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ABSTRACT

We tackle the problem of multimedia indexing using keyword spotting on the spoken part of the data. Word spot-
ting systems for indexing have to meet very hard specifications: short response times to queries, speaker independ-
ent mode, open vocabulary in order to be able to track any keyword. To meet these constraints keyword models
should be build according to their phonetic spelling and the process should be divided in two parts: preprocessing
of the speech signal (off-line) and query over a lattice of hypotheses (on-line). Different classification criteria have
been studied for hypothesis generation: frame labelling, maximum likelihood and maximum a posteriori (MAP).
The hypothesis probability is computed either through standard gaussian model or through an hybrid Hidden Mark-
ov Model-Neural Network (HMM-NN). The training of the phonemic models is based either on Viterbi alignment
or on Recursive Estimation and Maximization of A posteriori Probabilitics (REMAP). In the latter discriminant
properties between phonemes are enforced. Tests have been conducted on TIMIT database as well as on TV news
soundtracks. Interesting results have been obtain in time saving for the documentalist. The ultimate goal is to cou-
ple the soundtrack indexing with tools for video indexing in order to enhanced the robusiness of the system.

Keywords: keyword spotting, indexing, speech, information retrieval, REMAP, Hidden Markov Chain, frame la-
belling, speech indexing.

1. INTRODUCTION

The amount of accessible multimedia information has been growing drastically. The increasing number of personal
computers enables the layman to contribute to the development of internet, this new worldwide source of informa-
tion. At the same time, there is an increasing number of cables and satellites operators providing new video serv-
ices. Access to this growing amount of information is not easy and indexing tools are needed not only by database
managers and professionals involved in archiving but also by private users.

Although text indexing has been widely used for several decades, content based indexing of other media (still im-
ages, video, music, speech) is still in its infancy. The search for semantically described events may rely on the video
content itself (face recognition, scene understanding) but also on the soundtrack. Few works!? 1112 on this topic
have been reported so far. Among the useful indices that can be extracted from the soundtrack, localization of key-
words plays a prominent role,

To be of generat use, the word spotter should be speaker independent and able to detect any word of an open vo-
cabulary. Due to the latter constraint, phonemics description of words is unavoidable. Most of the existing keyword
spotters”’*'3 have been proposed for specific applications such as phone dialling or vocal messages sorting. While
most of them achieve speaker independency, none of them deals with the open vocabulary problem. The descrip-
tion of speech data in terms of phonemes has also been used?.

This paper describe three indexing tools we developed which satisfy these constraints.

Given a series of acoustic segments, the first tool computes the probabilities to associate their phoneme utterance
with given phonemes. From this information, the tool identifies signal locations where the probability of presence
is high and uses these “phonetic hypotheses” to build a lattice that will be saved and used for query processing.
When searching for a word, the lattice is scanned to find the corresponding phonetic transcription. In this manner,
indexing task is separated from the query and is achieved off-line in a preliminary sophisticated and accurate



processing while the query can be quickened.

The second indexing tool uses the same strategy of task separation but uses Markov models of the phonemes and
the language. It is observed that this method accelerates the query and in addmon increases the scores.

The third tool relies on a recently described theory of discriminative training® where Hidden Markov Models and
neural netwarks are blended to efficiently train the a posteriori probabilities of phonemes given an utterance. The
aim is to increase the reliability of the phonetic lattice and increase the scores of the word spotter.

In section 2, language models for the three different approaches are described. For each of them, the underlying
phonetic models are given and if necessary, we will expand the model training algorithm.

Section 3 deals in more details with the lattice of hypotheses generation. We will show how this lattice generation
is conducted according to the approach used. For the labelling method, integration over time of local probabilities
is used in order to smooth these curves. Moreover, a multi-level of hypotheses detection is used to find various
phonemes transitions, In the HMM method, we will describe the algorithm used to detect hypotheses. Finally, we
will fit this last algorithm for the REMAP approach.

Section 4 deals with the search algorithm over the lattice and described the blocking effect that may occur during
the parsing. Next, given the used approach, we will detail differences solution to avoid this effect.

In section 5, comparative results between our indexing tools are given.

Conclusions are drawn in section 6 and perspectives for future work are proposed.

2. LANGUAGE MODEL

As in all recognition systems, speech is preprocessed over short time frames (32 msec here), shifted by 10 msec.
Each frame is described by a vector, x, , in a so-called feature space R" . This vector is composed with the 17 first
cepstrum coefficients and a voiceness esnmator based on cepstrum coefficients.

