Cache Policies for Linear
Utility Maximization

Giovanni Neglia, Damiano Carra, Pietro Michiardi

ISRN INRIA/RR--9010--FR+ENG

RESEARCH
REPORT

N° 9010

January 2017

ISSN 0249-6399

Project-Team Neo

V4

: in]armutics,mathemutics

Cache Policies for Linear Utility Maximization

Ciovanni Neglig"] Damiano Carrdf] Pietro Michiardi]

Project-Team Neo

Research Report n° 9010 — January 2017 — [28] pages

Abstract: Cache policies to minimize the content retrieval cost have been studied through com-
petitive analysis when the miss costs are additive and the sequence of content requests is arbitrary.
More recently, a cache utility maximization problem has been introduced, where contents have
stationary popularities and utilities are strictly concave in the hit rates. This paper bridges the
two formulations, considering linear costs and content popularities. We show that minimizing the
retrieval cost corresponds to solving an online knapsack problem, and we propose new dynamic
policies inspired by simulated annealing, including DYNQLRU, a variant of QLRU. For such poli-
cies we prove asymptotic convergence to the optimum under the characteristic time approximation.
In a real scenario, popularities vary over time and their estimation is very difficult. DYNQLRU
does not require popularity estimation, and our realistic, trace-driven evaluation shows that it
significantly outperforms state-of-the-art policies, with up to 45% cost reduction.

Key-words: Cache, Cache replacement policy, Content Delivery Network (CDN), Knapsack
problem.

* Université Cote d’Azur, Inria, giovanni.neglia@inria.fr
T University of Verona, damiano.carra@univr.it
¥ Eurecom, pietro.michiardi@eurecom.fr

RESEARCH CENTRE
SOPHIA ANTIPOLIS - MEDITERRANEE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Algorithmes de gestion de cache pour la maximisation de
fonctions d’utilité linéaires

Résumé : Les algorithmes de gestion de cache pour minimiser le cotit de récupération du
contenu ont été étudiés par analyse concurrentielle, lorsque les cotits de défauts de cache sont
additifs et la séquence des requétes de contenu est arbitraire. Plus récemment, un probléme de
maximisation de 1'utilité du cache a été introduit, ot les contenus ont popularités stationnaires
et les fonctions d’utilité sont strictement concaves dans les taux de succés (hit). Cet article relie
les deux formulations, en tenant compte de cotits linéaires et de la popularité des contenus. Nous
montrons que la minimisation du cotit de récupération correspond & la résolution d’un probléme
de sac a dos en ligne, et nous proposons de nouvelles politiques dynamiques inspirées du recuit
simulé, incluant DYNQLRU, une variante de QLRU. Pour de telles politiques, nous démontrons
une convergence asymptotique vers 'optimum sous 'approximation de temps caractéristique.
Dans un scénario réel, les popularités varient avec le temps et leur estimation est trés difficile.
DYNQLRU ne nécessite pas d’estimation de la popularité, et notre évaluation réaliste, basée
sur des traces montre qu’elle surpasse de maniére significative les politiques de pointe, avec une
réduction des cotits allant jusqu’a 45%.

Mots-clés : Cache, Politique de remplacement de cache, Réseau de diffusion de contenu,
Probléme du sac a dos, Recuit simulé.

Cache Policies for Linear Utility Maximization 3

1 Introduction

Cache policies have often been designed with the purpose to maximize the hit rate, but different
metrics can be meaningful in different contexts: data rate to be served from the upstream
caches/servers, users’ delivery time, ISP/AS operational costs [1I, 2], damage to flash memories
in hierarchical caches [3], service time from the HDD [4], etc. Performance optimization in all
these cases can be abstracted to the same problem: given some cost ¢; that is paid upon a miss
to retrieve content ¢, minimize the sum of the retrieval costs. We provide a few examples below

e ¢; = 1: minimize the cache miss rate,
e ¢; = s;, the size of content: minimize the traffic from upstream servers/caches,

e ¢; = 7;, the retrieval time from the server where content 7 is stored: minimize user’s retrieval
time.

Our target is to design cache policies that minimize the time-average retrieval cost when
content requests exhibit some statistical regularity. When the request process is unpredictable,
this problem has been studied under the name of File Caching (FC) problem [5]. In this case
no algorithm can provide absolute worst-case guarantees. Instead there exist algorithms, like
GreedyDual-Size (GDS), with a known (and optimal) competitive ratio, i.e. they achieve a
cost at most a given factor larger than the cost of the optimal offline algorithm that can view
the sequence of requests in advance. We want to go beyond FC, because in many practical
cases, some contents can be requested more often than others during relatively long periods of
time, so that a caching algorithm can exploit such regularity and perform much better. The
Independent Reference Model (IRM) corresponds to the extreme case where content popularities
are constant over time and contents requests are drawn independently according to a given
probability distribution.

A related problem has been formulated in [6], considering the advantages from hits rather
than the disadvantages from misses. In particular the authors have defined the following Cache
Utility Mazimization (CUM) problem under the IRM and constant content size:

N

N
maximize U;(h;), subject to h; = B, 1

where B is the cache’s size, h; is the stationary hit probability of content i and U;(h;) is the
utility associated to the hit probability. The paper shows how to derive optimal TTL-cache
policies [7] when the functions U; are increasing and strictly concave. The constraint in can
be interpreted as an average buffer occupancy constraint.

Our first contribution is to bridge the FC and CUM formulations, by showing that the FC
problem under the IRM (our focus) corresponds to a CUM problem where the utility functions U;
are linear and the constraint takes into account content sizes. This linear case is then particularly
important to study, because most of the usual cache performance metrics are additive over
different misses (as shown above). Strictly concavity functions are instead of interest if fairness
across contents is an issue, because the optimization of linear utilities can lead to performance
dishomogeneity.

The second contribution is the proposal of new dynamic policies to solve the linear utility
maximization problem. We leverage the fact that a CUM problem with linear utilities corre-
sponds to a Knapsack Problem (KP). Recognizing this parallelism does not lead to a trivial
solution, because the optimal cache policy needs then to solve an online KP under partial infor-
mation (e.g. the catalogue is not known). We design then two new dynamic algorithms, OSA

RR n°® 9010

4 G. Neglia, D. Carra, €& P. Michiardi

and DYNQLRU, based on simulated annealing ideas, and we prove that they asymptotically
store the optimal set of contents under Che’s approximation [8]. As an example of the difficulties
indicated above, convergence to the optimum does not follow immediately from known results
for simulated annealing. Indeed simulated annealing methods work offline and can freely explore
the solution space, while in our online setting the possibility to change the current tentative
solution is limited by the request process. Our analysis also leads to a characterization of the
convergence sets of simulated annealing methods in terms of a specific potential function, that
was not observed before.

As a third contribution, we consider a realistic setting, where popularities keep varying over
time. Their estimation is a very difficult task. In particular, we show through some numerical
examples that estimation may require a significant amount of memory and estimation errors can
jeopardize performance. For these reasons, policies that do not require to estimate popularities,
like our DYNQLRU, can be more of practical interest. In order to use DYNQLRU also in this
realistic non-IRM setting, we propose a change detector that resets DYNQLRU and restarts its
exploration phase when the request process appears to have significantly changed. A simple
formula allows us to configure the change detector.

We use request traces from Akamai content delivery network to tune IRM parameters and
validate our theoretical results. Moreover, we test the performance of DYNQLRU coupled with
the change detector under the actual traces and four different realistic retrieval costs: miss ratio,
upstream traffic, retrieval time and HDD load. DYNQLRU outperforms other policies like LRU
or GDS always but in the case of the upstream traffic when LRU performs equally good. Cost
reduction can be as high as 45%.

The paper is organized as follows. In Sec.[2]we introduce the FC and CUM problems and other
related works. We then formalize the retrieval minimization problem in Sec. [3] and prove that
optimal static policies exist and they solve some specific KPs. We discuss how some heuristics for
KP lead naturally to cache policies. Then, in Sec. [we introduce the policy OSA. After having
shown the difficulties to estimate popularities in Sec. p| we illustrate the policy DYNQLRU in
Sec. [6] and the change detector in Sec. [7] Simulation results both under IRM and real content
request traces are in Sec. @

2 Background and related works

Let N denote the (potentially infinite) catalogue of contents and ry, € N a sequence of L
requests for the contents. The File Caching (FC) problem [5] is formulated as follows: given a
cache with integer size B, and files with positive integer sizes and non-negative retrieval costs,
maintain in the cache files to minimize the total retrieval cost. We denote by s; and ¢; respectively
the size and the cost of content i € N. The variant with uniform file sizes and uniform costs
is called the paging problem and the variant with uniform sizes and heterogeneous costs the
weighted paging problem.

