block diagonal nature of CCC(τττ ,θθθ), and using(
IIIq ⊗QQQ

)−1
= IIIq ⊗QQQ−1 (35)

The function g(ααα,τττ ,θθθ) decouples into q positive cost functions

g(ααα,τττ ,θθθ) =

q∑
j=1

gj(αααj , τj , θj) (36)

Denoting gj , gj(αααj , τj , θj) for ease of notation, we can say

gj = αααH
j

(
PIIIL −SSSH(τj , θj)QQQ

−1SSS(τj , θj)
)
αααj

= αααH
j

(
HHHH(τj , θj)PPP⊥XXXHHH(τj , θj)

)
αααj

(37)

where the last equality is due to equations (27) and (30). The
projector PPP⊥XXX is given as

PPP⊥XXX = IIILP −XXX (XXXHXXX )−1XXXH (38)

Fixing (τττ ,θθθ) in g(ααα,τττ ,θθθ), each function gj is quadratic in
αααj . Note that minimising g(ααα,τττ ,θθθ) w.r.t ααα is equivalent to
minimising each gj w.r.t αααj since gj ≥ 0 for all j. In
order to prevent a function gj to be minimized at the trivial
solution αααj = 000, we form the following Equality Constrained
Quadratic Optimisation [19] problem{

minimize
αααj

gj(αααj , τj , θj)

subject to αααH
j eee1 = 1

(39)

where eee1 is the 1st column of IIIL. The Lagrangian function
corresponding to the optimisation problem in (39) is the
following:

L(αααj , λ) = gj(αααj , τj , θj)− λ
(
αααH
j eee1 − 1

)
(40)

Setting the derivative of L(αααj , λ) w.r.t αααj to 0, we get

∂L(αααj , λ)

∂αααj
= 2HHHH(τj , θj)PPP⊥XXXHHH(τj , θj)αααj − λe1e1e1 = 0 (41)

which yields

α̂̂α̂αLS
j =

λ

2

(
HHHH(τj , θj)PPP⊥XXXHHH(τj , θj)

)−1
e1e1e1 (42)

Plugging this expression of α̂̂α̂αLS
j in the constraint of the

optimisation problem in equation (39), we can solve for the
Lagrangian multiplier λ as

λ =
2

eeeH
1

(
HHHH(τj , θj)PPP⊥XXXHHH(τj , θj)

)−1
eee1

(43)



and therefore α̂̂α̂αLS
j is obtained by plugging the expression of λ

in equation (42), i.e.

α̂̂α̂αLS
j =

(
HHHH(τj , θj)PPP⊥XXXHHH(τj , θj)

)−1
eee1

eeeH
1

(
HHHH(τj , θj)PPP⊥XXXHHH(τj , θj)

)−1
eee1

(44)

hence α̂̂α̂αLS is obtained by stacking all α̂̂α̂αLS
j into one vector as

in equation (22). As done before, we treat α̂̂α̂αLS as nuissance
parameters and thus we substitute them in g(ααα,τττ ,θθθ) to get
g(τττ ,θθθ) , g(α̂̂α̂αLS, τττ ,θθθ), where

g(τττ ,θθθ) =

q∑
j=1

1

eeeH
1

(
HHHH(τj , θj)PPP⊥XXXHHH(τj , θj)

)−1
eee1

(45)

The LS estimates of the ToAs τττ and AoAs θθθ are simply

(τ̂̂τ̂τLS, θ̂̂θ̂θLS) = arg min
τττ,θθθ

g(τττ ,θθθ) (46)

Since g(τττ ,θθθ) is decoupled into q identical functional forms,
given in the last equality in equation (45), then one can jointly
estimate the ToAs/AoAs by performing a 2D-search as

{(τ̂LS
j , θ̂LS

j )}q̂j=1 = arg max
τ,θ

fJADED(τ, θ) (47)

where

fJADED(τ, θ) = eeeH
1

(
HHHH(τ, θ)PPP⊥XXXHHH(τ, θ)

)−1
eee1 (48)

and q̂ is an estimate of q obtained by the number of peaks in
fJADED(τ, θ).