As it is well known-, a voiced frame can be easily detected on a cepstrum analysis since the pitch-periodical nature
of the spectrum corresponds to a peak in the cepstral domain, Knowing that fundamental frequency ranges from
40Hz to 250Hz, we can isolate the cepstrum part of this range to detect the highest energy frequency. The ratio
between this energy and the average energy over this frequency domain gives us a measurement of voiceness.

2.1 Frame Labelling

Traditionally, phonemes are modelied upon Hidden Markov Models (HMM).

But in this first approach, a single local probability distribution is associated with each phoneme which is just
equivalent to work with a one-state model. This probability measures the degree of membership of an acoustic vec-
tor to the corresponding phonemic class. But since no Viterbi alignment is used in our word spotter, HMM concept
is in fact irrelevant. Three different definitions of the probabilities will be tested. Gaussian distributions and multi-
Gaussian distributions will model P (x |@) (where ¢ denotes the current phoneme and x, the feature vector) while
the a posteriori probability P (@lx,) is generatcd by a multi-layer perceptron (MLP). Bayes relation links these two
probabilities. While the first two parametric distribution families have been used for classification with HMM for
a long time, neural network generation of probabilitics has drawn recently a lot of interest®. 6, It is out of the scope
of this paper to describe in the details the training techniques for the determination of the distribution parameters.
The MLP is trained with the error backpropagation algorithm.

= Gaussian distribution.

The parameters for each phoneme are a mean vector and a covariance matrix which is assumed to be diagonal for
simplification purpose. The phoneme segmentation used to estimate theses parameters results from the optimal
alignment of the labelled database by a standard Viterbi algorithm?,

« Multi-Gaussian distribution.

It seems to be a severe constraint to restrict the distribution shape 10 a unimodal Gaussian hyper-surface. A multi-
modal Gaussian distribution could fit better with the actual underlaying distribution of speech data and would lead
to more accuracy. The determination of muiti-gaussian parameters has been achieved along two chained tech-
niques. In the beginning, a fast iterative processing is used in which each vector is associated with the distribution



giving the highest probability. The results are then fine tuned by using the exact processing in which each vector
is associated with all distributions according to its probabilities. The order of the distribution has been chosen ac-
cording to the size of the class. If the number of patterns associated with one gaussian distribution falls under a
predetermined threshold (typically 30), the corresponding mode is skipped.

* Neural Network,

It is now well accepted that the outputs of an MLP trained with a classification criterion (one active output only
with all the others fired off) approximate the a posteriori probabilities. Using Bayes rule and the a priori probabil-
ities of the classes, a posteriori probabilities can be converted into local probabilities within an irrelevant scaling
factor®. We used an MLP with a single hidden layer containing 20 units in a first test and 200 units in a second
one. No distribution shape constrains the resulting distribution and the a posteriori probabilities are trained accord-
ing to a discriminant criterion. The learning algorithm is a standard error backpropagation with a cross-validation
test for iteration control to avoid over training.

2.2 Hidden Markov Model

In this second approach, the language model is based on a HMM structure composed by sub-models of phonemes,
¢, € &, connected in order to generate any possible phonetic sequence. The inter-phoneme connections are the
time-shift invariant phoneme transition probabilities P (¢, e |(p .) - These probabilities are based on the number
of phonetic transition, ¥ ((p ) found in the training databasc
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Each phoneme, 9, € &, is modelled by a standard 3 states HMM, where the states are denoted:
T3p93p4 10 D3p42° Each state may generate the local a priori probability P (x Iq) for an acoustic vector x.,, to
be produced by a given state g . Theses models are estimated through a standard training iterative process?,

Two different state probabilities are tested: Gaussian density based model giving P, (x,|q) and a multi layer per-
ceptron (MLP) based model giving an a posteriori probability, P,; , (¢]x,) . In the latter case, Bayes rule is used
to deduce an a priori probability.

« Gaussian Distribution

Here, the parameters for each phoneme consist in a mean vector and a covariance matrix which is assumed to be
diagonal for simplification purpose.

* Multi Layer Perceptron

As in the first approach, each output of the neural network is associated with a specific phoneme.

