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ABSTRACT

The problem of joint Angle-of-Arrival (AoA) and calibration param-
eters in a wideband scenario is addressed. The system consists of
multiple sources transmitting from different directions and in certain
subcarriers. Sources in the same beam are regarded as transmitted
from the same AoA and their signals are allocated to different sub-
carriers while users in different beams may transmit on the same sub-
carrier, i.e. the signals are multiplexed in space and frequency. Then,
signals from a given beam not necessarily occupy the full bandwidth
but only specific subcarriers. In addition, due to the wideband of
the signal, each RF chain introduces frequency dependent gain and
phase shift that need to be calibrated to perform a subsequent demul-
tiplexing in a digital beamforming matrix. We propose a novel blind
algorithm that (i) estimates the AoAs of all present sources in the
bandwidth of interest and (ii) estimates the different gains/phases at
each antenna per frequency up to an unknown impairment at a refer-
ence antenna. We provide identifiability conditions that ensure a suc-
cessful parameter estimation. Finally, the potential of the proposed
algorithm compared to the case of known calibration parameters is
assessed by simulations.

Index Terms— Satellite, blind calibration, AoA Estimation,
wideband digital beamforming.

1. INTRODUCTION

Wideband Digital Beamforming (WDBF) technology has become
an essential part of satellite communication systems since it com-
bines the benefits of the digital beamforming (e.g. [1]) with the
advantages of the wideband systems (e.g. [2]). The design of
WDBFs is typically based on the assumption that the delay line
is frequency independent (e.g. [3]). However, analog RF chains
performing down-frequency conversions and Analog to Digital
Converters (ADC) introduce delay contributions that are frequency
dependent, thus severely degrading the performance of the WDBF
network [3]. Therefore, in broadband multiantenna Satellite Systems
(SS), a crucial role is played by a correct calibration to compensate
for these delays. Usually, on-board calibration for bent-pipe SS
equipped with WDBF is based on supervised calibration techniques
using probe signals (see e.g. [3–5]). In such a context, it is appealing
to develop blind calibration techniques that could outperform the
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supervised ones in terms of cost, spectral efficiency, power, mass
of equipments, and complexity. The impairments can be modelled
by a linear filter and equalized in the digital domain. In this paper,
we develop a blind calibration algorithm for bent pipe Satellite Sys-
tems (SS) equipped with a transparent digital beamforming network
which demultiplexes the signals in the space domain, but it does
not perform demodulation and decoding of the transmitted data.
The proposed blind algorithm jointly estimates the angles of arrival
(AoA) of the different beams and estimates the linear impairments
using alternating optimization. The impairments are estimated in the
frequency domain and at each frequency the problem is reduced to
the classical problem of joint blind AoA estimation and gain-phase
error estimation in narrowband. This latter problem has been widely
investigated in the eighties and nineties (e.g. [10–16]) utilizing a
large variety of approaches which span from the maximum like-
lihood concept to the subspace method. More recently, this topic
gained new attention and in [6], the authors tackled the problem by
leveraging on the signal sparse model. In [7], Ollier et al. consider a
model with block diagonal colored noise and adopt a maximum like-
lihood approach in the presence of a limited number of calibration
sources with known angles of arrival. To assess the performance,
they analyze the Cramér-Rao bound (CRB).

This work differs from the existing literature on joint AoA and
calibration parameters estimation since we consider wideband sig-
nals from given beams, possibly with subcarriers, where the signals
null out. Furthermore, the calibration parameters vary from one fre-
quency to another. Therefore, in this paper, our aim is to jointly
estimate the AoAs of all the sources present at all the frequencies
of interest and the calibration parameters at each frequency. We
propose a novel method in order to do so. We have made use of
the MUSIC algorithm [17] to form a suitable optimisation prob-
lem in order to jointly estimate the AoAs and calibration param-
eters. First, the method estimates the AoAs using multiple one-
dimensional searches, then the AoA estimates are used to estimate
the calibration parameters. In addition, we provide identifiability
conditions that ensure successful parameter estimation. Finally, we
simulate an experiment in order to demonstrate the potential of the
proposed algorithm compared to a case where calibration parameters
are known.

