
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), DECEMBER 2016 1

Leader Set Selection for Low-Latency
Geo-Replicated State Machine

Shengyun Liu and Marko Vukolić

Abstract—Modern planetary scale distributed systems largely rely on a State Machine Replication protocol to keep their service
reliable, yet it comes with a specific challenge: latency, bounded by the speed of light. In particular, clients of a single-leader protocol,
such as Paxos, must communicate with the leader which must in turn communicate with other replicas: inappropriate selection of a
leader may result in unnecessary round-trips across the globe. To cope with this limitation, several all-leader and leaderless
alternatives have been proposed recently. Unfortunately, none of them fits all circumstances. In this article we argue that the “right”
choice of the number of leaders depends on a given replica configuration and the workload. Then we present Droopy and Dripple, two
sister approaches built upon state machine replication protocols. Droopy dynamically reconfigures the set of leaders. Whereas, Dripple
coordinates state partitions wisely, so that each partition can be reconfigured (by Droopy) separately. Our experimental evaluation on
Amazon EC2 shows that, Droopy and Dripple reduce latency under imbalanced or localized workloads, compared to their native
protocol. When most requests are non-commutative, our approaches do not affect the performance of their native protocol and both
outperform a state-of-the-art leaderless protocol.

Index Terms—State machine replication, geo-replication, latency optimization, state-partitioning.

F

1 INTRODUCTION

MODERN internet applications [2], [3], [4] make use
of State Machine Replication (SMR) protocols such

as Paxos [5], [6], as a basic synchronization primitive to
provide reliable service. Replication however becomes chal-
lenging at the planetary scale due to latencies that cannot be
masked, being bounded by the speed of light. In this case we
talk about geo-replication, with replicas and clients scattered
across multiple remote sites.

To illustrate the problem, consider classical SMR proto-
cols such as Paxos that have a single leader responsible for
sequencing and proposing clients’ requests. These proposed
requests are then replicated across a majority of replicas,
executed in order of their logical sequence numbers, with
application-level replies eventually sent to the clients. For
clients that are remote from the leader, this may imply costly
round-trips across the globe.

Many latency-optimized SMR protocols tailored to geo-
replication have been proposed recently [7], [8], [9], [10],
[11]. These protocols (and Paxos) are similar in that they
rely on a (variant of) consensus primitive which ensures
resilience despite failures. Their differences have to do with
the way they ensure linearizability [12] or strict serializabil-
ity [13], i.e., strong consistency among all clients’ requests.
In general, these protocols can be further classified into two
categories: all-leader protocols and leaderless protocols.

In all-leader protocols, the total order is pre-established
based on, e.g., logical sequence numbers (e.g., Mencius [10])

• S. Liu is with College of Computer Science, National University of Defense
Technology (NUDT), Changsha, China, 410073.
Work done while being a PhD student at EURECOM.
E-mail: liushengyun@nudt.edu.cn, lius@eurecom.fr

• M. Vukolić is with the IBM research - Zurich, Rueschlikon, Switzerland,
8803.
E-mail: mvu@zurich.ibm.com

• Preliminary version of this work was presented in [1].

or physical clocks (e.g., Clock-RSM [11]). A request can
be proposed and sequenced by any replica, where every
replica can act as a leader, typically by partitioning the
sequence number space. In these protocols, a client submits
its requests to a nearby replica, avoiding the communication
with a single (and possibly remote) leader. Just like classical
single-leader Paxos, all-leader SMR protocols work with
a conservative assumption that clients’ requests do not
commute — hence all-leader protocols still require replica
coordination to maintain a total order across all requests.

A challenge for all-leader SMR protocols is the coordi-
nation with distant or slow replicas, which can be the bot-
tleneck, or even block the progress entirely. In some sense,
the performance is determined by the “slowest” replica: this
causes what is known as a “delayed commit” problem [10].
Roughly speaking, the delayed commit problem (that we
detail in Section 2.2) arises from the need to confirm that all
requests with an earlier sequence number are not “missed”.
For the most typical, imbalanced workloads, e.g., if most
requests originate from clients that gravitate to a given site
S, this incurs communication with all replicas including
remote and slow ones. In this case, all-leader SMR may
have worse performance than single-leader SMR, in which
replication involves only S and the majority of sites closest
to S.

On the other hand, leaderless protocols (e.g., Generalized
Paxos [7] or EPaxos [9]) exploit the possible commutativity of
requests and execute such requests (e.g., requests accessing
distinct parts of state) out of order at different replicas. In a
leaderless protocol, a request is typically proposed directly
by a client or by any replica, and committed with a round-
trip latency to replicas belonging to a fast-quorum. 1 Every

1. A fast-quorum is larger than a majority [14] - we postpone a more
detailed discussion to Sec. 2.3.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), DECEMBER 2016 2

replica in a fast-quorum checks potential conflict among
concurrent requests. Unfortunately, if (1) a conflict is de-
tected, or (2) available replicas are fewer than a fast-quorum,
one or more additional round-trip message exchanges to a
majority of replicas are introduced in order to resolve the
possible conflict. Note that leaderless protocols do not suffer
from the delayed commit problem since no order is pre-
defined.