Let X (n) C N denote the state of the cache at time n, i.e. the set of the contents stored in
the cache when the n-th request arrives. A possible state x needs to satisfy an instantaneous
buffer occupancy constraint, i.e. Y .. s; < B. Then, replacement-policies are required to decide
which contents should be evicted to make space for a new content. The retrieval cost experienced
by a cache policy m under an arrival sequence ry when the cache has size B is

L
C(m,B,rr) =Y rpml(ro(n) & X(n)). (2)

n=1
It is always possible to find a specific sequence of content requests such that any cache policy

Inria

Cache Policies for Linear Utility Maximization 5

performs arbitrarily bad. It is then standard to perform a competitive analysis [9, 10, 1T 12].
Let m;4 denote the ideal optimal policy that knows in advance the sequence of requests. A policy
7 is said to be f(B’, B)-competitive if on any sequence the total retrieval cost incurred by 7 with
a cache of size B is at most f(B’, B) times the cost obtained by ;4 with a cache of size B’ < B,
ie.
C(,/Ta Ba rL) 1
mr%XC(Trid, B/,I‘L) S f(B ’B>’ VL.

It is possible to prove that the best possible competitive ratio for any deterministic online
algorithm (i.e. an algorithm that does not know the future requests) is B/(B—B’+1) [13]. In [14]
the algorithm GDS was proven to be B—competitiveﬂ and then optimal. This algorithm will be
used later for comparison and is shown in Alg. (I} The result was generalized in [I3]: the optimal
B/(B — B’ + 1) competitive ratio was proven for the class of algorithms called LANDLORD, that
includes GDS. It should be observed that in many applications the cache size B may be huge,
and then this approximation factor is of limited interest. Nevertheless, the performance of these
algorithms degrades in practice much slower than linearly with the cache size B.

Algorithm 1 GDS algorithm
Input: Sequence content requests r
W<+ 0
while n < |r| do
i+ r(n)
if i € X(n) then
H(i) « W-I—CZ‘/SZ'
else
while (si + 2 jexm) 5 > B) do > not enough space for content ¢
W + minlex(n) H(l)
arbitrarily select j|H(j) =W
X(n) « X(n) - {j}
end while
X(n) + X(n)U{i}
H(Z) — W-I—Ci/si
end if
n < n+l
end while

Differently from replacement-policies, TTL-policies associate a timer to each content and the
content is evicted only when the timer expires. As a consequence, TTL-caches ideally operate
with an infinite cache size and impose only an average constraint on the buffer occupancy, that
should be equal to a given value. We denote also this value as B E| The timer of a given content
may or may not be renewed upon a hit. TTL-policies were first proposed as a modeling tool to
study existing replacement-policies starting from the seminal work on LRU from Che et al. [§].
In this paper we use the expression Che’s approzimation to denote the possibility to approximate
a replacement policy with an opportunely tuned TTL-policy. This approach has been shown to
be very accurate [15, [16]. More recently, the practical use of TTL-policies has been advocated
because of their flexibility [7, [6]. In particular, as we mentioned in the introduction, [6] derives
TTL-policies that can solve the CUM problem when the utility functions U; are strictly

1 When dependance on B’ is omitted, it means that the two caches have the same size, i.e. B’ = B.
2 A practical implementation will require a buffer only slightly larger than B, see [6].

RR n°® 9010

6 G. Neglia, D. Carra, & P. Michiardi

concave. The framework considers a finite catalogue N and requests arriving according to the
(continuous-time) IRM: the request process is a Poisson process and a request is for content 4
with probability p; (called the content popularity) independently from previous requests.

Many papers consider cache policies minimizing specific retrieval costs (e.g. [II, 2 B, [4] men-
tioned in the introduction). None of them tries to address the general problem we target in
this paper, but we rely on two results from [4] that do not actually depend on the specific cost
considered there. The authors study which set of contents M* should be duplicated in the RAM
in order to reduce the (one-step lookahead) expected HDD workload and they prove that M* is
the solution of the following problem:

m%(ignﬁ/ize Z pic;, subject to Z s; < B, (3)
ieEM ieEM

i.e. minimizing the expected retrieval cost is equivalent to maximizing the objective function
in (3), i.e. the utility from storing the contents M in the cache. We formally define the utility &/

of a set of contents M as

UM) = Z PiGi. (4)

ieM

Problem , as already observed in [4], is a KP where the knapsack has capacity B and objects
have value p;c; and weight s;. We extend their result by showing that minimizing the one-step
lookahead expected retrieval cost (and then problem (3))) is actually equivalent to minimizing the
time-average retrieval cost. We show a similar result when TTL-policies with average occupancy
constraints are considered as in the original CUM problem. Our DYNQLRU, to be described in
Sec. |§|, can be considered a dynamic version of the policy ¢;-LRU, proposed in [4], according to
which a new content i is introduced in the cache upon a miss with a probability that depends
on the ratio ¢;/s;. The idea to probabilistically differentiate content management according to
the ratio ¢;/s; had already been considered in [I7], where, upon a hit, content ¢ is moved to the
front of the queue with some probability ¢;. Under Zipf’s law for popularities, the authors prove
that the asymptotic hit ratio is optimized when the probabilities ¢; are chosen to be inversely
proportional to document sizes.

The interactions of caches at different ASs has been investigated through game theory in [2],
where a stochastic potential “a la Young” [18] (as we do in Sec. [4)) is introduced to study Nash
equilibria stability. While our caching algorithms are randomized by choice (to explore the
solution space), in [2] randomization is rather a collateral effect of noisy popularity estimates.
Moreover, [2] does not consider the non-homogeneous dynamics rising when the noise “converges”
to zero as time goes on, whereas we do.

Finally, we observe that, once the analogy between KP and caching is clearly identified, it may
appear natural to explore approaches like simulated annealing to design caching policies, but, to
the best of our knowledge, this was never done before. The annealed Gibbs sampler was instead
used in [I9] to jointly solve the AP channel selection problem and the users association problem.
Moreover, we are aware that there exists a rich literature on online KP where a sequence of
objects arrive over time (see e.g. [20] and references therein), but i) it relies on some assumptions
that do not suit a caching application (e.g. contents cannot be removed from the knapsack once
stored), and ii) the focus is on a competitive analysis as for the FC problem.

3 Retrieval cost minimization under IRM

We want to minimize the retrieval cost under the assumptions that i) the total cost is the sum
of the retrieval costs due to each miss (as in FC) and ii) contents have different popularities

Inria

Cache Policies for Linear Utility Maximization 7

and in particular requests follow the IRM (as in CUM). The catalogue A is then finite with size

= |N|. We are interested in replacement-policies and TTL-policies that are optimal for long
content request sequences. Given an infinite request sequence r = (r(1),7(2),...), we denote
by |r|, its subsequence containing the first n elements. It seems natural to define the cost of a
policy 7 to be the time-average retrieval cost

lim M = nll_)rrolo % z": creyL(r(k) ¢ X(k)), (5)
k=1

n—00 n

but one may (rightly) wonder if the cost in is well defined, i.e. if this limit always exists. It is
indeed possible to build policies for which the average would keep oscillating. E| The main result
of this section is that TTL or replacement policies minimizing the one-step lookahead expected
cost also minimize the time average cost defined above and that they implicitly solve two related
Knapsack Problems (KPs).

We first consider classic replacement-policies that satisfy the instantaneous occupancy con-
straint. We say that a replacement-policy 7., is expected-cost optimal, if it guarantees that after
a finite number of requests a set of contents M™*, solution of problem , is stored in the cache
almost surely (a.s.). For example, a policy that “waits” for the contents in a given M™* to be
requested, and then stores them forever is expected-cost optimal, because any content is asked
by a finite time a.s. and the set M* is finite. We prove now that any of such policies 7* is
optimal in the average-cost sensel[]]

Proposition 3.1. For any replacement-policy Ty.p, any expected-cost optimal policy ., and
an IRM sequence of content requests R it holds
C B, |R C(r,.,B,|R
lim inf (rep, B, [R]n) > lim (repr [R}n) a.s. (6)

n—00 n n—00 n

The proof is in Appendix [A]

We consider now TTL-policies with an infinite buffer size and a constraint on the average
buffer occupancy, i.e., >,y hisi = B. A TTL-policy (rrrz) is identified by the timers it
associates to each content. The following results are valid both if timers are renewed or not upon
a hit. We want to find the hit probabilities h; that maximize the one-step lookahead expected
retrieval cost for a given request. They are the solution of the following problem:

malmle hic;, subject to h;s; = B. 7
xiunize, 3 pihici, - subject to) his, ™

We denote by 7}, a TTL-policy whose timers have been selected so that the corresponding
hit probability for any content ¢ is h} and we call it an expected-cost optimal policy.
The following proposition is the analogue of Prop. [3.1] for the case of TTL policies.