Notations: Upper-case and lower-case boldface letters denote
matrices and vectors, respectively. (.)T and (.)H represent the trans-
pose and the transpose-conjugate operators. The matrix I is the
identity matrix with suitable dimensions. For any matrix B, the
operator ‖B‖ denotes the Frobenius norm. For any finite set A,
card(A) denotes the cardinality ofA. For any vector x, the operator
diag[x] returns a diagonal matrix with diagonal entries correspond-



ing to entries of x. Also for a set of matrices A1 . . .Ak, the oper-
ator blkdiag[A1 . . .Ak] returns a block diagonal matrix formed of
A1 . . .Ak. The operator ⊗ stands for Kronecker product.

2. PROBLEM STATEMENT AND SYSTEM MODEL

We consider a digital communication Satellite System (SS) in the re-
turn link equipped withNR receive antennas and servingNB beams.

On board, each antenna is followed by an analog chain for
down-frequency conversion, and an analog-to-digital converter
(ADC). The subsequent processing, including the spatial demul-
tiplexing by a digital beamforming network is performed by an
on-board digital transparent processor (DTP). Typically, the DTP
includes a module for calibration of the down-frequency conversion
and analog-to-digital conversion chain and a subsequent module
for digital beamforming demultiplexing. Figure 1 illustrates the on
board equipment.
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Fig. 1: On board equipment and signals

We focus on the design of the calibration module assuming no
knowledge on the transmitted signals.

The signals from multiple users are multiplexed in space and
frequency. The users in the footprint of beam b transmit on non-
overlapping frequency bands according to a classical frequency di-
vision multiple access (FDMA) scheme. The bandwidth of the total
complex multiplexed signal is BM/2 and the received signals are
sampled at the Nyquist rate fS = BM . Let θb be the angle of the
planar waveforms from beam b in a reference system and a(θb) the
NR-dimensional steering vector in the direction of θb. The steering
vector is assumed to be constant over the band of the multiplexed
signal and the angle of arrival is identical for all the users in the
footprint of beam b. Throughout this paper we denote with xb(t)
and xb[n] the baseband multiplexed signal from beam b at the input
of the antenna array (see interface A in Fig. 1) and the corresponding
sampled signal, respectively. It is worth noting that it is not neces-
sary that each subcarrier of the SS frequency band is allocated to an
active user. Thus, the Fourier transform (FT)Xb(ω) of xb[n] will be
nonzero only in the frequency intervals corresponding to active users
in the beam b. Given a frequency ωk, NBk is the number of active
users from different beams allocated to the subcarrier containing ωk.
We assume NBk < NR. Then, the baseband multiplexed signal at
the output of the antenna array (see interface B in Fig. 1) is given by

r(t) =

NB∑
b=1

a(θb)xb(t) = A(Θ)x(t) (1)

where

Θ = {θ1 . . . θNB} (2)
A(Θ) = [a(θ1) . . .a(θNB )] (3)

x(t) = [x1(t), x2(t), . . . xNB (t)]T (4)

Each down-frequency converter introduces a distortion in the
signal that we model as a linear filter. Then, after down-frequency
conversion at themth receive antenna, the signal rm(t) is filtered by
an unknown filter hm(t) such that the signal at the input of the ana-
log digital converter (ADC) is given by ym(t) = hm(t) ∗ rm(t) +
vm(t), where vm(t) is an additive white Gaussian noise. After sam-
pling at the Nyquist rate, the system model in the frequency domain
is given by

Y(ω) = H(ω)A(Θ)X(ω) + V(ω) (5)

where Y(ω) (V(ω)) is the NR-dimensional vector whose mth

component is Ym(ω) (Vm(ω)), the FT of ym[n] (vm[n]), the signal
obtained from ym(t) (vm(t)) by sampling at the Nyquist rate; H(ω)
is the diagonal matrix with diagonal components Hm(ω), the FT of
hm[n], the signal obtained by sampling of hm(t); and X(ω) is the
FT of x[n], the signal vector obtained by sampling x(t).