In summary, there is no method that fits all situations
and the choice of the “best” protocol largely depends on
the specific deployment configuration and the workload.
Namely, existing protocols are based on one of the fol-
lowing assumptions: (1) requests come mostly from within
the vicinity of a single site (favoring classical single-leader
SMR); (2) requests are evenly distributed among all sites
and most concurrent requests do not commute (favoring
all-leader SMR); or, (3) most concurrent requests commute
(favoring leaderless SMR). More than often, none of these
assumptions is always true in practice. For instance, due to
time zone differences, clients of modern applications (such
as online shopping and social networking) located at a given
site may have different access patterns at different times of
a day, dynamically changing the “popularity” of sites and
possibly also the workload balance [15].

In this article, we present Droopy and Dripple, two sister
approaches that explore the ways to mitigate issues of
all-leader and leaderless SMR. The design considerations
behind Droopy and Dripple are straightforward:

1) removing unnecessary dependencies to avoid delayed
commit; and,

2) pre-grouping non-commutative requests to avoid inef-
ficient conflict resolution.

Based on these two guidelines, Droopy is designed to dy-
namically reconfigure the leader set which can contain any-
thing from a single to all replicas. The selection of leaders is
based on previous workload and network condition. Dripple
in turn is a state partitioning and coordination algorithm
inspired by leaderless protocols. Dripple allows Droopy to
reconfigure the leader set of each partition individually, at
the same time ensuring to provide strong consistency, i.e.,
strict serializability [13] as a whole.

Although Droopy and Dripple can be applied to any
leader-based SMR protocol, we implement Droopy and Drip-
ple on top of a state-of-the-art all-leader SMR protocol —
Clock-RSM [11] (we call our variant D2Clock-RSM). On
Amazon EC2 platform we evaluate D2Clock-RSM under
imbalanced workloads and three representative types of bal-
anced workloads. For a more comprehensive evaluation, we
also implement several state-of-the-art SMR protocols, i.e.,
Paxos, native Clock-RSM, Mencius and EPaxos [9] by mak-
ing use of the same code base. Our experimental evaluation
shows that, under typical imbalanced workloads, Droopy
enabled Clock-RSM effectively reduces latency compared
to its native protocol. Besides, under balanced but request-
commutative workloads, where requests issued by each site
access distinct part of state, D2Clock-RSM outperforms na-
tive Clock-RSM, Paxos and Mencius, and achieves the per-
formance similar to that of EPaxos — a state-of-the-art lead-
erless protocol. In contrast, under balanced but request-non-
commutative workloads, D2Clock-RSM’s latency is similar

to that of native Clock-RSM, and both achieve lower latency
than EPaxos.

The rest of this article is organized as follows. In Sec. 2
we discuss, in the context of related work, how delayed
commit problem (in all-leader SMR) and non-commutative
requests (in leaderless SMR) affect latency. In Sec. 3 we de-
scribe the system model and assumptions. In Sec. 4 we give
the overview and in Sec. 5 the details of Droopy and Dripple.
Sec. 6 evaluates our approaches under several workloads.
Sec. 7 concludes the article.

2 RELATED WORK

Since Lamports’ seminal Paxos protocol [5], [6], numerous
variants have been proposed [7], [8], [9], [10], [11], [16],
[17], [18] in order to mitigate the latency problem for geo-
replicated state machine. In general, these protocols fall into
two categories: all-leader protocols, that allow every replica
to act as a leader and propose requests piggybacked with a
totally ordered sequence index; and leaderless protocols, that
allow every client or replica to propose requests without
pre-imposing total order, but detect conflicts dynamically.

2.1 Paxos overview
Paxos replicates requests (and application state) across 2t+1
replicas, out of which t replicas can crash. In common case
(see message pattern in Fig. 1), where there is no crash fault
or network asynchrony, a distinguished replica called the
leader, proposes requests by assigning each request a logical
sequence number. The property that every (correct) replica
agrees on the same request despite failures is ensured by
a consensus sub-protocol called Synod [5], which lies at
the heart of Paxos. In each consensus instance, the leader
proposes a request by propagating the request to all replicas,
waits until a majority of replicas have replicated the request,
and finally decides the request. To maintain a total order
among all requests, Paxos proposes each request at a sepa-
rate consensus instance, which in turns has a unique logical
sequence number, based on which all consensus instances
are ordered.

In case the leader crashes or be partitioned from others,
a new leader is elected and the most recent state (i.e., all
decided requests) must be retrieved before processing new
requests.

leader

replica

replica

client

Fig. 1: The message pattern of Paxos (Phase 2) in common
case when t = 1.

2.2 All-leader protocols (delayed commit)
In order to optimize perceived latency for clients scattered
across the planet, every replica in all-leader SMR protocols

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), DECEMBER 2016 3

can act as a leader and assign a pre-ordered sequence index
(e.g., a logical sequence number or a physical timestamp) to
a request.