Using Bayes rule and the a priori probabilities of the classes, a posteriori probabilities can be converted into local
probabilities within an irrelevant scaling factor in the Forward Backward or Viterbi algorithms®,

2.3 REMAP model
» Overview

The a posteriori probability approach can be viewed as follows:

given a spoken sentence to be learned, let denote M, the HMM model to be associated with, ¢ i the states of this
model, each of them representing a specific phoneme @, andX = X, = {x: %y o0s xy} the sequence of acous-
tic vectors extracted from this sentence.

To learn the model, we tend to maximize the a posteriori probability, P (M|X, 6, L), where ® and L, respectively
represent the parameter set of the acoustic model and language model.

The a posteriori probability, P (M|X, @, L) can be written as the sum associated with the valid paths in the model:
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where T ,is the set of all valid paths in M,

This representation better matches with the Baum Welch approach than the Viterbi one-®.
The first factor of the right hand side denotes the acoustic model and the second factor denotes the language model

» Acoustic model.

If we denote 9 n the state visited at time a by the path ¥;» We can write the acoustic model as follows:

>(y,
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where we make the successive hypotheses:

- The acoustic model is independent of the language parameters, L.
- We use a first order Markov model.

- This probability is only dependant of a temporal window of length ¢ + d + 1 of acoustic coefficients, X : :' f .
Note that these local probabilities can easily be evaluated with a MLP?.

* Language model.
The language model can be describe by:
N Pig, |q, M, L)
— 124V
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According to the successive assumptions that, knowing the path Y; i.e. the phonetic sequence:

- The model can be found without an explicit dependence on X .

- The language model is independent of the acoustic parameters, © .
- A first order Markov model is used.

+» Training algorithm.

In a similar way, the REMAP approach is based on a successive MLP training scheme. But unlike the classical
HMM-NN learning method, no Viterbi algorithm and no segmentation are used.

In this iterative scheme, the MLP trained in the previous iteration is used to estimate transition probabilities from
which new targets will be derived. These one are then used for the next MLP training. Convergence of this iterative
process has been proved?®.



* Phoneme transition probabilities.
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FIGURE 1.

In fig. (1), the local phonemes probabilities estimated by (1) are plotted along the time axe. It can be easily noticed
that the transitions between most probable phoneme are smooth and et the system take less abrupt decision. This
will lead to a more flexible recognition system than an standard HMM-NN approach.

3. LATTICE GENERATION.

3.1 Frame Labelling

 Integration over time.

Plotting the a posteriori probability of a given phoneme P (@|x,) as function of time shows segments of higher
probability (cf. fig. (2) (a)). However, the curve fluctuates between successive frames and should be smoothed. In-
tegration over time by summing the values in a rectangular window will achieve low pass filtering. Cut off fre-
quency will be controlled by the average duration of the current phoneme: indeed, the width of the rectangular
window should be adjusted to the resolution required for a satisfactory analysis of the current phoneme, Doing so,
we can reduce the importance of erratic peaks inside long duration phonemes and still detect peaks for the short
duration phonemes. Smoothed curves will ease the determination of hypotheses on phoneme boundaries

( f. fig. (2) ().
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» Multi-level hypotheses on phoneme occurrences.

To generate hypotheses, we define different thresholds of probability (typically 0.1, 0.01, 0.001). For a given
threshold and for each ghoueme ¢ , we detect segments where the curve P (¢|x,) runs above the threshold. Such
a segment is denoted X, = [x,, .., x,]. The probability over this segment is P(¢|X;) . Using the Bayes rule and
the usual assumption that each acoustic vectors x; independent, we can write®:

[12 (olx)
Plp|X;) = B2,
P(p)
making it independent of the segment duration. This will be abbreviated by P when no confusion is possible. Thus,
an hypothesis consists of this probability and the beginning and ending frame indexes of the current phoneme. It
is denoted as h (¢, P, b, ).