Proposition 3.2. For any TTL-policy mrrr, any expected-cost optimal policy mhp;, and an
IRM sequence of content requests R it holds

lim Clrrre, B, [Rin) > lim Cnrry, B \RJn) a.s. (8)

n— oo n n—r00 n

3 In order to prevent these issues, stochastic dynamic programming usually defines directly the utility to be
the lim sup or liminf of the expected average reward (see e.g. [2I, Ch. 5|.
4 To stress that the request sequence is a sequence of random variables, we denote it by using capital letters.

RR n°® 9010

8 G. Neglia, D. Carra, & P. Michiardi

The proof is in Appendix [B]

We have then shown that, both under instantaneous and average buffer occupancy constraints,
the policy that minimizes the corresponding one-step lookahead expected retrieval cost also
minimizes the time-average retrieval cost. An optimal replacement-policy stores, after some
finite time, the set of contents that solves the knapsack problem . An optimal TTL-policy
stores each content i in the cache a fraction h} of time, where h are solutions of problem (7).
Problem ([7) is an instance of the CUM problem (1], where utilities are proportional to the hit
probabilities U; = p;c;h;. E| The two problems are strongly related because is the fractional
knapsack problem corresponding to a relaxation of . This was already observed in [4], where
was introduced as a way to find an approximate solution for .

In the rest of this paper, we focus on replacement-cache policies. Nevertheless, Che’s approx-
imation and the fractional KP @ will still make their appearance as approximate solutions. Our
purpose is to design expected-cost optimal policies or good heuristics. We already mentioned a
possible implementation if an optimal solution M* of problem is known: store forever the
contents in M* as soon as they are retrieved. This policy is not practical because it would
require to solve the NP-hard problem . An additional difficulty is that in general the set of
contents and their popularities p; are not known, but we assume for the moment that this is the
case and we postpone this issue until Sec.

Possible inspiration for policies can originate from usual heuristics to solve a KP. For example
we call VGREEDY a policy that keeps contents ordered according to their expected value p;c; and
removes the contents with smallest values when space is needed. Instead, the policy DGREEDY
is a policy that keeps contents ordered according to their density p;c;/s;, i.e. the expected value
per byte occupied in the cache. None of these policies is guaranteed to converge to a global
optimum as we show in the following example.

Example 1 (DGREEDY and VGREEDY may not converge to the optimum). Let s; = 51, sg =
100, s3 = s4 = 50, p1 = 0.26, po = 0.27, p3 = py = 0.235 and unitary costs c; =1 fori =1,2,3,4
and B = 100. As soon as content 1 with value 0.26 is required, DGREEDY would store it and
would never evict it. Similarly, VGREEDY would get stuck with content 2 with value 0.27. The
optimal policy should instead store contents 3 and 4 with a utility U({3,4}) = 0.47.

In the next section, we investigate if approaches based on simulated annealing can converge
to the optimal solution.

4 A simulated annealing approach

In this section we show a new approach based on simulated annealing to design an optimal cache
policy. Simulated annealing [22] is based on the idea of exploring in a random way the neighbour-
hood of a potential solution accepting occasional changes that may worsen the solution with a
probability that decreases over time. The application of simulated annealing to caching is, to the
best of our knowledge, new. As it will be evident from the discussion below, convergence to the
optimal solution does not follow directly from standard results for simulated annealing because
in this online setting we do not have the possibility to design the neighbourhood structure. The
analysis is then more involved.

5 Additionally, different sizes are taken into account in , but the CUM framework developed in [6] can be
immediately extended to consider such case considering the same equality constraint as in .

Inria

Cache Policies for Linear Utility Maximization 9

4.1 The algorithm

We start describing our policy that we call Online Simulated Annealing (OSA). Upon a miss
for content i at time n, we select a set v of contents potentially to be evicted to free space for
content i as follows. The set v is initially empty. We draw at random a content j among those
stored in the cache and we put it in v. If removing the contents in v frees enough space to store
content i, we are done, otherwise we keep selecting at random other contents from the cache
(without resampling) until this condition is not satisﬁedﬂ Now, we actually evict the contents
in v to store i with probability p(i, v)

p(i,v) = {1““%2)““ if U({i}) > U(v) o

e otherwise,

where T'(n) > 0 is a parameter decreasing to 0 over time and /() is defined in Eq. (4).

Let X be the set of all the possible sets of contents that can be stored at the cache, i.e. if
x € X, then), s; < B. If the state of the cache at time n is x (X(n) = x) and the object
required is ¢ (r(n) = i), it is possible that the state stays unchanged for example if the content
i was already in the cache, or that it changes to some other state z = y U {i} where x =y Uv
, and v and then y are determined by the eviction algorithm described above. We define the
neighbourhood of state x as all the possible states that are reachable from x as a consequence
of the following request and we denote it by Z(x). It is evident that the policy OSA implicitly
defines a non-homogeneous Markov Chain (MC) over the set X, whose probability transition
matrices we denote by {P(n)}n,en. When we talk about the MC P(n) we refer instead to the
homogeneous MC that at any step use the transition probability matrix P(n). As in simulated
annealing, a matrix element Py ,(n) can be expressed as product of a time-invariant probability
Qx,z to select z as potential successor of the current state x, and a time-variant probability tx 5 (n)
to accept a given transition. In particular, @« , can be calculated from p; and the probability
that the specific set v is selected to make space for object i. Once z is selected, the transition is
accepted according to Eq. @, that leads to the following expression for tx ,(n)

U(z)—U(x) .
e T otherwise.

{1 if U(z) > U(x)

tx7z =

The new state is always accepted if U({i}) > U(v), and then if U(z) = U(y) + U({i}) >
U(y) +U(v) = U(x), i.e. if the utility of the state z is higher than the utility of the current state
x. If this is not the case, the cache can still move to the new state with a probability exponentially
decreasing in the utility loss (0 > U({i}) —U(v) = U(z) — U(x)). Because the parameter T'(n)
is decreasing over time, the algorithm will explore more the solution space at the beginning and
will become more and more “greedy" as time goes on. The MC is then characterized by a non-
homogeneous probability transition matrix P(n) with elements Px 5(n) = Qx ztx,z(n). We have
put our algorithm in the framework of simulated annealing. The acceptance probability ¢ , has
the same expression. While the neighbour selection probability ()x , can be arbitrarily chosen in
the offline simulated annealing, here we cannot completely control it, because it depends on the
request sequence. We will come back later to the consequences of such difference.

6 The random selection process can be arbitrary as far as any content currently in the cache has a positive
probability to be selected. Selection probabilities can be for example function of content cost, content size or of
the time of the last content request. The asymptotic results in this section do not depend on such probabilities
but the transient behavior of OSA can depend on them.

RR n°® 9010

10 G. Neglia, D. Carra, €& P. Michiardi

4.2 Convergence

As we discussed in Sec. [3] we look for policies that asymptotically store a set of contents M*
that is solution of problem (3). Note that the objective function of problem (3) is /(M) (by
definition), hence we would like OSA to asymptotically store a set of contents that is a global
maximizer of U (). The average utility (or the average retrieval cost) achieved by OSA does not
change if the cache state keeps changing over time, but only a vanishing fraction of time is spent
in states that are not global optimizers of (). These observations motivate us to study which
states have an asymptotical non-zero probability to be visited by the MC {P(n)},en. We call
such states stochastically stable.

The following theorem provides a sufficient condition for the existence of a stationary
distribution for the non-homogeneous MC {P(n)},en, and then shows that stochastically stable
sets are well defined. Moreover, the theorem relates the stationary distribution of this non-
homogeneous MC to the stationary distributions of the sequence of homogeneous MCs each with
(constant) probability matrix P(n). Observe that for a given n, the matrix P(n) identifies a
homogeneous finite state MC, that is irreducible and aperiodic. Indeed, given two states x and
¥, y is reachable from x in at most |y| transitions corresponding to a sequence of requests for
each of the contents in |y|. The chain is aperiodic because self-transitions are possible. It follows
that there exists a stationary probability p(n).

Let P(n,k) denote the product P(n)P(n + 1)... P(n + k), Alpax the maximum absolute
difference of utilities between two neighbouring states and b the maximum number of contents
that may be stored in the cache (b depends on B and the content sizes).

Proposition 4.1. If T(n) = Almaxb/log(n), the non-homogeneous Markov Chain with tran-
sitions matrices {P(n)}nen is strongly ergodic, i.e. it exists a probability vector p such that
im0 Pxy(n, k) = py for allx,y € X. Moreover, p is the limit of the stationary distributions
w(n) of the Markov Chains P(n), i.e. limy, oo p(n) = p.

The stochastically stable sets are the states y for which p, > 0. The proof is in Appendix |§|
and it follows from standard results for simulated annealing (see e.g. [23]).