Objective of this paper is to estimate the NR − 1 frequency
response that model the impairments introduced by the down-
frequency converters up to an unknown distortion function H1(ω).
Since no knowledge on the signal structure, synchronization, and
user position is available, we leverage only on estimations of the
spectrum of the received signal vector

Sy(ωk) = E{Y(ωk)YH(ωk)}

= H(ωk)A(Θ(k))Sx(ωk)AH(Θ(k))HH(ωk) + σ2I

(6)

where
Sx(ωk) = E{X(ωk)XH(ωk)}

= diag
[
Sx1(ω), Sx2(ω), . . . SxNBk

(ω)
] (7)

and Sb(ω) = E{Xb(ω)XH
b (ω)}. This means that at each frequency

ωk, the NBk present sources are uncorrelated. Moreover, the AoAs
of the sources on frequency ωk are in the set Θ, i.e. Θ(k) ⊂ Θ with

card(Θ(k)) = NBk (8a)

and

∀i 6= j such that (θi, θj) ∈ Θ(k) ×Θ(k) =⇒ θi 6= θj (8b)

In fact, Sy(ω) can be estimated from the observed signals
y[n] = [y1[n], y2[n], . . . yNR [n]]T through sample averaging. In
practical implementation of the systems, the estimates of Sy(ω) will
be based on finite sequences of the sampled signal vector of length
M.

3. PROPOSED ALGORITHM

Using spectral decomposition, each Sy(ωk) is expressed as

Sy(ωk) = Us(ωk)Σs(ωk)UH
s (ωk) + σ2Un(ωk)UH

n (ωk) (9)



for all k = 1 . . .M . The term Us(ωk) ∈ CNR×NBk contains the
eigenvectors that span the signal subspace, which are also spanned
by the columns of H(ωk)A(Θ(k)). This is so because the first part
of Sy(ωk) in equation (6) is of rank NBk , given that NBk < NR
and all θi’s are distinct. Similarly, the space spanned by the columns
of UH

n (ωk) is called the noise subspace. It turns out that both spaces
are orthogonal, and therefore

‖UH
n (ωk)H(ωk)a(θb)‖2 = 0 (10)

for k = 1 . . .M and b = 1 . . . NBk . In the presence of noise
and finite number of samples, we replace the quantities Sy(ωk)

and UH
n (ωk) by their estimates Ŝy(ωk) and ÛH

n (ωk), respectively.
These estimates are usually obtained through sample averaging.

{θ̂i}NB
i=1 = arg max

θ

( M∑
k=1

1

‖UH
n (ωk)H(ωk)a(θ)‖2

)
(11)

However, applying MUSIC directly to the problem at hand is not
possible, since we do not have any prior knowledge on all matrices
H(ωk), except that they are diagonal. To proceed, notice that

H(ωk)a(θ) = D(θ)h(ωk) (12)

where

D(θ) = diag[a(θ)] (13)

h(ωk) = [H1(ωk) . . . HNR(ωk)]T (14)

Equation (12) translates to∥∥∥∥∥∥∥
 UH

n (ωk)D(θ1)
...

UH
n (ωk)D(θNBk

)

h(ωk)

∥∥∥∥∥∥∥
2

= 0, k = 1 . . .M (15)

More compactly, we have that hHQ(Θ)h = 0, with

h = [hT (ω1) . . .hT (ωM )]T (16)

Q(Θ) = blkdiag[Q(ω1,Θ
(1)) . . .Q(ωM ,Θ

(M))] (17)

Q(ωk,Θ
(k)) =

NBk∑
b=1

DH(θb)Un(ωk)UH
n (ωk)D(θb) (18)

minimise
h,Θ

hHQ̂(Θ)h

subject to eHh = 1
(19)

where e = 1M ⊗ e1, where e1 is the 1st column of an identity
matrix of size NR. The Lagrangian function corresponding to the
above optimisation problem is