Mencius [10] facilitates multiple leaders by evenly pre-
partitioning sequence number space across all replicas
(modulo number of replicas), so that each replica can
propose requests. For example, with 3 replicas, replica 1
sequences requests at sequence numbers 1,4,7..., replica 2
sequences requests at 2,5,8,..., and replica 3 sequences re-
quests at 3,6,9,.... To mitigate execution delays, if a replica
lags behind, it skips some sequence numbers by assign-
ing no-op requests (or empty requests) to skipped sequence
numbers, in order to catch up with other replicas. Such
a skipping replica must however let its peers know which
sequence numbers it skips — leading to what is known
as the “delayed commit” problem. Intuitively, the delayed
commit problem arises when the workloads or the latencies
across replicas are non-uniform, which is most often actually
the case.

We illustrate the delayed commit problem in Mencius by
an example with n = 3 replicas deployed on Amazon EC2.
The round-trip latencies among 6 sites on Amazon EC2 is
shown in Fig. 5 (Sec. 6). The example is shown in Fig. 2a.
Assume that replica at UE (replica 2 in Fig. 2a) proposes
request R1 at sequence number 2, whereas replica at AU
(replica 1 in Fig. 2a) is responsible for proposing request at
sequence number 1. Because of the imbalanced workload,
replica AU has not proposed any request when it receives
proposal of R1 from replica UE, at which time replica AU
skips sequence number 1. Only upon replica UE receives
the skip message for sequence number 1, it can commit and
execute R1 locally. Hence, a round-trip latency from UE to
AU is introduced (231 ms), which is much larger than a
round-trip latency from replica 2 to a majority (including IR
besides UE itself) that a solution based on a single UE leader
would require (88 ms).

When confronted with a slow replica, Fast Mencius [19]
proposes two mechanisms named “Active Revoke” and
“Multi-instance Propose” to standard Mencius, in order
to speed up the advancement of normal replicas. Active
Revoke actively proposes a no-op request at instances which
should be proposed by a slow replica. Whereas, Multi-
instance Propose allows a slow replica to finally commit
its requests even with Active Revoke. Active Revoke and
Multi-instance Propose do not target imbalanced workloads
or non-uniform network latencies such as the example given
above, and are orthogonal to our approaches introduced in
this article.

More recently, Clock-RSM [11] was proposed with the
goal of mitigating the delayed commit problem of Mencius
by using loosely synchronized clocks. In Clock-RSM, each
replica proposes requests piggybacked with its physical
clocks, which is used instead of logical sequence numbers to
order requests. In a similar way to Mencius, before execut-
ing a request, each replica is obliged to confirm that all pre-
vious requests have been executed locally. This requirement
implicitly implies that no request with an earlier timestamp
will be proposed later by any replica. In order to achieve
this requirement efficiently, especially under imbalanced
workloads, replicas in Clock-RSM exchange their physical
clocks periodically (e.g., every 5 ms in its implementation) to

replica 1 (AU)

replica 2 (UE)

replica 3 (FK)

propose 2

skip 1

delayed commit

(a) Mencius.

propose at 1:23:00

delayed commit

no-op at 1:23:01
replica 1 (AU)

replica 2 (UE)

replica 3 (FK)

(b) Clock-RSM.

Fig. 2: Delayed commit problem in state-of-the-art all-leader
protocols.

notify other replicas that requests with an earlier timestamp
have been sent already. Note that this is guaranteed by as-
suming FIFO channel between replicas. Whenever clocks at
different replicas are synchronized, Clock-RSM reduces one-
way latency for the delayed commit problem in Mencius.
That is to say, each replica frequently notifies others that “no
more request” will be proposed before a given timestamp.

However, delayed commit still exists in Clock-RSM, al-
beit being less pronounced. In example in Fig. 2b, just after
replica UE proposes R1, replica AU sends its current clock
time to all replicas. Upon UE receives the clock time from
AU, it confirms that no request with an earlier timestamp
can be proposed by replica AU. Nevertheless, one-way
latency from AU to UE is still larger than the round-trip
latency from UE to a majority.

Now we formally define the delayed commit problem.

Definition 1. (Delayed commit) If (i) replica s2 is proposing
request req2 at sequence index sn2, and (ii) replica s1 is respon-
sible for proposing request at sn1 < sn2, then s1 may delay the
commitment of req2 at s2, if s1 takes longer time than a round-
trip latency from s2 to a majority to either (1) notify s2 that
no request will be proposed at sn1, or (2) make request at sn1

committed at s2.

To sum up, all-leader SMR protocols implicitly assume
that every replica proposes requests at approximately the
same rate and concurrent requests are non-commutative.
Hence, these protocols allow every replica to act as a leader
and are forced to maintain a global order among all requests.
However, due to heterogeneity of wide area network and
imbalance of workloads, all-leader protocols can suffer from
the delayed commit problem.

2.3 Leaderless protocols (with conflict resolution)

Unlike single-leader Paxos or its all-leader variants, lead-
erless protocols [8], [9], [16] reduce latency by sequencing
requests in a somewhat more decentralized and less ordered
fashion. Namely, in leaderless protocols, each request is
directly proposed by the client or by any replica. A pro-
posed request is first sent to all replicas. Upon receiving the

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), DECEMBER 2016 4

request, each replica individually and tentatively assigns
a sequence number to the request, possibly adding the
information about other concurrent requests, and replies
to the sender. In case a fast-quorum of replicas have given
a request the same sequence number, the request is com-
mitted. Otherwise, another one or more round-trip message
exchanges are introduced in order to arbitrate conflicts. This
design is motivated by an aggressive assumption that most
concurrent requests are commutative (e.g., more than 98%
[9]).