The next step in the analysis of simulated annealing algorithms is to prove that all the
stochastically stable states are global maximizers of the optimization problem considered, and
then only the states with maximum utility have a positive probability to be selected by the
algorithm asymptotically. This result is usually achieved by a proper design of the neighbour
selection probabilities. If such probabilities guarantee that each homogeneous MC P(n) is re-
versible, then the stationary probability p(n) can be easily calculated. A usual expression for
the stationary probability is the following;:

px(n) = ———5
ZyeXe T

for which it is immediate to verify that lim,,—, px(n) = 0 if x is not a global maximizer.

In our online algorithm, we do not have the full control of the matrices Q(n). In particular,
the neighbourhood set is not symmetric, i.e. z € Z(x) does not imply x € Z(z). For example, if
introducing object 7 requires to evict two objects from the cache, then it will not be possible to go
back from z to x with a single transition. As a consequence the MC cannot be made reversible.

A few convergence results are known for simulated annealing in the non-reversible case. In [24]
convergence to the optimum is proven under a weak reversibility condition. Weak reversibility
requires that for any pair of states x and y, if there is a path from x to y (i.e. a sequence of
states X = X1,Xa,...X, = y such that for eachn =1,...p — 1, x,41 € Z(x,)) along which the

Inria

Cache Policies for Linear Utility Maximization 11

utility does not go below a level L, then there is a path from y to x for which this is also true.
Unfortunately this is not the case in our problem, as the following example shows.

Example 2 (Weak reversibility does not hold). Let s; = so = 1 and s3 = 2, p1c1 = pacy = 4,
pscs =7, B =2. Consider the two states x = {1,2} and y = {3}. The only way to move from x
toy is directly (y € Z(x)), once a request for 3 occurs. Along this path the utility decreases from
U(x) =8 toU(y) = 7. There are two possible ways to move from y to x, corresponding to two
requests for contents 1 and 2. In both cases, the system passes through an intermediate state z
with utility U(z) =4 < 7.

A generalization of the weak reversibility condition is in [25], but the condition for conver-
gence to the global maximum is implicit, because it requires to run an algorithm on the matrix
embedding all the possible transitions, produce a specific set of states and check that this is a
subset of the set of optimal solutions. The approach is computationally unfeasible in our prob-
lem. Moreover, the same author doubts that the condition he found can be satisfied “without
some form of reversibility."

In what follows we provide an alternative characterization of the states to which our algorithm
converges. To the best of our knowledge, this result was never observed in the simulated annealing
community. We prove that the stochastically stable sets are the global minimizers of a potential
function V(x), that is defined below. Our analysis follows the regular perturbation approach
made popular by Young to study the stochastically stable equilibria in games with trembling
hands [I§].

Let € denote e=%/7 and P(e) be the extension of P(n) obtained by replacing e~/7(") by e.
Observe that P(e) is continuous in 0, i.e.. lim._,q P(e) = lim, o P(n) = P(0). Moreover, for
each pair x, y, such that Pxy(€) > 0, there exists a non negative real number wy y such that
0 < lim_,0 Px,y(€)/€"*y < co. Under these properties P(e) is called a regular perturbation of
P(0) |26].

In our setting w(x,y) is equal to

e — 0 itU(y) > U(x)
Y \U(x) —U(y) otherwise.

It is called the resistance of the system to move from x to y. There is no resistance if the state
y has larger utility. Otherwise, the resistance is equal to the immediate loss of utility. Let G be
the graph corresponding to the possible transitions of P(e) for ¢ > 0, whose links have weight
equal to the corresponding resistance of the transition. The graph G for Example [I]is in Fig.

We say that x is a local maximizer of the function U() (with respect to the neighborhood
relation defined above), if U(x) > U(z) for all z € Z(x).

In the limit for € — 0, only the transitions with null resistance are possible, and these are the
transitions possible in the matrix P(0). The recurrent communicating classes of P? are the local
maximizers of the function (). More precisely, the recurrent communicating classes contain
only the local maximizers. Let B(z) be the recurrent communicating class containing the local
maximizer x. If all the states y € Z(x) have smaller utility than z, then B(x) = {x}, i.e. the
class reduces to the single point x. Instead, if there is a state z € Z(x) such that U(z) = U(x),
then B(x) = B(z), i.e. both states belong to the same class.

We are going to prove that the lim. o pu(€) exists and it is obviously equal to u. Only the
states in the recurrent communicating classes can be stochastically stable, but not all of them
are so. We introduce a new directed graph G’, whose nodes are the recurrent communicating
classes of P(0), denoted by By, Bs,...B;. The graph is full meshed and the link from B, to By
has weight equal to the resistance of the minimum-resistance path between any state x € B,

RR n°® 9010

12 G. Neglia, D. Carra, €& P. Michiardi

0.5 T T T
045 L o obj 3 and 4
0.4 R
> 0.35 E
g 03 2.
2 025 i
O 2 | obj3or4
’ OSA
0.15 VGreedy = = = = |-
DGreedy -
0.1 1 1 T
10° 10! 10% 10°
b) Number of requests

Figure 1: Example a) Resistance graphs to calculate the potentials (dashed lines indicates
transitions with null resistance), b) Utility over time for different policies.

and y € B in the graph g[] We denote such weight as wg, 5,. Fig. |1} also shows the graph G’
for Example [I] using two particular states to identify the corresponding communicating classes.
Given a class B, we define its potential V(B,) to be the resistance of the minimum-resistance
spanning tree in G’, where from any node there is a path to B,. The potential V(B,) can be
then considered as a global measure of the difficulty to reach a state in B, from the other classes.
With some abuse of notation we can define the stochastic potential of a local maximizer x of
U() to be the potential of the class it belongs to, i.e. V(x) = V(B(x)). The interpretation is
the same: states with lower potential are easier to reach. The following result formalizes this
intuition and is an immediate consequence of [26, Chapter 3, Theorem 3.1].

Proposition 4.2. A cache state x is stochastically stable (ux > 0) if and only if x is a global
minimizer for V().

A consequence of the discussion above is that all the nodes of G’ correspond to local maxi-
mizers of U(), and then only the local maximizers of U() may be stochastically stable (as it was
intuitively expected). More importantly, the proposition indicates which of these local maximiz-
ers the policy OSA will converge to.

In Example [I} potentials are V({3,4}) = 0.035 and V({2}) = 0.2. The state {3,4} is the
unique global minimizer for the function V'(), and by Prop. is the only stochastically stable
cache state for OSA. In this case OSA converges to state {3,4} that is the optimal solution of
problem . Figures [1| shows caches dynamics over time in terms of the utility of the current
states for VGREEDY, DGREEDY and OSA and confirms that they respectively converge to the
states {2}, {1} and {3, 4} (we simulated 108 request, but there is no change after the first hundred
requests).

Unfortunately the following example shows that OSA does not always converge to the opti-
mum.

Example 3 (Convergence to the optimum may fail). Let s = so = 1 and s3 = 2, p1c; =
pace =4, pses =7, B = 2. The system has four possible states: x = {1,2}, y = {3}, z1 = {1},
zo = {2}. Among those states, only x andy are points of local maximum of U() and x is the point

7 The resistance of a path is defined as the sum of the resistances of each link in the path. It is immediate to
check that the resistance of the minimum-resistance path does not depend on the specific states x and y chosen
in the two classes.

Inria

Cache Policies for Linear Utility Maximization 13

of global mazimum. Resistances have the following values: wxy =1, wy x = 3. It follows that
there is a unique minimum-resistance spanning tree in G' and it is routed in' y. OSA converges
to y and not to the point of global mazimum.

It is definitely interesting to study under which conditions (if any) the minimum-resistance
spanning trees are rooted at global maximizers of ¢() and then optimality of OSA follows. For
example, we expect it to be the case under the conditions identified in [24] 25] and we hope
that our characterization may allow us to further extend such conditions. Moreover, even when
the convergence to the optimum cannot be guaranteed, if the difference between the utility of
the global minimizers of V() and the maximum utility can be bounded, then it is possible to
guarantee approximation factors for OSA. We leave this investigation for future research and we
move now to more practical considerations for our original problem.

4.3 Quasi Weak Reversibility

Although our system is not weakly reversible in general, in typical scenarios we expect its dy-
namics to be close to those of a weakly reversible system and then in particular we expect OSA
to converge to the global optimum of the problem or to a close point.

Our support to the previous claim originates from the success of Che’s approximation dis-
cussed in Sec. If we consider a TTL-policy mimicking OSA (as it has been done success-
fully for LRU, FIFO, RanpoMm, QLRU..., see e.g. [10]), then the corresponding system is
weakly reversible. This follows immediately from the fact that for any path from x to y, e.g.
X = X1, Xg,...Xp =y with xp,41 € Z(x,) for n = 1,...p — 1, the reverted sequence of states is
now a possible path from y to x.