L(h, λ) = hHQ̂(Θ)h− λ
(
eHh− 1

)
(20)

Setting the derivative of L(h, λ) with respect to h to 0, and with
some straight-forward steps, one could verify that the vector ĥ that
minimises the optimisation problem is

ĥ =
Q̂−1(Θ̂)e

eHQ̂−1(Θ̂)e
(21)

and Θ̂ is estimated (after plugging ĥ in the cost function of equa-
tion (19), i.e. treating it as nuissance parameter) as follows

Θ̂ = arg max
ΘΘΘ

{
eHQ̂−1(Θ)e

}
(22)

Using the following identity:

Q̂−1(Θ) = blkdiag[Q̂−1(ω1,Θ
(1)) . . . Q̂−1(ωM ,Θ

(M))] (23)

and using the structure of e = 1M ⊗ e1, we have

Θ̂ = arg max
ΘΘΘ

{ M∑
k=1

eH1 Q̂−1(ωk,Θ
(k))e1

}
(24)

If no knowledge about Θ is given, then one has to reside to a
NB−dimensional search to optimise (24). On the other hand, if
only one θi is known, then we could solve (24) by alternating
optimization. Without loss of generality, let the known AoA be
θknown = θ1. At an iteration i, the following AoAs (except for
θknown) are estimated from previous iterations:

Θ̂ī = [θknown, θ̂2 . . . θ̂i] (25)

Estimate θ̂i+1 as

θ̂i+1 = arg max
θ

{ M∑
k=1

eH1 Q̂−1(ωk, [Θ̂ī, θ])e1

}
(26)

where

Q̂(ωk, [Θ̂ī, θ]) =
∑
θj∈Θ̂ī

DH(θj)Ûn(ωk)ÛH
n (ωk)D(θj)

+ DH(θ)Ûn(ωk)ÛH
n (ωk)D(θ)

(27)

Note that θ̂i+1 ∈ Θ̂̂Θ̂Θī also maximize the above cost function. So
we pick the highest peak of the 1-dimensional function in (26), such
that θ̂i+1 6∈ Θ̂̂Θ̂Θī. Therefore, NB − 1 iterations, where each iteration
consists of a 1-dimensional search as in (26), are needed to estimate
the unknown parameters in Θ. After obtaining Θ̂, we can estimate
ĥ using equation (21); however each ĥ(ωk) is estimated up to an un-
known complex constant. Without loss of generality, we normalise
the first entries of the estimated vectors ĥ(ωk), k = 1 . . .M to unity,
viz.

ĥ(ωk) =
ĥ(ωk)

[ĥ(ωk)]1
, k = 1 . . .M (28)

where [ĥ(ωk)]1 is the first entry of ĥ(ωk).

4. DISCUSSION: IDENTIFIABILITY AND POSSIBLE
GENERALIZATIONS

4.1. Multi-dimensional Search

Following [18], a sufficient condition for uniqueness of the solution
[ĥ, Θ̂] by first solving (24) to obtain Θ̂, then using equation (21) to
estimate ĥ, is when then matrix Q̂−1(Θ) is invertible, or equiva-
lently each Q̂(ωk,Θ

(k)) (for k = 1 . . .M ) is invertible. Recall that
Q̂(ωk,Θ

(k)) = UH
k Uk, where

Uk =

 UH
n (ωk)D(θ1)

...
UH
n (ωk)D(θNBk

)

 , k = 1 . . .M (29)

Therefore, Q̂(ωk,Θ
(k)) is full rank if Uk is full column rank, i.e.

when (NR−NBk )NBk > NR, i.e. [ĥ, Θ̂] are identifiable when the
following set of inequalities are true

NBk +
NR
NBk

< NR, k = 1 . . .M (30)
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Fig. 2: MSE Experiment

4.2. Alternating optimization

The alternating optimization method proposed in equations (25)
till (27) has a different identifiability condition. This is so since at
iteration i, the method assumes i present sources in an attempt to
estimate the (i + 1)th AoA, namely θ̂i+1. Therefore, in order to
ensure identifiability throughout each iteration (for i = 2 . . . NB),
the matricies Q̂(ωk, [Θ̂ī, θ]) (for k = 1 . . .M ) appearing in (26)
should be invertible for i = 2 . . . NB . Following the same reasoning
as in the previous sub-section, Q̂(ωk, [Θ̂ī, θ]) is invertible if and
only if

NBk +
NR
i

< NR, i = 2 . . . NB and k = 1 . . .M (31)

which gives max
(
{NBk}

M
k=1

)
< NR

2
, for the case of 1 known AoA.

