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ABSTRACT

The problem of Angle-of-Arrival estimation of multiple sources in
the presence of mutual coupling is addressed. In this paper, we
derive a Mean-Squared-Error (MSE) expression of a recently pro-
posed algorithm that could estimate the Angles-of-Arrival of mul-
tiple sources in the presence of more mutual coupling parameters,
compared to traditional methods. The MSE expression is compared
with the MSE of MUSIC with known mutual coupling parameters
and to the Cramer-Rao bound (CRB) of any unbiased estimator that
estimates the Angles-of-Arrival in the presence of mutual coupling.
It is shown that the proposed method is asymptotically unbiased.
In addition, it is also shown that the method attains CRB for large
number of antennas with fixed coupling parameters and uncorre-
lated sources. For high SNR, the CRB is not necessarily attained,
however, we study the gap between the derived MSE and the CRB.

Index Terms— Angle-of-Arrival, Performance Analysis, Mu-
tual Coupling, Mean-Squared-Error

1. INTRODUCTION

The presence of mutual coupling is a well-known problem in the
context of array signal processing. This problem arises when an-
tennas are close to each other [1], and thus the current developed in
an antenna element depends on its own excitation and on the con-
tributions from adjacent antennas. As a consequence, the perfor-
mance of high resolution algorithms that perform Angle-of-Arrival
(AoA) estimation, such as MUSIC [2], ESPRIT [3], etc., degrades in
a significant manner. It is also worth mentioning other phenomena
that perturb an ideal model, when not taken into account, such as
different gain/phases [4] across antennas, synchronization and jitter
effect [5], local scattering [6], etc. In the open literature, calibra-
tion methods that tackle the problem of mutual coupling are divided
into two categories: Offline and Online. In an offline calibration ap-
proach, one estimates the mutual coupling parameters using known
locations, such as the techniques in [7–9]. In contrast, online calibra-
tion consists of jointly estimating the coupling and AoA parameters.
In this paper, our main focus is on the latter.

In the literature, several techniques deal with the online calibra-
tion problem. A RAnk-REduction estimator, known as RARE, was
first proposed in [10] in the context of partly calibrated arrays. The
same idea was used for totally uncalibrated Uniform Circular Arrays
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(UCA) in [11, 12] and Uniform Linear Arrays (ULA) in [13, 14].
This method makes use of the MUSIC algorithm to estimate AoAs in
the presence of mutual coupling via rank reduction of an appropriate
matrix. The method in [14] is a Recursive-RARE (R-RARE), which
was shown to achieve better perform than the traditional RARE.
Other techniques we could mention are those in [15–18]. From a
performance analysis point of view, several authors have studied the
effect of mutual coupling, or modelling errors in the more general
case, such as [19, 20]. More specifically, these modeling errors in-
duce a bias in the MUSIC estimator and could result in large mean-
squared errors, when the errors are large enough [20].

In this paper, we derive a Mean-Squared-Error (MSE) expres-
sion of a recently proposed algorithm in [25] that could estimate the
Angles-of-Arrival of multiple sources in the presence of more mu-
tual coupling parameters, compared to the above mentioned meth-
ods. More specifically, let N and p denote the number of antennas
and coupling parameters, respectively. It was shown in [23] that
the above methods, except for [18], do not function properly when
p > N

2
. Furthermore, we have proposed an algorithm that is able

to estimate the AoAs, even when p > N
2

. After deriving the MSE
of the proposed method, we study the performance loss, compared
to the MUSIC algorithm with known mutual coupling parameters.
Also, the MSE expression is compared with the Cramer-Rao bound
of any unbiased estimator that estimates the Angles-of-Arrival in the
presence of mutual coupling. It is shown that the proposed method is
asymptotically unbiased and attains the Cramer-Rao bound for large
number of antennas with fixed coupling parameters and uncorrelated
sources. For high SNR, the Cramer-Rao bound is not necessarily at-
tained, however, we study the gap between the between the MSE
and the Cramer-Rao bound. Simulation results gave validated the
derived MSE expression, as the experimental and theoretical (or de-
rived) MSE quite agree for sufficiently high SNR.

Notations: Upper-case and lower-case boldface letters denote
matrices and vectors, respectively. (.)T, (.)∗ and (.)H represent the
transpose, conjugate and the transpose-conjugate operators. The ma-
trix I is the identity matrix with suitable dimensions. For any matrix
B, the (i, j)th entry of B is represented as (B)i,j . The vector ek is
the kth column of I. For any matrix B, the operator ‖B‖ denotes
the Frobenius norm. Also B+ denotes pseudo-inverse of B. The
statement X =⇒ Y means that ”if statement X is true, then Y is
true.”