5 Interlude: estimation of content popularity

All the policies described in Sections[3|and [require to know content popularities p;. A possibility
is to let the policies unchanged, but replace popularities with their estimates. Unfortunately,
making timely estimates of varying content popularity is a difficult task. Classic approaches
essentially use compact data structures to perform autoregressive moving averages of the current
number or requests for each content [27]. Results are far from being satisfactory and popularity
estimation is still an open research topic itself (see for example the recent papers [28] 29]). This
is one of the reasons for which simple policies like LRU are a de facto standard, even when
content sizes are uniform and the key performance metric is the hit ratio.

Here, we show that popularity estimation can be tricky even under the simple IRM. In such
case the asymptotically optimal estimator for the content request rate is simply the total number
of requests divided by the observation period. If the memory available for estimation is of the
order of the catalogue size (©(NV)), then it is possible to track the popularity of each content
and, after some time, the estimates are precise enough for the policies to run as in the exact-
knowledge case. If memory is more limited, then performance rapidly degrades. For example
Fig. shows the performance of DGREEDY and OSA under IRM (details in Sec. |8) when the
number of contents tracked are the W most recently requested where W = 5 x 10%, 10° and 109,
i.e. roughly 2, 4 and 40 times more than the average number of objects stored in the cache (the
catalogue has 110 millions objects). A similar observation for the case when Bloom counting
filters are used is also in [30]: the counting error floor (due to false positives) does not allow to
evaluate correctly the popularity but for the most popular m contents, where m is the number
of counters used.

RR n°® 9010

14 G. Neglia, D. Carra, €& P. Michiardi

08 T T T 1 08 T T T 7
| | | | | | | | | Memory: 50k Ob_] | | | |
.9 0‘6 R R e Nt .9 0‘6 SRR \ e Memeorys }OOkObJS—
‘C—é : : : : : : : : : ‘a’ 1 ; H I . H / 2 H
; 0.5 [Memory: 50Kk objs Z 05 Ptk ol dl o
S 0.4 |--Momory. 100k obis = o4 L o i
Memory: 1M objs RSN M e e
03 K H " T M " H H 03 o Memory': 1M0bj§ At A |
PSR I N N PSS I N N A
0123456 78 910 012345678910
Number of requests (x 108) Number of requests (x 108)

Figure 2: Miss ratio over time for the DGREEDY (left) and the OSA (right) policies with esti-
mated popularity: impact of the number of objects for which we maintain popularity estimates.

Given the difficulty to estimate content popularities, we would like to design a policy, that
does not rely on popularity estimation, but can still asymptotically store the optimal set of
contents. The next section shows that this goal is feasible.

6 How to avoid popularity estimation: DYNQLRU

The new policy we propose here is a variant of QLRU including the dynamics of OSA. This
policy, that we call DYNQLRU is almost as simple to implement as QLRU, but inherits the
convergence properties of OSA, without the need to explicitly estimate online popularities.
DYNQLRU works as follows. Contents are stored in a queue ordered from the most recently
requested to the least recently requested object. It is more convenient in this case to consider
the cache state to be this sequence. With some abuse of notation, we will still write ¢ € X (n)
to indicate that content i is stored in the cache at the time of the n-th request. If the n-th
request generates a miss, the content, say 4, is retrieved and inserted at the head of the queue
with probability

L (10)

5
admin *
i

Q(n7 Z) =

where a > 0 is an adimensional parameter and dpi, = min;ea ¢;/s; is the minimum density
across all the CatalogueE] If space is needed to store the new content, objects are removed from
the tail. Upon a hit, the content is served and moved to the front of the queue.

We observe that the policy ¢;-LRU proposed in [4] stores a content in the cache upon a miss
with probability ¢; = exp (—ﬁ %) (in that paper ¢; is the content retrieval time from the HDD).
DYNQLRU can be considered as a version of ¢;-LRU where the parameter 5 changes over time
according to B(n) = In(n)admin.

As for OSA, X(n) can be modeled as a non-homogeneous MC with transition probability
matrices {P(n)}nen. The following proposition corresponds to Prop. for OSA, even if the
proof does not follow exactly the same steps.

8 In a practical implementation, it can simply be replaced with the minimum density value seen until now.
Note also the difference with the expected density p;c;/s; used by DGREEDY.

Inria

Cache Policies for Linear Utility Maximization 15

Proposition 6.1. If « < 1/b, the non-homogeneous Markov Chain with transitions matrices
{P(n)}nen is (strongly) ergodic, i.e. it exists a probability vector p such that limy_,o Pk y(n, k) =
wy for allx,y € X. Moreover, u is the limit of the stationary distributions of the Markov Chains
P(n), i.e. lim, o0 p(n) = p.

The proof is in Appendix [D}

Now, as in Sec. [d] we should characterize the stochastically stable states of the MC. The
following result shows that under Che’s approximation, DYNQLRU with o < 1/b converges to
the solution of the fractional knapsack problem @

Proposition 6.2. Under Che’s approzimation, when o < 1/b, the stochastically stable sets of
DYNQLRU store all and only the contents that are included in the solution of the fractional
knapsack problem .

Proof. Without loss of generality we assume that contents are ordered so that A;c;/s; > Ajc;/s;

for i < j. Moreover, let b be the largest index value such that Zf;ll s; < B and Zf:ll s; > C.
Let A* be the set of stochastically stable states of DYNQLRU. The probability h; to find
content ¢ asymptotically in the cache is

hi = Z Hx = Z Hx-

xeX|iex xEA* i€

It follows that 1) if 4 has null hit probability, all the states x containing ¢ have zero probability
and then they are not stochastically stable, and 2) if ¢ has positive hit probability, it needs to
belong to at least one stochastically stable state. Then, the stochastically stable states contain
all and only the contents that have a positive hit probability asymptotically.

Let 8(n) = In(n)admin, when n diverges, /5 diverges and it has been proved in [4] that, under
Che’s approximation, the hit probabilities converge to the solution of the fractional knapsack

problem

1 if i <b
lim A = {0 ifi>b
n—00 b— ~
70_%?11 55 fori=0b
Combining the two remarks the thesis follows. O

This result corresponds to the weak-reversibility condition in Sec. 4]

7 Learning in a non-stationary setting

In the discussion above we considered a stationary content request process. Here we discuss
how the policies can be adapted in a setting where content popularities vary over time. Policies
like LRU or GDS are intrinsically robust to such changes. For the policies that require to
know popularities, like DGREEDY, VGREEDY and OSA, the most natural approach is to keep
dynamic estimates of popularities, for example using moving-average or autoregressive filters.
This approach requires to tune the filters by estimating the timescale over which popularities
may be considered constant.

Moreover, the simulated annealing approaches explores the solution space less and less over
time. The risk is to maintain stale cache states. A standard approach is to stop decreasing the
parameters T'(n) or g(n,i) when they reach a given (small) positive value, in order that some
exploration is still possible. But in this case we lose the advantage of the fast initial exploration

RR n°® 9010

16 G. Neglia, D. Carra, €& P. Michiardi

phase. Moreover, the final value has to be carefully selected for the policy to be able to follow
popularity changes.

In this section we propose a different solution that leads to a more adaptive and simpler to
configure approach. The idea is to couple the system with a change detector to decide when
to “reset” the policies, bringing them back to the initial high temperature/high ¢ phase where
they explore more. Our solution is based on the standard CUSUM sequential analysis technique
to detect online changes of a system parameter [31], 32]. CUSUM computes cumulative sums of
the deviation of some process samples from their expected value and it declares that a change
has happened when this sum exceeds a given value. In [33] a CUSUM filter was coupled with a
Kalman filter to estimate the number of competing terminals in a WiFi network. In our case we
use CUSUM to detect increases in the expected miss cost, that may suggest that popularities
have changed and a new optimal set of contents to be stored need to be found.

Let R(n) be the content requested by the n-th request and C(n) be the corresponding cost.
Hence, C(n) = 0 if R(n) is stored in the cache and C(n) = cpg(y) otherwise. Until no change
occurs the costs C(n) are assumed to be ii.d. random variables with expected value pc and
variance oZ. We implement a one-sided CUSUM filter to detect an increase of the average cost
of relative amplitude f. Algorithm [2| describes the pseudo-code. The expected value puc and the
variance o2 are not known and are estimated through a sample average (the maximum likelihood
estimator). Costs of value larger than fic(1+ f/2) (then uc f/2 larger than the expected value)
contribute to increase the cumulative sum S. When S is larger than the threshold h, it is assumed
that a change has happened and both the dynamic policy and the CUSUM filter are reset.