The number of replicas in a fast-quorum is larger than
a majority [14]. For instance, it was proved [16] that, for a
system using the minimal number of n = 2t + 1 replicas,
if a request is committed after a round-trip communication
directly from the client to a fast-quorum (which yields only
two hops in solving consensus, and hence, SMR), then the
number of replicas in a fast-quorum is at least

⌈
3
2 t
⌉
+ 1.

Fast Paxos [16] allows its clients to send requests directly
to all replicas and matches the

⌈
3
2 t
⌉
+ 1 fast-quorum lower

bound. In case a collision is detected, i.e., there are not
enough replicas giving the same sequence number to a
request, Fast Paxos relies on a single leader to re-orders the
request.

Generalized Paxos [7] further reduces latency of Fast
Paxos by exploiting commutativity among concurrent re-
quests. In case two requests commute (e.g., request 1 writes
object A, request 2 writes object B), these two requests can
be executed out of order at different replicas. Generalized
Paxos still relies on a single leader sub-protocol to resolve
the order of non-commutative requests.

EPaxos [9] reduces the number of replicas in the fast-
quorum by exactly one replica compared to Generalized
Paxos. Note that EPaxos can achieve this since it introduces
one more communication step (i.e., the third hop) from the
client to a nearby replica, say command leader, at the first
step (hence the

⌈
3
2 t
⌉
+ 1 fast-quorum lower bound does

not apply in this case). The command leader then binds
a sequence number (which is not totally ordered among
replicas) and a set of conflicting (non-commutative) requests
known by the command leader to the request. Upon receiv-
ing a proposal from any command leader, each replica up-
dates the conflict set of the received request and re-calculates
the sequence number based on the new dependency in-
formation, then replies to the command leader. Upon the
command leader receives the same sequence number and
conflict set from a fast quorum, the request is committed and
can be executed orderly based on dependency information.
Otherwise, the command leader relies on another round-
trip communication among a majority to confirm the order
eventually.

In summary, existing leaderless protocols are designed
based on an aggressive assumption that most concurrent re-
quests are commutative. The performance of leaderless pro-
tocols is hence driven by the number of non-commutative
requests as well as the size of fast-quorum. For instance, in
a system with 5 replicas in Fig. 5, if replica at UE proposes
a request which is conflicting with a concurrent request
proposed by JP (Japan), then at least another round-trip
latency among a majority (80ms and 107ms, respectively)
is introduced.

3 SYSTEM MODEL

We discuss a distributed system which contains a set Π
of n = |Π| machines, also called processes or replicas. More
specifically, we target the State Machine Replication (SMR)
problem [20] that ensures strong consistency, i.e., lineariz-
ability [12] or strict serializability [13], of a replicated and
deterministic service.

We assume there are a total of n ≥ 2t + 1 replicas
(or sites), s1, s2, ..., sn, among which t can crash (but not
behave arbitrarily). We also assume there are an unbounded
number of clients which can issue requests and fail by
crashing.
Network. We allow for asynchrony in that communication
time between any two replicas is not bounded — however,
to circumvent the FLP impossibility [21], we assume the
system to be eventually synchronous. We further assume a
FIFO channel between any two replicas, i.e., messages from
one replica to another are delivered by the destination in or-
der. For simplicity reason, we also assume that the latency of
every communication channel is symmetric, which implies
that one-way latency from one replica to another equals the
value of the opposite direction2.
Clocks. When referring to clock-based systems (e.g., Clock-
RSM), we assume there is a physical clock equipped at each
replica. Clocks at different replicas are loosely synchronized
using a clock synchronization protocol such as Network
Time Protocol (NTP) [22].
Terminologies. Following the terminology of existing SMR
protocols, we say replica si proposes a request req at se-
quence index sn (e.g., sequence number or physical clock)
if si is the leader for sn and si sends a PROPOSE message
which contains req and sn to all replicas. Similarly, we say
si commits req at sn if si confirms that a majority of replicas
have replicated req at sn and all requests with a smaller
sequence index have been committed by si.
Linearizability versus (strict) serializability. Droopy is
designed upon single-leader or all-leader protocols, so it
provides the same consistency guarantee as that of native
protocols, i.e., linearizability. Linearizability abstracts the
system state as an indivisible object or register, which is
accessed (i.e., read or write) by every request.

In contrast, Dripple explores request commutativity
by dividing the system state into m disjoint partitions
p1, p2, .., pm by, e.g., range partitioning. A partition can be a
single object or a group of objects . Each request can access
several objects across several different partitions, specified
at the time when the request is received by any replica.
Therefore, we further assume that, for each request, appli-
cations using Dripple can provide the information regarding
which part of state is involved, i.e., which partitions that the
request will potentially access.