2. SYSTEM MODEL

Consider q narrowband sources impinging a Uniform Linear Array
(ULA), composed of N > q antennas. The angles are denoted as



Θ = [θ1 . . . θq]. Given L time snapshots, we can write

X = Ā(Θ)S + W (1)

where X ∈ CN×L is the data matrix with lth time snapshot, x(tl),
stacked in the lth column of X. The matrix S ∈ Cq×L is the source
matrix. Similar to X, matrix S contains the lth transmitted source
vector s(tl) in its lth column. The matrix W ∈ CN×L is back-
ground noise. Moreover, the steering matrix Ā(Θ) ∈ CN×q is
composed of q steering vectors, i.e. Ā(Θ) = [ā(θ1) . . . ā(θq)],
where ā(θi) is the array response in the presence of mutual cou-
pling. Moreover, in the absence of mutual coupling, the response is
a(θ), where its kth entry is zk−1

θ and zθ = e−j2π
d
λ

sin(θ), d is the
inter-element spacing and λ is the wavelength. Following [1,24], we
can say

ā(θ) = Tp(m)a(θ) (2)

where Tp(m) ∈ CN×N is a banded symmetric Toeplitz matrix, i.e.

(
Tp(m)

)
i,j

=

{
m|i−j| if |i− j| < p

0 else
(3)

Note that the matrix Tp(m) is independent from the AoAs. The
model in equations (2) and (3) suggest that antennas that are placed
at least p inter-element spacings apart do not interfere, i.e. mi = 0
for all i ≥ p.

Throughout the paper, we assume the following:

• A1: Ā(Θ) is full column rank.

• A2: The transmitted signals s(tl) are fixed within a snapshot.
The signals are allowed to be highly, but not fully, correlated.

• A3: The number of sources is known.

• A4: The vector w(tl) is Gaussian noise with zero mean and
covariance σ2I and independent from the sources.

We are now ready to address our problem:
”Given X, p and q, estimate the AoAs Θ in the presence of

mutual coupling Tp(m).”

3. PROPOSED ALGORITHM

This section makes use of the MUSIC algorithm in order to estimate
the angles of arrivals Θ in the presence of mutual coupling. We start
by exploiting the structure of the received signal covariance matrix.
Under assumption A4, we have

Rxx = E{x(t)xH(t)} = Ā(Θ)RssĀ
H(Θ) + σ2I (4)

By spectral decomposition, we can write Rxx as

Rxx =
[

Us Un

] [ Σs 0
0 Σn

] [
Us Un

]H

= UsΣsU
H
s + UnΣnUH

n

(5)

Matrix Rxx is composed of two major parts: The signal part, namely
Ā(Θ)RssĀ

H(Θ), which under assumptions A1 and A2, is rank q.
Therefore, due to σ2I in equation (4), the matrix Σs is a q × q di-
agonal matrix composed of eigenvalues strictly greater than σ2. The
corresponding eigenvectors of Σs, which are the columns of Us is
called the signal subspace. The second part is the noise subspace,
whose eigenvalues are easily verified to be Σn = σ2I, and eigen-
vectors are the columns of Un. The MUSIC algorithm is based on
the orthogonality between the two subspaces, viz.

āH(θi)UnUH
nā(θi) = 0, for all i = 1 . . . q. (6)

In practical scenarios, one estimates the covariance matrix thru sam-
ple averaging, i.e. R̂xx = 1

L
XXH. The MUSIC algorithm estimates

Θ as follows

{θ̂i}qi=1 = arg max
θ

1

āH(θ)ÛnÛH
nā(θ)

(7)

where Ûn is an estimate of Un and is extracted from R̂xx by
eigendecomposition. Unfortunately, MUSIC doesn’t directly apply
as in equation (7) because the functional form of ā(θ) is not known.
Fortunately, the following theorem turns out to be useful:

Lemma: Let α = [α0, α1 . . . αp−1]T and a ∈ CN×1. Define
the corresponding matrix Tp(α), then

Tp(α)a = Bpα (8)

where
Bp =

[
a Π1a . . . Πp−1a

]
(9)

where Πk ∈ CN×N is an all-zero matrix except at the kth sub- and
super-diagonals, which are set to 1.

Proof. See [17, 24].