Different thresholds generate different boundaries and probabilities. Lower thresholds give rise to new hypotheses
containing less likely phonemes which do not appear with higher thresholds. When using all possible ¢ we gen-
erate the lattice of hypotheses, denoted L = {h,, ...,h,}, where we assume all the hypotheses sorted according to
their beginning frame number, b . The number of hypotheses, M, can be modified by decreasing or increasing the
thresholds

3.2 Hidden Markov Models

The a priori probability that the vector sequence X T can be associated with a specific path,
? = {q.p (1), 90 2),..., 90 {T)  through the different states of the HMM is given by: s

T
o= HIP(x,;qg, (N)P(q, (1+1)]q,, (1)
=
Each sequence of states generated by a path through the HMM can also be viewed as a sequence of sub-paths
through phoneme models, o = {f,, ® 0 F2) ‘p }, where V phonemes have been generated and

P
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Ateach time ¢, during the forward part of the Viterbi process, the probability associated with the best path finishing

in ¢ach state is known.
It has been shown'! that not all possible backtrack informations collected during the forward process should be

saved.
» Forward

In a Viterbi approach, we only need to keep at each time ¢, the best finishing phoneme ¢ (r) and its duration 1 (r) .
In a lattice making approach, as in the N-best approach, we need to keep more information. At each time ¢, we
need to keep the N best finishing phonemes, », (£),9,{(1), ..., @y (L, their respective duration,
it; (£),84, (), ..., 8ty (2, and the probabilities associated with them?, (¢}, P, (1), ..., Py, (£, where P, () stands
for* (X, U5, 1y |0 (O

These associations can already be viewed as hypotheses.



» Backward

In order to be time efficient during the lattice search process, we cannot keep trace of all the exact N-best paths, as
each N-best path has its own phoneme segmentation, and therefore would need to generate too much nodes. In or-
der to limit the node generation, a two step process is used as shown in fig. (3).

fig. 3.

First, the node generated by phonemes transitions of the best path (Viterbi) is kept. Second, for each selected node,
we inspect the N finishing phonemes associated with, and select their beginning nodes. Third, we keep in the lattice
hypotheses containing all the phonemes beginning and ending on selected nodes.

Doing so, we define Groups of Hypotheses, containing the same beginning and ending nodes.

3.3 REMAP approach

A similar method than in the HMM approach is use to extract this lattice out of the acoustical vector sequence.

For each segment between two consecutive nodes of the lattices the N best phonemes, ¢ ¢ are considered. The
probability of ¢, over this segment is computed by:
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where Q, (b, e) stands for {qf_ l, q:, e q;, q:: l} withlm=k.

4. SEARCH OVER THE LATTICE.
4.1 Confusion Matrix

Since hypotheses are obtained through a thresholding process or an N-Best like strategy, not all phonemic hypoth-
eses appear in the lattice as opposed to a continuous HMM word recognizer where all hypotheses are considered
every frame, even those with extremely low probabilities. Thus a blocking effect may resuit in the search strategy
in case of mispronunciation, non-standard pronunciation or even simply due to the high variability of speech.

To alleviate this blocking effect, we used a so called confusion matrix, containing the estimated probability of con-
fusion, P (q)pl(p 4)» between pronounced phoneme, ¢, , and detected phoneme, ¢, . This probability known, we
can associate with each detected phoneme, ¢, a pro%ability of having pronounced a specific phoneme, ?, The
estimation of this matrix relies on the specific approach used.

» Frame Labelling

In this approach, we estimated this matrix by:

(@, 00 = T Plo)P (9,5,

xeX

where P (x|¢,) is given by the appropriate phoneme modelling (gaussian, multi-gaussian or NN), P ((pplx) is0



or 1 according to the given database segmentation and X the entire training set.
« Hidden Markov Models

Let us note X ? the set of all acoustic vectors labelled by the correct phoneme @ , . If we note @, the detected pho-
neme, we can then compute the confusion probability:

[P(Q3d|(Pp) +P(q3d+1|(pp) +P(43d+2|q’p)]
P(g3) +P(q35,1) +Pd34,7) !

((Ppl(Pd) =

where g5, 934, and g, , are the states used during the training with the generic Janguage model, and ?,
when using the Viterbi segmentation on the known phoneme sequence.

* REMAP

Given a standard HMM of the language, composed with the states g, , associated with the detected phonemes ¢ ,,
we can compute'* the confusion probability:

N b -1 t=1| g+d
P _ X PL(pp‘(Pk ’X)P((pk |Xr—c P t] -1 X:+d
0 o0 = X X p 0,009 X, 1o) -
t=lk= 1 Plo, N,
where:

- P( o,|o; ! XJ is the target for the Neural Network training,

- P(q);c_ ! lXi * fJ is the a priori probability,

- P( q);‘(pi_ l, X :t fJis given by the Neural Net according to the input vector,( (p;; 1, X;tf)

- PL (p;J is supposed constant and estimated through the neural network.