By leveraging state-partitioning, Dripple instead ensures
strict serializability, which is widely adopted in transac-
tional semantics such as in database systems. In general,
strict serializability ensures that the execution order among
all requests is equivalent to a sequential one, and this se-
quential execution respects real-time order (i.e., wall-clock).
Real-time order implies that, if request R1 is executed before

2. Measuring one-way latency in WAN is usually non-trivial.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), DECEMBER 2016 5

another request R2 is issued, then the sequential execution
should reflects that R1 is executed before R2.

4 PROTOCOL OVERVIEW

Droopy and Dripple are built upon existing SMR protocols
and provide the same interfaces to upper applications.
Dripple additionally requires the information about accessed
partitions.

4.1 Droopy
Droopy is designed to dynamically reconfigure the set of
leaders. Each set is called a configuration. Generally speak-
ing, Droopy splits the space of sequence indices (e.g., logical
sequence numbers or physical clocks) into ranges (equal to,
e.g., δ sequence numbers or seconds). Each range of indices
is mapped to a configuration and maintained as a lease.
Although a lease can reflect a physical time range in clock-
based systems, time anomalies such as clock drifts, do not
affect the correctness of Droopy, but only its performance (as
we prove in Sec. 5.3.1).

In a nutshell, a lease in Droopy is a commitment of a
subset of replicas to a range of sequence indices, such that
only those specific replicas, i.e., the leaders, can propose
requests. Leases are proposed by replicas and maintained
by a total order primitive, which can be implemented by
a classical single-leader Paxos (we call this Lease-Paxos or
simply L-Paxos). In a sense, Droopy follows the approach
to state machine reconfiguration proposed in [23]. Droopy
however targets the optimization of perceived latency and
focuses on the reconfiguration of leader set.

We assume that the length of each lease is δ. When
current lease (with lease number ln) is about to expire,
i.e., the length of available sequence indices is less than λ
(refer to Fig. 3), at least t + 1 replicas propose a new leader
configuration for the next lease ln + 1, so that the crash
of any t replicas can not stop the lease renewal process.
The leader set in each lease is selected based on previous
workloads and network condition. In this article we assume
that the goal for Droopy is to minimize the average latency
across all sites. Each lease should be consistent among all
replicas. This is guaranteed by a consensus primitive within
L-Paxos.

✂

ln

ln+1

sequence number

timestamp

lease

number

propose propose

!

!

✂

ln-1

Fig. 3: Lease renewal.

A client submits its request by contacting the nearby
replica, that we call the source replica of the request. Upon
reception of a request, the source replica proposes the re-
quest if it is in the leader set in current lease. Otherwise, the
source replica propagates the request to a leader that acts as
a proxy. For each non-leader replica, its proxy is the leader
that is expected to introduce the minimum commit latency,

with respect to the non-leader replica. In default, upon a
request is committed and executed, the source replica sends
a reply to the client. Each replica also updates its frequency
array monitor, that records the number of requests from each
source replica. Frequency array serves to help the decision
of next leader set. Each replica also periodically measures
and shares round-trip latencies from itself to others for the
same purpose.

4.2 Dripple

Dripple divides the system state (a.k.a., objects) into mul-
tiple partitions, and process cross-partition requests wisely
so that strong consistency is still preserved. By deploying
Dripple, each partition can be maintained by an individual
Droopy instance in order to optimize latency per partition.
Requests accessing distinct partitions can be executed in
different order.

Existing leaderless protocols [7], [9], [16] detect and order
non-commutative requests dynamically by introducing more
message exchanges. In a similar way, Generic Broadcast
[24] is a broadcast primitive that explores conflict relation
among messages and only orders conflicting messages.
Upon detecting a conflict, Generic Broadcast launches a con-
sensus instance to resolve it. Whereas, Dripple divides the
system state in advance so that non-commutative requests
are grouped before being proposed. By doing this, non-
commutative requests are ordered in the same partition by
a single leader or all-leader protocols, which usually have
more efficient message patterns than leaderless protocols if
conflicts exist.

Dripple is also different from other state-partitioning
schemes [25], [26], [27], which are particularly designed
for providing scalability by partial replication. Instead, each
partition in Dripple is replicated at every replica (in line with
SMR). Hence, dependencies among different partitions can
be resolved locally at each replica, without additional com-
munications among partitions. Nonetheless, applications
can easily employ existing state-partitioning approaches to
improve scalability.

When Dripple is enabled, a client submits its request
by contacting its source replica just like in Droopy. The
source replica treats Droopy enabled SMR as a black-box
and proposes the request in each partition that the request
is going to access (i.e., read or write). Upon a request is
committed in every involved partition, each replica tries to
execute the request by dynamically constructing a minimum
execution set (MES), in order to preserve strong consistency
across partitions. Roughly speaking, MES is a minimum set
of requests, in which every pair of requests have mutual
dependence. Requests in MES are executed sequentially
based on a deterministic order. Nevertheless, commutative
requests should be included in distinct MES.