Therefore, we can say ā(θ) = Tp(m)a(θ) = B(θ)m, where
B(θ) is defined as in equation (9). Note the equation (6) could be
re-written as

zHK(θ)z = 0 =⇒ {θ ∈ Θ and z = m} (10)

where K(θ) = BH(θ)UnUH
nB(θ). Therefore, one way to formu-

late the problem of estimating the AoAs in the presence of mutual
coupling is to minimise

z,θ
zHK̂(θ)z

subject to eH
1B(θ)z = 1

(11)

where K̂(θ) = BH(θ)ÛnÛH
nB(θ). The constraint prevents the vec-

tor z to fall in the null-space of B(θ). The solution to the above
optimisation problem is given as [23]{

θ̂k
}q
k=1

= arg min
θ

1

f(θ)
(12a)

where
f(θ) = aT

p(θ)K̂
−1(θ)a∗p(θ) (12b)

where ap(θ) is a p × 1 vector defined as in equation (2). For more
information on why the proposed method could estimate AoAs in
the presence of more coupling parameters given that p+ q ≤ N , the
reader is referred to [23, 25].

4. PERFORMANCE ANALYSIS AND COMPARISON WITH
CRAMER-RAO BOUND

Theorem 1: The estimates
{
θ̂k
}q
k=1

estimated as in equation (12)
are asymptotically unbiased. Furthermore, the MSE expression
E
{

(θ̃k)2
}

, where θ̃k = θk − θ̂k is the estimation error on θk, is
given as

E
{

(θ̃k)2
}
, var(p)f (θ̂k) =

σ2

2L

āH(θk)Uā(θk)

d̄H(θk)UnP⊥k UH
nd̄(θk)

(13)

where
U = UsΣs

(
Σs − σ2I

)−2
UH

s (14)
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and P⊥k = I−Pk with

Pk = UH
nB(θk)K+(θk)BH(θk)Un (15)

Also d̄(θk) = ∂
∂θk

ā(θk).

Proof. See [23].

It is interesting to see that when p = 1, the above MSE expres-
sion coincides with the MSE expression of MUSIC derived in [21],

var(1)f (θ̂k) =
σ2

2L

aH(θk)Ua(θk)

dH(θk)UnUH
nd(θk)

= varMU(θ̂k; a) (16)

where varMU(θ̂k; a) is the variance (or MSE) of θ̂k obtained by MU-
SIC by utilising a steering vector a(θ). We adopt this notation be-
cause the MSE expression, var(p)f (θ̂k), could be also written as

var(p)f (θ̂k) =
( 1

1− γk

)
varMU(θ̂k; ā) (17)

where

0 ≤ γk =
d̄H(θk)UnPkUH

nd̄(θk)

d̄H(θk)UnUH
nd̄(θk)

= R
(
Pk,U

H
nd̄(θk)

)
< 1

(18)
where the bounds in equation (18) are due to the fact that γk is a
Rayleigh quotient, which is always bounded between the minimum
and maximum eigenvalues of Pk. Since Pk is a projector matrix,
then the eigenvalues are either 0 or 1.

Observation: It is very important to observe that varMU(θ̂k; ā)

is, indeed, the MSE of θ̂k estimated thru MUSIC with known mutual
coupling parameters. Therefore, the quantity 1

1−γk
quantifies the

loss of performance between the proposed method in equation (12)
and the MUSIC algorithm with known mutual coupling parameters.
The Cramer-Rao Bound (CRB) of any unbiased estimator of θ̂k in
the presence of mutual coupling was given in [22], i.e.

varCRB(θ̂k) =
σ2

2L

([
D̄HP⊥ĀD̄�Rss

]−1
)
k,k

(19)

where P⊥Ā = I−PĀ and PĀ is given by

PĀ = Ā(Θ)
(
ĀH(Θ)Ā(Θ)

)−1
ĀH(Θ) (20)

and
D̄ =

[
∂ā(θ1)
∂θ1

. . .
∂ā(θq)

∂θq

]
(21)

Following similar steps as in [21], we re-write the MSE equation,
var(p)f (θ̂k), in a way that turns out to be useful when comparing to
the CRB

var(p)f (θ̂k) =
σ2

2L

(
R−1

ss

)
k,k

+ σ2
(
R−1

ss (ĀHĀ)−1R−1
ss

)
k,k

d̄H(θk)UnP⊥k UH
nd̄(θk)

(22)

4.1. Large Number of Antennas

We study the performance of the proposed algorithm in the asymp-
totic regime when p

N
→ 0, i.e. N → ∞ for fixed p. We have the

following Theorem, which is a generalisation of the case with no
mutual coupling in [21]:

Theorem 2: The limits of varCRB(θ̂k), var(p)f (θ̂k), and γk are given
as follow

varCRB(θ̂k) −−−−→
p
N
→0

6σ2

N3L|hH
km|2

1(
Rss

)
k,k

(23)

var(p)f (θ̂k) −−−−→
p
N
→0

6σ2

N3L|hH
km|2

(
R−1

ss

)
k,k

(24)

γk −−−−→
p
N
→0

0 (25)

where
hk = ap(θk) + a∗p(θk)− e1 (26)

Proof. See [23]

Note that the factor γk → 0 as p
N
→ 0. Using this theorem, we

have that
var(p)f (θ̂k)

varCRB(θ̂k)
=
(
Rss

)
k,k

(
R−1

ss

)
k,k

(27)

Hence the CRB is attained for uncorrelated signals, when p
N
→ 0.
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4.2. High SNR

For high SNR, the analysis here is similar to [21]. For the case of
uncorrelated signals, one could show the following relation

var(p)f (θ̂k)

varCRB(θ̂k)
=
(

1 +

(
(ĀHĀ)−1

)
k,k

SNRk

)( 1

1− γk

)
(28)

where SNRk =
(Rss)k,k

σ2 . For high SNR, the ratio in equation (28)
is controlled by the factor 1

1−γk
, which is not necessarily equal to 1

for any p and N . However, as discussed in the case of large N with
fixed p, if the ratio p

N
is relatively small, then the above ratio could

be argued to be close to 1.

5. SIMULATION RESULTS

In Fig. 1, we study the behaviour of γk given in equation (18) as a
function of p and N . In Fig. 1a, we set the coupling vector m to

m =
[
1; −0.08 + 0.5j; −0.14− 0.3j

]T (29)

Fig. 1a plots γ1 for one source q = 1, but different AoAs. We see
that γk → 0 as p

N
→ 0. Furthermore, the rate of decay depends

on the AoA. It should also be noted that this rate depends on other
factors such as the number of sources q and the coupling vector m.
In Fig. 1b, we study the behaviour of γk by fixing N and increas-
ing p. The coupling parameters are generated by first forming a
vector m̄, where

{
m̄k = 1

k+1
ej2πφk

}N
k=1

, where φk is randomly
chosen. Then, in order to compute γk, for p = p0, we choose the
first p0 elements of m̄ to form the vector m ∈ Cp0×1. We have set
N = 10. We also observe that γk is increasing as p increases for
fixed N . This results in an increase of the MSE, var(p)f (θ̂k) given in
equation (13), when p increases due to the factor

(
1

1−γk

)
.

The MSE of the proposed algorithm in equation (13), namely
var(p)f (θ̂k), is simulated in Fig. 2. In Fig. 2a, we set N = 6, q = 1,
and θ1 = 50◦. The number of snapshots is L = 103. The coupling
parameters are chosen from vector

m̄ = [1; −0.08+0.5j; −0.14−0.3j; −0.04+0.04j; 0.03−0.02j]T

(30)
as done in the case of Fig. 1b. This figure tells us that a higher MSE
is obtained as p increases. In Fig. 2b, we quantify this loss of per-
formance. We have q = 1 source impinging an array of N = 6
at θ1 = 10◦. The number of snapshots is L = 102. The num-
ber of coupling parameters is p = 3 with m equal to that in the
scenario depicted in Fig. 1. We have plotted the experimental and
theoretical MSE of MUSIC and the proposed algorithm. For the
experimental MSE, we have averaged over 103 Monte-Carlo simu-
lations. A nice observation is to see that that the gap between the
MSE of MUSIC of the propsed algorithm is about 1

1−γ1
, for suffi-

ciently high SNR. Computing γ1 using the related parameters, we
get 10log10

(
1

1−γ1

)
' 6dB. This factor is the loss of performance

compared to the Coupling-free MUSIC. Furthermore, we could also
observe that the experimental and theoretical MSE curves are in
agreement, for sufficiently high SNR.

6. CONCLUSIONS

We have first revised a recently proposed method that could estimate
AoAs in the presence of more mutual coupling parameters, com-
pared to the mentioned methods in the Introduction. We have first
derived the MSE expression of the proposed method, which is an un-
biased estimator. Moreover, we have compared it with the MSE of
the MUSIC estimator with known coupling parameters and with the
CRB of any unbiased estimator that estimates the AoAs in the pres-
ence of mutual coupling (at high SNR and high number of antennas).
It was shown that the MSE of the proposed method could attain the
CRB, for uncorrelated sources, for high number of antennas at fixed
number of coupling parameters, but not at high SNR.
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