4.2 Algorithm.

The frame labelling algorithm® differs from the HMM and the REMAP cne only by the mechanism vsed to select
the next phoneme hypotheses.

» Frame Labelling

In this case, hypotheses are deduced from the local probabilities. Therefore the hypotheses boundaries cannot be
grouped as in HMM or REMAP approach. Se, the end of an hypothesis does not necessarily match exactly with
the beginning of the next hypothesis. Between successive hypotheses temporal jumps are then required.

Lets select two hypotheses, h, (@, P, b, e;) and h, (@,, Py, by e,}. We allow the transition between the two
hypotheses if:

(o)) +1(o,)|

by - e1| D S—

where @ is a given threshold and p (@) is the mean duration of the phoneme ¢ .
*» Hidden Markov Model and REMAP

Now, as boundaries hypotheses are grouped according to the Viterbi segmentation and its second iteration (see
3.2), jumps are no longer needed. This reduces searching time as hypotheses transitions boundaries are fixed.

Let¢ = {@,, ..., oy} bethe phonetic transcription of the searched keyword. .
For each group of hypotheses having the same boundaries, h(¢, P, b e) e Hy, where P, =P ((P"I X; ), we
compute, using the confusion matrix:
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generating a new lattice, L, of M new hypotheses, specific to the keyword.
Next, we search the best sequence of hypotheses denoted H = {A 1 b ,N} » which maximizes the probability:

YH) = H P (h;), wherel, e [1, M],
i€l oty

andsuchthatlfh,r-:H Vi=1.,N, thene -leV:-l SN-1,
The search of the opt:mafl sequence of hypotheses is based on a recursive process.

The initialization process consists in searching over all the lattice L, each hypothesis h, ((pl,P 5 1),
€ [1,..,(M-N +1) ] of occurrence of the first phoneme ¢, .

1. For each occurrence of the first phoneme, initialize H | = {h; } and PH = P(n),

2.Ineachstep k = 2, ....N, for the last hypothesis of ¥~ !, denoted By, (@_p P s, 1), wenext

search for hypotheses A L (@, p',s', 1) of occurrence of ¢, , such that 1 =

3.For each hypothesis hh found, we build H’¢ = {HJ< _l,h;*} , and calculate

PHY = PH* )P (k).
If no hypothesis is found, let ¥k = k-1 and go to 2.

4ifk<N,setk =k+1,andgoto2.

5.if k = N and if PH N) is the maximum sequence probability encountered, we keep this

sequence H N,
At the end of this process which runs over the whole lattice, the sequence ¢ showing the maximum probability,
PO|L) = max [PE™] is found.

5. RESULTS.

The tests we have done are based on the DARPA TIMIT corpus (90). As shown in table (1), we randomly chose
20 SX sentences of the test part and in each of them a keyword, ¢, was selected.

[sx113 muscular  sx95 alligators [sx14 thursday
[sx10 grades Jsx100 proceeding  [sx101 decorate
[sx110 problems  sx20 overalls |sx199 exposure
sx103 ambulance  |sx290 informative [sx99 society
sx137 wradition  [sx109 ankle [sx102 xidnappers
[sx53 vocabulary  [sx373 superb [sx280 mirage
[sx133 pizzerias  |sx8 silly |

Table 1:

Each SX sentence occurred 7 times in the test database as there are spoken by 7 different speakers. We keep these
140 sentences (7* 20) as the test corpus in order to be speaker independent.

- For each sentence, we generate the corresponding lattice, L i i=1,..,140.

- For each keyword, ¢, . k=1,..7:



1. We compute its probability of occurrence in every sentences: P (¢ak|Li) .

2. We sort the 140 sentences according to their probability.
= Parameter evaluation

Before comparing the methods, the number of parameters are given in the table (2) according to the respective
method.