IV. COMPUTATIONALLY EFFICIENT SINGLE SNAPSHOT
JADED-RIP (CESS-JADED-RIP)

The JADED-RIP algorithm requires a 2D search over the
variables (τ, θ). It turns out that for a single snapshot, i.e.
L = 1, we can propose a computationally more efficient
method, which we call here Computationally Efficient Single
Snapshot JADED-RIP, or simply CESS-JADED-RIP. For a
single snapshot and using equation (31), fJADED(τ, θ) can be
expressed as

fJADED(τ, θ) =
1

hhhH
P (τ, θ)PPP⊥XXXhhhP (τ, θ)

(49)

Using the structure of hhhP (τ, θ) in equation (14), we can write
the denominator in equation (49) as follows

hhhH
P (τ, θ)PPP⊥XXXhhhP (τ, θ) = aaaH

PN (θ)F (τ)aaaPN (θ) (50)

where

F (τ) =
(
cccPM (τ)⊗ IIIPN

)HPPP⊥XXX
(
cccPM (τ)⊗ IIIPN

)
(51)

Maximising (49) is equivalent to minimizing (50), hence we
aim at solvingminimize

aaaPN (θ)
aaaH
PN (θ)F (τ)aaaPN (θ)

subject to aaaH
PN (θ)eee1 = 1

(52)

Following similar steps as in equations (40) till (44), the vector
âaaPN (θ) that solves the above problem is given as

âaaPN (θ) =
F−1(τ)eee1

eeeH
1F
−1(τ)eee1

(53)

Substituting âaaPN (θ) in the objective function of the problem
in equation (52) gives us a cost function in τ , and therefore
the ToAs are estimated as follows

{τ̂j}q̂j=1 = arg max
τ

w(τ) (54)

where
w(τ) = eeeH

1F
−1(τ)eee1 (55)

Now, we are left with the estimation of the AoAs. Notice that
equation (53) maps τ to θ, therefore for each τ̂j , we can obtain
âaaPN (θ̂j) as

âaaPN (θ̂j) =
F−1(τ̂j)eee1

eeeH
1F
−1(τ̂j)eee1

, j = 1 . . . q̂ (56)

Then, we estimate θ̂j from âaaPN (θ̂j). This is done by forming
the vector of phases of âaaPN (θ̂j) as follows

[
φ̂φφj
]
k

= − 1

2πd
tan−1

(=(
[
âaaPN (θ̂j)

]
k
)

<(
[
âaaPN (θ̂j)

]
k
)

)
, j = 1 . . . q̂ (57)

After the operation in equation (57), we have φ̂φφj in the
following form: φ̂φφj = ρρρsin(θ̂j), where ρρρ = [0 . . . (PN − 1)]T.
Finally, we extract θ̂j from φ̂φφj by the following LS fit

θ̂j = arg min
θ̂j

∥∥∥φ̂φφj − ρρρsin(θ̂j)
∥∥∥2

, j = 1 . . . q̂ (58)

The solution is easily verified to be

θ̂j = sin−1
(
ρρρ†φ̂φφj

)
= sin−1

( 6ρρρTφ̂φφj
PN (PN − 1)(2PN − 1)

)
(59)

where ρρρ† = (ρρρTρρρ)−1ρρρT.
V. IDENTIFIABILITY CONDITIONS

In this section, we derive identifiability conditions for
unique estimation and detection of (τττ ,θθθ) for JADED-RIP
and CESS-JADED-RIP. The first set of conditions are given
to guarantee a unique representation of equation (19), which
happens when projectors {PPP⊥j }

q
j=1, given in equation (17),

are uniquely defined. In other terms, these projectors should
be full column rank. A sufficient condition for that to occur
is when RRR is full column rank.

Theorem: Let RRR ∈ CKMKN×q be a matrix defined as
in (13), then RRR is full column rank if
• q ≤ KMKN

• Qτ ≤ KN and Qθ ≤ KM

where Qτ is the maximum number of paths arriving with
same ToA, but different AoAs; and Qθ is the maximum
number of paths arriving at the same AoA, but different ToAs.
Proof: Ommited due to lack of space.

The second projector that should be uniquely defined is
the data projector matrix, namely PPP⊥XXX , given in equation (38).
A necessary condition is when XXX is a tall matrix, namely
LP > K. Combining Theorem 1 and the condition of the
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Fig. 1: Experimental plots of the JADED-RIP and CESS-JADED-RIP spectra
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Fig. 3: MSE of ToAs/AoAs as a function of SNR of Experiment 3

existance of the data projector, the JADED-RIP algorithm
should satisfy the following:

• A1: q ≤ KMKN < LPMPN
• A2: Qτ ≤ KN and Qθ ≤ KM

As for CESS-JADED-RIP, the parameter Qτ should be 1, since
the ToAs are estimated through a 1D search over w(τ) given in
equation (55). Therefore, this approach does not allow multiple
paths arriving at the same time. Finally, the CESS-JADED-RIP
method should satisfy the following:

• B1: q ≤ KMKN < PMPN
• B2: Qτ = 1 and Qθ ≤ KM

VI. SIMULATION RESULTS

This section provides three computer experiments to demon-
strate and validate the potential of the proposed methods.