An illustrative example of MES is shown in Fig. 4. There
are 3 partitions, A, B and C. The order in each partition is
given by the format partitionName.sequenceIndex (e.g.,
in partition A, A.1 < A.2 < A.3). The committed orders
of 6 requests in these 3 partitions are presented in Fig. 4a.
For example, request r1 is committed at A.1, which is prior
to request r4 committed at A.2. Since requests r1, r2 and
r3 access a single and distinct partition, each of them can

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), DECEMBER 2016 6

constitute a MES and can be executed independently. In
contrast, requests r4, r5 and r6 form a dependency loop
as shown in Fig. 4b: r4 is committed before r6 in partition
A; r6 is committed before r5 in partition C; and, r5 is
committed before r4 in partition B. As shown in Fig. 4b, the
deterministic order is r4 → r6 → r5. Eventually, as shown
in Fig. 4c, r1, r2 and r3 are executed in parallel, then r4, r6
and r5 are executed sequentially in a single MES afterwards.

orders :

r1

w(A,1)

r2

w(B,1)

r3

w(C,1)

r5

R(B)

W(C)

r6

R(C)

W(A)

r6

R(C)

W(A)

r4

R(A)

W(B)

r5

R(B)

W(C)

r4

R(A)

W(B)

A.1 A.2 A.3 B.1 B.2 B.3 C.1 C.2 C.3

partition A partition B partition C

requests:

(a) Logical orders committed in partition A, B and C.

r
4

r
5

r
6

A

C

B r
4

r
6

r
5

(b) Minimum execution set.

r4

R(A)=1

W(B,2)

r6

R(B)=2

W(C,3)

r5

R(C)=3

W(A,4)

r1

r3

r2

(c) Execution order.

Fig. 4: Dripple example.

4.3 Fault-Tolerance
Since Droopy and Dripple are built upon existing single-
leader and all-leader protocols, they can rely on under-
lying protocols to tolerate faults. More specifically, Paxos
and Mencius use a consensus algorithm [5] to guarantee
reliability. Consensus ensures that any request committed
at a given sequence number will never be replaced. Clock-
RSM makes use of a reconfiguration protocol to remove
faulty replicas from current membership. In some sense, our
approaches improve the way by which requests are ordered,
not the way that makes requests reliable.

5 PROTOCOL DETAILS

5.1 Droopy
Object definitions given in Alg. 1 are used in Droopy pseu-
docode, which is given in Alg. 2.
Proposing. To issue request req, client c sends req to the
closest replica si. Upon receiving req from c (line 1, Alg. 2),
si becomes the source replica of req (line 2). Then, si obtains
a sequence index sn by invocation GETORDER() provided
by an interface to the underlying SMR protocol (see line 3 in
Alg. 2, as well as lines 1-2 in Alg. 3). si may update the lease
number if necessary (lines 4-5). If si is one of the leaders
in current lease ln, i.e., si ∈ configln, then si proposes req
with the sn obtained; otherwise, si propagates req to its
proxy pi ∈ configln, which is expected to introduce the
minimum commit latency with respect to si (lines 6-9). Note
that proxy pi may not be the closest replica regarding si. In

Algorithm 1 object definitions.
c: client
si, sj , sk : replicas
req : request from client c
src : source replica
sn : sequence index
ln : current lease number
LEln : end index of lease ln
configln : the leader set in lease ln
replicas : the set of n replicas in the system
clock : physical clock at replica si
d∗,∗ : latency table (from all replicas to all replicas)
freq∗ : the number of requests received by each source replica
latest∗ : the most recent sequence indices updated from each
replica

Algorithm 2 Droopy: Dynamic reconfiguration at replica si.

abstract function GETORDER()
abstract function GETNEWCONFIG(freq, d)

1: upon receive ⟨REQUEST, req, [sj]⟩ from client c or sk do
2: src← (sj = null) ? si : sj /* source replica */
3: sn← GETORDER()
4: while sn ≥ LEln do
5: ln← ln+ 1
6: if si ∈ configln then /* leader */
7: PROPOSE(req, sn, src)
8: else /* non-leader */
9: sends ⟨REQUEST, req, src⟩ to pi ∈ configln

10: upon DECIDE(req, sn, src) and UPDATED(sn) is true and
all preceding requests are executed do

11: rep← execute req
12: freqsrc ← freqsrc + 1
13: if si = src then /* source replica replies to client */
14: send ⟨REPLY, rep⟩ to client c
15: if LEln − λ ≤ sn /* time to propose a new lease */
16: config ← GETNEWCONFIG(freq, d)
17: PROPOSE(ln+ 1,config,LEln + δ) in L-Paxos
18: reset freq∗

19: upon DECIDE(ln′,config,LE) in L-Paxos do
20: configln′ ← config
21: LEln′ ← LE

22: function UPDATED(sn) /* returns boolean */
23: return ∀ln and ∀sk ∈ configln : latest[sk] ≥ LEln or

latest[sk] ≥ sn

a rare case, req might be propagated several times, hence
sj ̸= sk can happen in line 1.
Committing. In commit phase, Droopy needs to modify the
underlying SMR protocol at the condition which checks
whether there are still requests preceding sn. After con-
firming this, each replica can further commit and execute
req if all previous requests are committed and executed.
In particular, this check in all-leader protocols involves all
replicas (leaders), whereas in Paxos it involves the single
leader (which is trivial with FIFO assumption). In Droopy,
this condition depends on the leader set in each lease. The
modification is shown as function UPDATED in Alg. 2. More
specifically (line 23), UPDATED (i.e., whether no request
precedes req) returns true if ∀ln and ∀sk ∈ configln,
either lease ln is not available anymore at leader sk (i.e.,
latest[sk] ≥ LEln), or the most recent received index from
sk is not smaller than sn (i.e., latest[sk] ≥ sn).