Algorithm 2 CUSUM change detector

Input: Sequence of costs (C(1),C(2),...), relative change to detect (f), threshold (h)
n<1
while true do

k<« 1 > requests since last reset
q

o+ 0 > estimate current expected cost

6% 0 > estimate current cost variance

S+ 0

while S < h do
S {S+jcf/6L (C(n) — pc(1+ F/2))}
fic (jio(k = 1)+ C(n)) /k
6% ¢ (62(k — 1) + (C(n) — fic)?) /I
k+—k+1
n+<n+l

end while

reset cache policy

end while

The CUSUM filter requires to select two parameters f and h. As we said f corresponds to
the minimum level of change in the expected cost that we want to detect. Below we consider
f €]0.1,0.2]. The threshold h allows us to trade off false positive versus false negative rates.
It is usual to express the performance of CUSUM filters in terms of the Average Run Length
(ARL), i.e. the expected number of requests before a reset. In particular, one distinguishes the
ARL under the hypothesis that no change happened (ARLg) or that a change happened (ARL;).
ARLg quantifies how often false positives occur, while ARL; corresponds to the delay before a
change is detected. Ideally we would like ARL(to be large and ARL; to be small, but the two
goals are conflicting. The threshold h allows us to trade off the two conflicting issues. In our

Inria

Cache Policies for Linear Utility Maximization 17

case we want ARLg to be longer than a characteristic timescale of the exploration process of
the dynamic policy to avoid false positive to reset the policy when it is still in the exploration
phase. We can define such timescale as the number of requests required for the policy to reduce
the probability values of a factor 10? for the contents with the smallest density c;/s;. A typical
value for may be 2. Then the characteristic exploration timescale of DYNQLRU is 109/, We
want to select h so that ARLg > 109/, The exact expression of ARL(requires to solve some
complex integral equations [3I]. Here we adopt the Wald’s approximation [34, Chapter 5, eq.

(5.2.44)]:
1 el]
ARLg(h) ~ E[AS] <h+ o wo>)

where AS = fic /6% (C(n) — ic(1 + f/2)) and wy is the unique non-zero solution of E[e
1]. Approximating C'(n) with a gaussian variable, we obtain

—Wwo AS —

Ele “*25] = exp (—wOE[AS] + wo

It holds E[AS]
E[—wpAS _ 1]

oc

—1. Imposing ARLq(h) > 10%/%, we obtain

eh—h—1>= <“Cf) 1097,
2\ o¢

2
=z () and Var(AS) = (M) . Then the unique non-zero solution of
0 =

In practical settings content retrieval costs exhibit high variability so that uc/oc << 1, and we
can consider the simpler inequality:

e —h—1>10%°,

from which h can be easily be determined.

8 Simulation results

In this section we evaluate the performance of the different policies using an anonymized, aggre-
gated set of requests for objects collected over 30 days from Akamai. The actual identity of the
requested objects was obfuscated, but the size of the object was known. The trace contains 2-10°
requests for 110 millions contents, whose size varies from few bytes to tens of MB. The empirical
Cumulative Distribution Functions (CDF) of popularities and sizes are shown in Appendix
We use the trace directly (reading the request arrival times from the trace itself), and also to
tune the parameters of IRM from the empirical joint content-size distribution.

In the previous sections we have proved that OSA and DYNQLRU asymptotically store the
optimal set of contents under Che’s approximation and provided that the parameters T'(n) and
q(n,1) decrease slow enough. In many applications the sufficient conditions for convergence can
be of low practical interest. For example for DYNQLRU if the cache can store b = 10% contents,
we would require o < 107% and ¢(n, i) would decrease of a factor ten only after 10%0° requests! We
need to evaluate how our policies perform under practical settings. In what follows we consider
T(n) = 0.001U 0 /log n, where Upax is the maximum content utility seen until the current time.
DYNQLRU is configured with o = 10, and dpi, is set similarly to the minimum density value
seen.

We start evaluating the performance of the different policies under the trace-tuned IRM,
considering as target the minimization of the miss ratio, i.e. ¢; = 1. For each policy, we evaluated

RR n°® 9010

18 G. Neglia, D. Carra, €& P. Michiardi

its performance on 100 IRM request traces generated with different seeds. Each IRM trace has
10® requests, the miss ratio is calculated over the last 10° requests because we are interested in
their convergence properties. We consider the ideal estimators that track the cumulative number
of requests for each content ever seen.

We present results for cache sizes B = 1KB and B = 1GB (respectively in the top and
bottom row of Fig.. When B = 1KB, only requests for the about 30 thousand contents with size
between 1 and 10 bytes are considered. This particular scenario allow us to study a small cache for
which the settings considered for OSA and DYNQLRU are closer to those that would guarantee
convergence to the optimum. The left-hand side of Fig.[3] shows the empirical CDF of the miss
ratio for the policies that require to estimate popularity. DGREEDY achieves a small miss ratio.
Indeed when objects have relatively small size in comparison to the knapsack size, the policy that
greedily stores the objects with largest density is known to lead to very good approximations.
OSA succeeds to find a slightly better set of contents, even if the parametrization does not allow
it to consistently converge to them. The right-hand side of Fig.[3]shows the results for the policies
that do not require the knowledge of popularities, DYNQLRU, GDS, and LRU, as well as the
DGREEDY as a reference. DYNQLRU has a behaviour similar to OSA (not appreciable at this
scale), while the policies GDS and LRU perform significantly worse.

When the cache has size 1GBE| and all the content requests are considered, DGREEDY achieves
the lowest miss ratio as shown in the bottom row of Fig.[3] The OSA policy does not perform
equally well: the temperature does not decrease slow enough to reach the optimal allocation
and the policy gets stuck in some local minimizer of the miss ratio. We tried temperatures up
to 100 times larger, but there was no significant improvement. On the contrary, for the largest
temperature values the transient becomes so long, that performance can actually worsen: OSA
is still randomly exploring the solution space at the end of the simulation. Despite of this OSA
still outperforms VGREEDY policy that easily gets stuck in local minima for the miss ratio.

DYNQLRU shows performance similar to OSA, but with less variability and less sensitivity
to parameter setting. The gap with DGREEDY has the same explanation. On the other hand,
DYNQLRU outperforms both GDS and LRU, whose miss ratios are respectively between 40%
and 60% and between 75% and 100% larger than those of DYNQLRU.

From now on, we compare the policies using directly the actual trace. We illustrated in Sec. [f]
the difficulty to estimate popularities online. Here we provide an additional experiment, compar-
ing the performance of DGREEDY, the “winner” under IRM, with those of DYNQLRU coupled
with a CUSUM (configured as described in Sec. 7] with f = 0.1 and § = 2). For DGREEDY
the average request rate of each content ever seen is maintained. Note that a comparison of
popularities would require ideally to update all the estimated request rates at the arrival of each
request, that may not be feasible. Figure [f] shows the miss ratio over time for two different
DGREEDY settings. In the first one, the request rate for a content is updated only at the ar-
rival of a request for that content. In the second one, all the estimates are also updated every
107 requests, i.e. every 6 hours. The corresponding plots are respectively labeled without/with
updates. The experiment shows that even when memory for estimation is not a concern, com-
putation constraints may affect the popularity estimation quality, to the point that the result in
Fig. Blmay be reversed and DYNQLRU may perform better than DGREEDY.

In the following we show the results for the DYNQLRU, GDS, and LRU policies and four
different retrieval costs: the miss ratio, the upstream traffic, the retrieval time from the server,
and the HDD load. The upstream traffic is the amount of data to be retrieved by parent caches
or the authoritative content servers, it corresponds to setting ¢; = s;. For the retrieval time, the
cost ¢; is the average retrieval time for content i as measured in Akamai network we consider.

9 Depending on the metric and the policy considered, this cache stores on average between 2’000 and 20’000
contents.

Inria

Cache Policies for Linear Utility Maximization 19
T T 1 T T T T | I
(! DGreedy [pGrée y : :
. OSA - - DyngLRU
| VGreedy — | | 0.8 H-— g .
8 8 : : : : :
] 04 A
j j 0 j j j j j
0.23 0.24 0.25 02 03 04 05 06 0.7 08
Miss ratio Miss ratio
1 1 DGreeliy (! ! I
0.8] 0.8 byﬂqLRU' S
o 0.6] . 06 A GPS” BN
o o
0.4 R 04 .
0.2] 0.2 . "LRQ e
0 0 N N
02 03 04 05 06 07 08 02 03 04 05 06 0.7 08
Miss ratio Miss ratio

Figure 3: Miss ratio over time for B=1KB (top) and B=1GB (bottom), policies with known
object popularity (left) and unknown object popularity (right). In both cases we use DGREEDY

as a reference, which requires the popularity to be known.

RR n°® 9010

20 G. Neglia, D. Carra, €& P. Michiardi

0.8 ! ! ! !
O Greedy, without updates

0.6 /e IO
0.5
0.4
0.3
0.2
0.1 [
0 1 1 1 1
0 5 10 15 20 25

Number of requests (x 108)

y DG're'edy, With updat«}.s” R

Miss ratio

T
v
<«
=
B
&
a
1

Figure 4: Impact of the popularity on DGREEDY policy: no updates in the estimate, with
updated, and comparison with DYNQLRU.