Method Local Probability Parameters
Frame G aussian 1952
Labeling Multi Gaussian 31232

Neural Network 15661

HMM aussian 9577

[Neural Network 19382

REMAP [Neural Network 44982
Table 2:

» “Position” measurement

Collecting the mean position (over the different keywords) of the 7 occurrences of each keyword in the sorted list
leads to the table (3) :

Method Local Probability {1 occ.|2 occ.|3 occ.{4 occ.|5 oce.|6 occ.] Tocc.
Frame [Gaussian 21| 445 875 1440 243 40.65] 6015
Labeling [Multi Gaussian 2.1 4335 s8.45 neol 192 3355 61508

INeural Network 1.4 3.50] 6.30 12.65 17.5] 39.85 64.85

HMM aUss1an T3 455 700 1703 2335 3805  57.15}

eural Network 1l 255 7.05] 1230 23.300 29.000 47.20)

REMAP [Neural Network 1.1 235 45 77| 12.95 21.25  31.20
Table 3:

+ “Precision” measurement

The guality of an indexing system can be measured by the “precision” and “mean precision™. This figure out the
proportion of correctly selected sentences out of a given part of the sorted corpus®1?,

This measurement is given in table (4):

Method Local Probability |1 occ.l2 oce.|3 occ.|4 oce.|5 occ. 6 occ.| 7oce. | Mean
Frame [Gaussian 077 0.71] 060 053 0.8 0.5 017  0.48)
Labeling [Multi Gaussian 080 073 o062 057 o045 026 o017 052

fNeural Network o090 071 o064 036 053 029 017 05
HMM [Gaussian 0.94]  0.83| 0.76] 064 057 046 034 065
eural Network 095 0387 072 o063 050 049 03] 064
REMAP eural Network 0.95 0.89 0.78 0.65 0.55 046 035 067
Table 4:

+ “Time saving rate” measurement

This measurement''# is based on the real used of such a system by a documentalist. Let assume a documentalist
using a REMAP approach system to search for 4 occurrences of a specific keyword. He will need to listen to ap-
proximately 8 sentences to extract its 4 occurrences. Without this tool, He would have to Tisten to about 71 sen-
tences. Therefore, this tools manage to save about 83% of its time. Doing such a estimation for each approach leads



to the table (3):

Local Probability |1 occ.{2 occ.|3 occ.|4 occ. |5 occ.|6 occ.| Toce. | Mean

Gaussian 88.4] 87.53| 83.40] 7958 72.48 6152 s5l.1 T4.8
ulti Gaussian 88.4] 87.81] 8405 83.13] 7826 68.25
[Neural Network 922] 90.14] 88.11] 82.06] 80.11] 6223
[Gavssian T 93.37] 8725 86.79] 74.62 13.56] 63.99
eural Network 9392} 92.85| 86.60| 8256 73.67 7255
eural Network 939 93.4 91.5 89.1 85.3 79.9

Table 5:

« “Receiver Operation Curves Characteristics” { “R.0.C” ) measurements

According to the known association'!* between “Precision” and “R.0.C", we can draw the operation curve char-
acteristic in the fig. (4) :
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____________ »—— HMM monogaus.
e-.— HMM Neual N.
Vg--mmmmmmmmm s » — - REMAP
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FIGURE 4.
2.1 Sensibility over keyword apparition frequency

We also had analyse the sensibility »f the system accerding to the keyword occurrence frequency. In erder to figure
out this effect, we used the first method (frame labelling) and compute the “time saving” with a equal number of
keyword occurrence in database having a growing number of non keyword sentences.

These results are given in table (6) :

Sentences §1 occ. | 2 occ. | 3 occ. 4occ._!5{)cc. 6 occ. | 7Tocc. { Mean
J 77.4§|

140 92.22 90.14 88.11 82.06 80.11 62.23 47.2

300 91.47 92.20 89.87 87.17 81.54 77.28 55.87] 82.21'

1095 91.25 92.07 89.72 86.68]  80.27 75.45 52.55 8114
TABLEAU 6.

This figures shows that the results, in term of “time saving" are independent of keywords occurrence frequency.
2.2 Comments

Theses results show the efficienceness of the markovian models against the frame labelling methods. This can be
understood knowing the lexical constraints imposed by the markovian model.

In same order, comparison on “position” and “time saving” between gaussian models and hybrid model shows an
advantage for the hybrid methods against the gaussian one.



Good REMARP results can be explained with the language model built in the network, leading to more flexible mod-
elisation, but its major enhancement probability came from the context dependent input and the higher number of
parameters used in the model.

3. CONCLUSION.

The ambitious task of keyword spotting on speaker independent data without restrictions on the vocabulary has
been tackled. A frame labelling approach has been compared with standard HMM and REMAP approaches. This
comparison shows that better results can be expected with this new approach. Due to the lattice structure, an im-
provement in the search time, compared to more classical approach has been shown. As emphased by the “time
saving” measurement, this paper shown the feasability of such an indexing tool.
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