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), DECEMBER 2016 7

Upon req is committed at replica si (line 10), i.e., req
is replicated by a majority of replicas and all preceding
requests are executed locally at si, si (1) executes req, and
replies response to client c if si is the source replica, and (2)
updates frequency array f (lines 11-14).
Lease update. (also refer to Fig. 3) When current lease ln
is about to expire (i.e., less than λ sequence indices are
available, lines 15-18 in Alg. 2), replica si first selects a new
leader set config based on frequency array f∗ and latency
table d∗,∗; then si proposes config piggybacked with lease
number ln+1 in L-Paxos and resets freq∗. Upon config in
lease ln′ is decided at replica si (lines 19-21), si updates the
leader set configln′ and the end index LEln′ .
Latency update. (ignored in Alg. 2) Replica si periodically
measures the round-trip latency from itself to others (e.g.,
by using ping utility). Then, si updates the latency table di,∗
and shares di,∗ with other replicas by broadcasting message
⟨LATENCY, i, di,∗⟩. Upon receiving ⟨LATENCY, i, d⟩, replica
sj replaces local variable di,∗ by d.
Configuration selection. To select an appropriate configu-
ration for the next lease, replica si enumerates all possible
combinations of leader sets by function GETNEWCONFIG
(line 16).3 Given a leader set, si estimates an average la-
tency based on latency table d∗,∗ and frequency array f∗.
For example, in Amazon globally distributed platform (as
shown in Fig. 5), if the workload is located at US East only,
then GETNEWCONFIG should return US East as the single
leader.

The calculation of estimated latency depends on the
internals of an underlying SMR protocol proceeds. For
instance, to confirm that all preceding requests have been
received, one-way latency from the farthest replica matters
in Clock-RSM; whereas in Mencius, this latency can be (at
most) a round-trip.

More specifically, the latency for request req is domi-
nated by three conditions: 1⃝ the time it takes for req to be
proposed by a leader and further replicated by a majority;
2⃝ the time it takes for source replica si to confirm that

no request with a sequence index smaller than req will be
proposed by any leader (especially by the farthest leader);
and 3⃝ the time it takes for source replica si to commit all
requests preceding req.

Algorithm 3 Clock-RSM function.

1: function GETORDER()
2: return clock /* physical clock */

3: function GETNEWCONFIG(freq, d)
4: return s ⊆ replicas s.t.

min(
n∑

i=1

freqi ×min(

max


1⃝di,j +median(dj,k + dk,i|∀sk)

2⃝di,j +max(dk,i|∀sk ∈ s)
3⃝di,j +max((median(dk,l + dl,i)|∀sl)|∀sk ∈ s)


|∀sj ∈ s)|∀s ⊆ replicas)

Based on these three conditions, calculation for each
specific SMR protocol can be (and should be) designed

3. For typical small values of n, a brute force algorithm is acceptable.
Exceptionally with a large n, one can make use of a greedy algorithm
instead.

individually. An illustrative calculation for Clock-RSM is
shown in line 4 in Alg. 3. Set s enumerates the number of
possible leader sets. Index i and j enumerate the number
of source replicas and the number of leaders, respectively.
For each given source replica and leader, term 1⃝ calculates
the (estimated) latency to send req from si to its proxy sj
(i.e., di,j) plus the latency to replicate req by a majority and
inform si finally. Term 2⃝ calculates the latency to notify
si (from ∀sk ∈ s) that no leader will propose a preced-
ing request, upon sj proposes req (hence di,j is added at
first). Term 3⃝ considers the worst case that every other
leader concurrently proposes a preceding request when sj is
proposing req. Note that this term can be further refined (in
future work), e.g., by considering the interval of consecutive
proposals from each leader.

5.2 Dripple
To simplify the exposition, we assume that each Dripple
partition contains exactly one object. Nevertheless, in prac-
tice highly correlated objects should be grouped into one
partition. Either application developer knows in advance
the approximate correlation among objects, thus the total
number of partitions as well as the mapping from each
object to its partition can be pre-defined; or, partitions can
be dynamically adjusted, e.g., by supporting MERGE and
DIVIDE operations — the latter mechanism is out of the
scope and is an interesting direction for the avenue of future
work.

We say request req is proposed or committed in partition
p if req is proposed or committed by the replicated state
machine that manages partition p.
Proposing. Client c issues request req by sending req to its
source replica si (just like in Droopy). Upon receiving req
(in Alg. 4 lines 1-2), si determines which partitions of state
req will access; these comprise the access set of req, denoted
by set(req). This step is accomplished by interacting with
upper applications, e.g., through an upper-call provided by
applications. For example, a transactional system by this
interaction returns the set of partitions that contains the
keys that req will read or write. In order to guarantee strict
serializability [13] among all requests, set(req) should not
exclude any object that will be actually accessed, but can be
a superset of them.