Finally for the HDD load, the cost of ¢ is the work imposed to the HDD to retrieve content i. We
have estimated it as a function of the content size and HDD characteristics using the empirical
formula proposed in [4]. All the metrics have been normalized to 1, by dividing them from
the cost that would be incurred if the cache were not present. Results in Fig. [5] show significant
improvement from DYNQLRU, but for the upstream traffic, for which all the policies have almost
the same performance. Average cost reductions in comparison to the second best policy range
from 15% for the HDD load up to 30% for the retrieval time and 45% for the miss ratio.

9 Conclusions and future works

In this paper we have bridged the two cache utility maximization frameworks proposed until now
and proved that when costs are linear over the misses and requests follow the IRM, an optimal
policy solves online a knapsack problem. We have proposed two new policies based on simulated
annealing that are optimal under Che’s approximation. Experiments on real traces show that
DYNQLRU outperforms both LRU and the competitive-ratio-optimal GDS. In the future we will
investigate if the potential defined in Sec. [d] can be used to provide strong performance guarantee,
as well as perform an extended sensitivity analysis for the configuration of our policies.

References

[1] A. Araldo, D. Rossi, and F. Martignon, “Cost-aware caching: Caching more (costly items)
for less (ISPs operational expenditures),” Parallel and Distributed Systems, IEEE Trans.
on, vol. 27, no. 5, pp. 1316-1330, 2016.

[2] V. Pacifici and G. Dan, “Coordinated selfish distributed caching for peering content-centric
networks,” IEEE/ACM Trans. on Networking, 2016.

[3] S.Shuklaand A. A. Abouzeid, “On designing optimal memory damage aware caching policies
for content-centric networks,” in Proc. of WiOpt 2016, 2016, pp. 163-170.

Inria

Cache Policies for Linear Utility Maximization 21

0.7 T T T T
0.6 .
8
=
° g= 0.5 .
g= B
= = 04 _
2 g 0.3 :
2 H d H H =
1 1 1 1 -] [DynqgLRU, LRU, GDS| :
0 1 1 1 1 0 1 1 1 1
0 5 10 15 20 25 0 5 10 15 20 25
Number of requests (x 108) Number of requests (x 108)
Q
g 1 =
g =
—_ 4 =}
cs p—
> 1 =
(a2
0 1 1 1 1 0 1 1 1 1
0 5 10 15 20 25 0 5 10 15 20 25
Number of requests (x 108) Number of requests (x 108)

Figure 5: Miss ratio (top-left), upstream traffic (top-right), retrieval time from origin (bottom-
left) and HDD load (bottom-right).

RR n°® 9010

22 G. Neglia, D. Carra, €& P. Michiardi

[4] G. Neglia, D. Carra, M. D. Feng, V. Janardhan, P. Michiardi, and D. Tsigkari, “Access-time
aware cache algorithms,” in Proc. of ITC-28, September 2016.

[5] E. N. Young, Encyclopedia of Algorithms. Boston, MA: Springer US, 2008, ch. Online
Paging and Caching, pp. 601-604.

[6] M. Dehghan, L. Massoulié, D. Towsley, D. Menasche, and Y. Tay, “A Utility Optimization
Approach to Network Cache Design,” in Proc. of IEEE INFOCOM 2016, 2016.

[7] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Performance evaluation of hierarchical
TTL-based cache networks,” Computer Networks, vol. 65, pp. 212 — 231, 2014.

[8] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems: modeling, design and
experimental results,” Selected Areas in Communications, IEEE Journal on, vol. 20, no. 7,

pp. 1305-1314, Sep 2002.

[9] A.Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young, “Competitive
paging algorithms,” Journal of Algorithms, vol. 12, pp. 685-699, 1991.

[10] N. Buchbinder and S. Naor, “Online primal-dual algorithms for covering and packing prob-
lems,” in Proc. of 13th Annual European Symposium on Algorithms (ESA 2005), 2005.

[11] S. Albers, “Competitive online algorithms,” BRIC, Lecture Series LS-96-2, 1996.

[12] S. Naor, “Primal-dual algorithms for online optimization: Lecture 3.” [Online|. Available:
resources.mpi-inf.mpg.de/conferences/adfocs08 /Naor-lec3.pdf

[13] N. E. Young, “On-line file caching,” Algorithmica, vol. 33, no. 3, pp. 371-383, 2002.

[14] P. Cao and S. Irani, “Cost-aware www proxy caching algorithms,” in Proc. of the USENIX
USITS, 1997.

[15] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approximation for LRU
cache performance,” in Proceedings of the 24th International Teletraffic Congress, 2012,
p- 8.

[16] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the performance analysis
of caching systems,” ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 1, no. 3, pp.
12:1-12:28, May 2016.

[17] P. R. Jelenkovic and A. Radovanovic, “Optimizing LRU Caching for Variable Document
Sizes,” Comb. Probab. Comput., vol. 13, no. 4-5, pp. 627-643, Jul. 2004.

[18] H. P. Young, “The Evolution of Conventions,” Econometrica, vol. 61, no. 1, pp. 57-84,
January 1993.

[19] B. Kauffmann, F. Baccelli, A. Chaintreau, V. Mhatre, K. Papagiannaki, and C. Diot,
“Measurement-based self organization of interfering 802.11 wireless access networks,” in IN-
FOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE,
May 2007, pp. 1451 —1459.

[20] H.-J. Bockenhauer, D. Komm, R. Kralovi¢, and P. Rossmanith, “The online knapsack prob-
lem: Advice and randomization,” Theor. Comput. Sci., vol. 527, pp. 61-72, Mar. 2014.

[21] S. M. Ross, Introduction to Stochastic Dynamic Programming: Probability and Mathemati-
cal. Orlando, FL, USA: Academic Press, Inc., 1983.

Inria

resources.mpi-inf.mpg.de/conferences/adfocs08/Naor-lec3.pdf

Cache Policies for Linear Utility Maximization 23

[22] P.J. M. Laarhoven and E. H. L. Aarts, Eds., Simulated Annealing: Theory and Applications.
Norwell, MA, USA: Kluwer Academic Publishers, 1987.

[23] S. Anily and A. Federgruen, “Simulated Annealing method with general acceptance proba-
bilities,” Journal of Applied Probability, vol. 24, no. 3, pp. 657667, 1987.

[24] B. Hajek, “Cooling schedules for optimal annealing,” Mathematics of Operations Research,
vol. 13, May 1988.

[25] J. N. Tsitsiklis, “Markov chains with rare transitions and simulated annealing,” Math. Oper.
Res., vol. 14, no. 1, pp. 70-90, 1989.

[26] H. Young, Individual Strategy and Social Structure: An Evolutionary Theory of Institutions.
Princeton University Press, 2001.

[27] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A survey,” Internet
Math., vol. 1, no. 4, pp. 485-509, 2003.

[28] S. Li, J. Xu, M. van der Schaar, and W. Li, “Popularity-driven content caching,” in Proc. of
IEEE INFOCOM 2016, 2016.

[29] M. Leconte, G. Paschos, L. Gkatzikis, M. Draief, S. Vassilaras, and S. Chouvardas, “Placing
dynamic content in caches with small population,” in Proc. of IEEE INFOCOM 2016, 2016.

[30] G. Bianchi, K. Duffy, D. J. Leith, and V. Shneer, “Modeling conservative updates in multi-
hash approximate count sketches,” in Proc. of ITC-24, 2012.

[31] E. S. Page, “Continuous Inspection Schemes,” Biometrika, vol. 41, no. 1-2; pp. 100-115,
1954.

[32] P. Granjon, “The CUSUM algorithm a small review,” 2012. [Ouline]. Available: http:
//chamilo2.grenet.fr/inp /courses/ ENSE3A35EMIAAZ0,/document /change _detection.pdf

[33] G. Bianchi and I. Tinnirello, “Kalman filter estimation of the number of competing terminals
in an IEEE 802.11 network,” in Proceedings IEEE INFOCOM 2003, The 22nd Annual Joint
Conference of the IEEE Computer and Communications Societies, San Franciso, CA, USA,
March 30 - April 3, 2003, 2003.

[34] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory and Application.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

[35] D. Williams, Probability with Martingales. Cambridge University Press, 1991.
[36] S. Anily and A. Federgruen, “Ergodicity in parametric non stationary Markov chains: An
application to simulated annealing methods,” Operations Research, vol. 35, no. 6, pp. 867—

874, 1987.

[37] P. Brémaud, Markov chains : Gibbs fields, Monte Carlo simulation and queues. New York,
Berlin, Heidelberg: Springer, 1999.