This inequality shows why we have assumed knowledge for 1 AoA.
This is simply due to the above inequality is not satisfied for i =
1. In other words, it is impossible to run the proposed alternating
optimization algorithm starting with 1 present source.
In a general manner, let Nknown be the number of known AoAs,
then one could estimate NB − Nknown AoAs in a similar manner
as in the proposed alternating optimization algorithm (which is a
special case, i.e. Nknown = 1). The identifiability conditions of the
proposed alternating optimization algorithm with Nknown AoAs is
thus

max
(
{NBk}

M
k=1

)
+

NR
Nknown + 1

< NR (32)

5. SIMULATION RESULTS

We have conducted an experiment to compare the MSE of AoAs
obtained by the proposed alternating optimization (and unknown
calibration parameters) in equations (25) till (27) vs. MUSIC with
known calibration parameters, namely equation (11). We also plot
the MSE of estimated calibration parameters. In all what follows, the
experiments are conducted with 103 Monte-Carlo simulations. At a
given SNR, let θ̂(j)

k be the kth estimate of θk at the jth Monte-Carlo
simulation. Similarly, let ĥ(ωk) be the estimate of h(j)(ωk) at the
jth Monte-Carlo simulation, with both vectors being normalized so

that their first entries are equal to 1. Then, we define the MSE of
AoA and calibration parameters as follows:

MSEAoA =
1

500q

103∑
j=1

NB∑
k=1

(
θk − θ̂(j)

k

)2 (33)

MSECali =
1

500

103∑
j=1

M∑
k=1

∥∥h(ωk)− ĥ(ωk)
∥∥∥∥h(ωk)

∥∥ (34)

We fix the following simulation parameters NR = 10, M = 20,
NB = 3 with Θ = [10◦, 30◦, 40◦]. We assume that at frequen-
cies ωk for k = 10 . . . 15, the 2nd source (θ2 = 30◦) is not present.
Also, at frequencies ωk for k = 15 . . . 20, the the 2nd and 3rd source
(θ3 = 40◦) are not present. At any other frequency, all sources are
present. According to Fig. 2a, where we have plotted the MSE of
AoA parameters, there is a constant ”gap” of MSE between the two
plots, which is of about 30dB, when the SNR exceeds −5dB. This
”gap” should be directly related to the number of calibration param-
eters present, which is 2MNR = 400 parameters (by counting the
number of real parameters in {h(ωk)}Mk=1). Indeed, other factors
contribute in this gap, such as Θ,NB , {NBk}

M
k=1. In Fig. 2b, where

we plot the error on calibration parameters (as in equation (34)) as a
function of SNR. The performance of the error on calibration param-
eters is related to the estimates of AoAs (see equation (21)). There-
fore, the obtained MSE curve in Fig. 2b will exhibit a similar be-
haviour as the one in Fig. 2a.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the problem of joint AoA and cali-
bration estimation in a wideband scenario, where the system consists
of multiple sources transmitting in different directions and occupy-
ing a certain bandwidth, with the possibility of some sources being
absent at some frequencies. We propose a method that is based on
MUSIC in order to formulate an optimization problem to estimate
the AoAs and calibration parameters per frequency. Future work
may include (i) performance analysis of the proposed method, (ii)
new methods that are either more efficient or enjoy better perfor-
mance in terms of MSE, and (iii) Cramer-Rao bounds of any unbi-
ased estimator that estimates the unknown parameters of the problem
in this paper.
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