In Experiment 1, i.e. Fig 1, we plot the different spectra
of the proposed algorithms. More precisely, Fig 1a plots the
2D-spectrum of the JADED-RIP given in equation (48). Also,
Fig 1b plots the 1D-spectrum given in equation (55) (in order
to estimate the ToAs) and the scatter plot to estimate the AoAs
using the LS fit in equation (59). We have fixed q = 8 paths,
where τk = 10k nsec and θk = −70 + 20(k − 1) degrees,
for k = 1 . . . 8. Also the multipath coefficients are chosen to
be i.i.d Gaussian of zero mean. The number of antennas used
is N = 3 with d = 0.5 and the OFDM symbol comprises of



M = 64 subcarriers occupying a bandwidth of 200 MHz, i.e.
Mf= 3.125 MHz. We have chosen PM = 40 and PN = 2.
The SNR is set to 5 dB. We have collected L = 10 OFDM
symbols for the JADED-RIP method. It is interesting to see
that we do not observe an overestimation of q in both methods,
i.e. the peaks correspond to the true and only the true signal
parameters.

In Experiment 2, i.e. Fig 2, we plot the MSE of ToA/AoA
estimates of CESS-JADED-RIP as a function of SNR. More-
over, the MSE is compared with other existing methods, such
as the 2D-MP [10], the 2D-IQML [11], and a straightforward
extension of [16] to the 2D case, which we refer to as JADE-
Bayesian. We have averaged over 103 Monte-Carlo trials.
These methods are particularly chosen for this experiment,
since they could deal with a single snapshot. We recall that
2D-MP and 2D-IQML require the knowledge of q, whereas
JADED and JADE-Bayesian estimate q from data. Note that
the value of q is prior known for both 2D-MP and 2D-
IQML. To this end, we fix q = 2 paths, with (τ1, θ1) =
(10nsec,−70◦) and (τ2, θ2) = (20nsec, 20◦). The values of
N , M , PN , PM , d and Mf are the same as those in Experiment
1. The multipath parameters are set to γγγ = [1; 0.8ej

π
4 ], i.e.

coherent sources. In addition, only L = 1 OFDM symbol is
available. We see that the performance of CESS-JADED-RIP
is very close to that of 2D-MP in terms of MSE of ToA and
AoA, according to Fig 2a and Fig 2b, respectively. Also, we
can see that CESS-JADED-RIP outperforms 2D-IQML and
JADE-Bayesian.

In Experiment 3, i.e. Fig 3, we plot the MSE of ToA/AoA
estimates of JADED-RIP and 2D-IQML as a function of
SNR, when multiple snapshots are available. This is why we
have excluded 2D-MP and JADE-Bayesian, since they only
operate with one snapshot. The same parameters are set as in
Experiment 2, except for L, which is set to 10. By referring
to Fig 3a and Fig 3b, one could observe that the JADED-RIP
outperforms 2D-IQML in terms of MSE of ToAs and AoAs,
at any given SNR.

VII. CONCLUSIONS AND FUTURE WORK

There are some contributions that should be highlighted:
We have proposed a novel approach for joint estimation and
detection of Angles and Times of arrival, i.e. JADED. Two
methods were derived so as to solve the JADED problem
using Rotational Invariance Properties (RIP), which arises
when a ULA receives known OFDM symbols. The JADED-
RIP method performs a 2D search of a suitable cost function,
where each peak indicates a present source with corresponding
ToA/AoA. The second algorithm, CESS-JADED-RIP, is a
faster version of JADED-RIP, which can be used for single
snapshot scenarios only. The algorithms function properly in
the presence of coherent sources, since subspace extraction
is not needed, as in the case of MUSIC, ESPRIT, and other
subspace methods.

Future work should address the following points:
• Improving JADED-RIP, by taking into account the colored

noise in equation (19), which leads to an ML estimator.

• Deriving analytic MSE expressions and the optimal values
of PN and PM .

• Proposing a JADED algorithm that operates for arbitrary
arrays, such as uniform circular arrays.

• Taking into account hardware imperfections, such as antenna
calibration and mutual coupling, synchronization errors,
etc. This could further empower JADED as a competitive
candidate among other indoor positioning methods.
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