RR n°® 9010

http://chamilo2.grenet.fr/inp/courses/ENSE3A35EMIAAZ0/document/change_detection.pdf
http://chamilo2.grenet.fr/inp/courses/ENSE3A35EMIAAZ0/document/change_detection.pdf

24 G. Neglia, D. Carra, €& P. Michiardi

A Proof of Proposition

We first prove that the LHS and the RHS are well defined. The limit inferior in the LHS always
exists because C(m, B, |R],)/n > 0. For the limit in the RHS, observe that with probability
1 there is a request m such that X(n) = M* for n > m. The status of the cache in the first
m — 1 timeslots does not affect the limit, we can simply consider that the cache always stored
the contents in M*. By the strong law of large numbers it follows then that

. C(m*,B,|R],)
R R R
¢ M*
We observe that
Z bici = Zpici - Z pici =UWN) —UM)
¢ M* iEN iEM*

and similarly

C(m, B, [r]s) %zwn)ﬂ(r(n) ¢ X(n))
k=1

n
1 & 1 —
- > e — - > e L(r(k) € X (k).
k=1 k=1

The first term converges by the strong law of large numbers to the expected cost per request,
i.e. to U(N). If follows then that (6) is equivalent to

lim sup — Zcr(k)]l r(k)e X(k)) <UM™) a.s. (11)

If the states X (n) were independent from the request sequence, the result would follow immedi-
ately by the strong law of large numbers for independent r.v.s and the fact that M* is a solution
of problem ({3]), but this is not the case. We are going to define some auxiliary supermartingales.

Let Y, = ¢, 1(r(k)e X (k)) — Z/[(X(k))7 then E[Y,] = 0. Moreover, the variance of Y,, is
finite for each n, in particular Var(Y;,) < c2,,., where cpay = max;en{c;}. The stochastic process
defined by My = 0 and M, 1 = M,, + Y, 41 is a martingale relative to the filtration {F,,n =
1,2,...} induced by the request process. In fact E[|M,|] < oo and E[M,,|F,,—1] = M,,_; for each
n. Because of the Pythagoras’s theorem for martingales [35, Sec. 12.1], it holds E[M2] < nc2 ..

We consider now the stochastic process S,, = M,,/n. From what we proved for the process
M,,, it follows that E[S,] = 0 and it variance converges to 0 because Var(S,) < c2, /n. The
process S, can also been written recursively as Sy = 0 S, 41 = Spn/(n+1) + Y1 /(n+1). Tt
holds

E[Sn+1]Fn] = E[Sy|Fy] < E[Sh|Fn],

and then S,, is a supermartingale. Moreover, S,, is El bounded because sup,, E[|S,|] < ¢max-
Doob’s convergence theorem [35, Th. 11.5] guarantees that, almost surely lim, o S, exists
and is finite. We denote by S, the limit r.v.. By Fatou-Lebesgue theorem it follows that
E[Sw] = E[lim;,—, o0 Sp] = limy, 00 E[S,] = 0 and Var[Sy] < liminf,, . Var[S,] = 0. Then S
is a.s. the constant 0. In conclusion we have proved that

n

lim % S (copm 1 (k) € X (K)) —UX(K)) =0 a.s. (12)

k=1

Inria

Cache Policies for Linear Utility Maximization 25

We are now ready to prove Eq. by contradiction. If Eq. were not true, there would
exist a diverging sequence n,, such that

Nm

Jim_ ni S o 1K) € X () > UM?) a5, (13)
m k=1

It holds:

N

lim izcr(k)n(r(k)e)((k))

m—oo N,
m k=1

Nm

= lim — Ux

< lim Zu(M*):uw*) (14)

lim —
m—00 Ny,
where the first equality follows from Eq. (12]) and the inequality from M™* being the solution of
Problem . Equation contradicts (L3]) and then the thesis follows.

B Proof of Proposition

Proof. The proof is simpler than that of Prop. because in this case contents management at
the cache are decoupled. It holds

n

. C’(WTTL, ,)
Jim, =3 i SR £
= Zci(l —hi) > ch(l —h;k)
1EN iEN
= lim C(”T}TL,B7 LRJn)
n—o00 n

where h; is the occupancy /hit probability for content i. The second equality follows from stan-
dard renewal arguments and the inequality from A} being a solution of . O

C Proof of Proposition

Proof. The acceptance probabilities tx y(n) can be lower bounded as follows

AlUm

tx,y(n) > t(n) =e T(n) VX,y € X7

and it holds

ii kb i (1og(bk>> i i

k=1 k=1 k=1

The result follows from [36, Theorem 2]. O

RR n°® 9010

26 G. Neglia, D. Carra, €& P. Michiardi

D Proof of Prop. 6.1

Proof. We first prove that the MC is weakly ergodic.

Let y; denote the i-th element of the sequence y. Given two states x and y, it is always
possible to move from x to y in at most b steps. for example if the following sequence of content
requests occurs: ¥y, Y|y|—1, - - -, ¥1 and all these contents are stored in the cache (if not already
present), followed by b — |y| further requests for content y;. The probability that a given content
in the cache is requested at time n and it is then stored in the cache is at least ppinl/n®, where
Pmin = Min;en{p;} is the minimum popularity. Then the probability to move from state x to
state y between step nb and step (n + 1)b is bounded as follows

b
1
Px bu 1)b) > min N . 15

Remember that the Dobrushin’s index of a (finite) transition matrix A with state space X is
defined as follows

§(A)=1- Jnin, > min(As i, Ay x)
kex
Then from bound , it follows
p?nin 1
pbo (n + 1)ab

S(P(nb, (n+1)b)) <1 — |X|

and
%) pb . 1
_ > min
nE:O(l d(P(nb, (n+ 1)b))) > |X| Lo nE:O CEE

but this series is divergent whenever ab < 1. It follows form the block criterion [37, Ch. 6, Th.
8.2] that the MC is weakly ergodic whenever o < 1/b.

‘We now move to prove strong ergodicity. We consider that costs ¢; can be expressed by integer
values, and we let v denote the least common multiple of the set of costs v = LCM{¢;,i € N'}.
Consider that the variable n can assume any positive real number value and define the matrix

function over (0,1] as follows
_ 1
P(a)=P (=) .
@ Fmin®

P(a) is a regular extension of the matrix P(n) [36, Def. 1]. Moreover it can be checked that it
is polynomial in the variable a and then all its entries belong to a closed class of asymptotically
monotone functions (CAM) [36, Def. 3]. These properties of the regular extension P(a), together
with the weak ergodicity of the MC {P(n)} imply strong ergodicity of the MC [36, Th. 2].
Moreover, for n large enough there is a unique stationary distribution p(n) of the homogeneous
MC P(n), and

lim p(n) = pu.

n—oo

E Additional information on simulations
Figure@ (left-hand side) shows the number of requests for each object, sorted by rank (in terms of

popularity). The right-hand side shows the empirical Cumulative Distribution Function (CDF)
for the size of the requested objects (without aggregating requests for the same object).

Inria

Cache Policies for Linear Utility Maximization 27

10° 1 :
210 1 208 .
3 3
F o
3 10% | 1 Zoe 1
Gy]
o | =
5 10° F 1 S04 .
| -
5 o &
Z 10° 1 Boz2 |
101 Lo i i i i i i

10° 10" 10% 10° 10* 10° 10° 10’ 10°10'10%10%10*10°10°107 108 10°
Object popularity Object size (bytes)

Figure 6: Number of requests per object, ordered by rank (left), and cumulative fraction of the
requests for objects up to a given size (right).

Along with each object, the traces report an additional parameter called retrieval time, which
is the time needed to fetch the object either from the original server, the cache hierarchy, the
disk or the memory, along with the necessary computation (e.g., unzipping or encoding the
content). Considering the objects retrieved from the original server and the cache hierarchy,
their retrieval times are an effective measure of the pressure on back-end servers each object
impose, as computed by the content delivery network management system.

Thus, in some of our experiments, we use as cost this retrieval time. Due to internal Akamai
confidentiality policies, this cost has been re-normalized to an integer between 1 and 10°000.

It is important to note that the retrieval time is not necessarily correlated to object sizes:
Fig. shows the relation between the object size and its cost (each point represents an object).
We have also computed the correlation coefficient between the size and the cost, obtaining a
value equal to 0.013, which indicates no correlation.

RR n°® 9010

28

G. Neglia, D. Carra, & P. Michiardi

p—
-

ubject cost

Object size (byte)

Figure 7: Relation between object size and cost. Each point represents an object.

Inria

V4

: in[arma!ics,mutheman’cs

RESEARCH CENTRE
SOPHIA ANTIPOLIS - MEDITERRANEE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Background and related works
	Retrieval cost minimization under IRM
	A simulated annealing approach
	The algorithm
	Convergence
	Quasi Weak Reversibility

	Interlude: estimation of content popularity
	How to avoid popularity estimation: DynqLRU
	Learning in a non-stationary setting
	Simulation results
	Conclusions and future works
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Proposition 4.1
	Proof of Prop. 6.1
	Additional information on simulations