Then, si processes req individually in each partition
in set(req) as described in Droopy (in Alg. 4 lines 3-4).
Note that this step can be processed in parallel for different
partitions.
Committing. Upon req is committed in partition obj at
replica si, si inserts req into a committed queue for obj, i.e.,
CmtReqobj (lines 5-6).

Upon req is committed in every partition in set(req)
(lines 7-8), i.e., ∀obj ∈ set(req) : req ∈ CmtReqobj , si inserts
req into an ordered set OrderedReq. We say req is ordered
in this case. Note that req can be executed only if req is
ordered.
Executing. In order to guarantee strict serializability, ex-
ecution of ordered requests should follow logical orders
defined by sequence indices in every accessed partition.
Without cross-partition coordination, execution of a re-
quest that accesses multiple partitions may violate serial-
izability. For instance, if req = {write(A, 1), write(B, 2)}

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), DECEMBER 2016 8

Algorithm 4 Dripple: multi-partition commit at replica si.
M: minimum execution set
set(req): the set of objects that req accesses
CmtReqobj : the queue of committed requests that access obj
OrderedReq: {req|∀obj : obj ∈ set(req)→ req ∈ CmtReqobj}
ExReq: the set of requests that have been executed

1: upon receive ⟨REQUEST, req⟩ from client c do
2: obtain set(req)
3: for ∀ obj ∈ set(req) do
4: PROPOSE(req, si) in partition obj (in parallel)

5: upon COMMIT(req, sj) in partition obj do
6: append req to CmtReqobj
7: if ORDERED(req) then
8: append req to OrderedReq

9: upon ∃ a set of requestsM⊆ OrderedReq s.t.
(1) ∀req ∈ M s.t. if ∃req′: PRE(req′,req), then either req′ ∈
M or req′ ∈ ExReq
(2) ∄M′ ⊂M:M′ satisfies (1) do

10: execute ∀req ∈M based on a deterministic order
11: remove ∀req ∈M from OrderedReq and CmtReq∗
12: add req to ExReq

13: function ORDERED(req)
14: return ∀obj ∈ set(req) : req ∈ CmtReqobj

15: function PRE(req,req′)
16: return ∃obj : req precedes req′ in CmtReqobj

(i.e., change object A to 1 and B to 2) precedes req′ =
{write(A, 2), write(B, 1)} in partition A and req′ precedes
req in partition B, then two replicas may execute req and
req′ in opposite direction. We further define a relationship
between two requests in the following.

Definition 2. Request req′ directly precedes req, or
PRE(req′,req), if ∃obj s.t. req′ directly precedes req in partition
obj, i.e., ∃k s.t. CmtReqobj [k] = req′ and CmtReqobj [k+1] =
req.

We also say req′ is a directly preceding request of req.
To execute ordered requests (line 9), replica si selects a set
s ⊆ OrderedReq, which is named minimum execution set and
satisfies the following conditions.

Definition 3. A minimum execution set M is a set of ordered
requests which satisfies

(1) ∀req ∈ M s.t. if ∃req′: PRE(req′,req), then either req′ ∈
M or req′ ∈ ExReq;

(2) ∄M′ ⊂ M: M′ satisfies (1).

The first condition guarantees that each of req’s directly
preceding requests is either in M or in ExReq (i.e., executed
already). The second condition ensures that every replica
selects the same M for each given req.

Then, replica si executes requests in M sequentially
based on a deterministic order (line 10). For instance, a
simple scheme is executing requests in M based on their
unique identifiers (timestamp.clientId).

Finally, si removes all executed requests from
OrderedReq and involved CmtReq∗ (line 11), and adds
executed requests to the set ExReq (line 12).
Read-only requests. As discussed in some existing SMR
protocols, read-only requests can be optimized particularly

by read leases [28], [29]. With Dripple, a read-only request
that involves only one partition can be executed locally
by any replica which holds the corresponding read lease.
However, if a read-only request involves more than one
partition, the request has to be treated and executed as a
normal read-write request.

5.3 Proof

In this section we prove the correctness of Droopy and
Dripple. More specifically, in Sec. 5.3.1 we prove that Droopy
preserves linearizability, i.e., a total order among all re-
quests. Then, in Sec. 5.3.2 we prove that Dripple guarantees
serializability across partitions. Real-time order in strict
serializability is trivially ensured by durability property of
replicated state machine.

5.3.1 Linearizability
Since we build Droopy on top of existing SMR protocols,
without leader reconfiguration we simply run the original
single-leader or all-leader protocol, i.e., a single lease is
in operation endlessly, in which a single replica or every
replica acts as a leader. The original protocols (e.g., Paxos,
Mencius or Clock-RSM) have the following theorem.

Theorem 1. If replica si has executed a request at sequence index
sn, then si must have executed all requests with sequence indices
smaller than sn.

In other words, requests are executed in order based on
their sequence indices. We argue that Theorem 1 is still true
when enabling Droopy.

As we described in Sec. 4.1 and 5.1, LEln indicates the
end index of lease ln. LEln is determined by L-Paxos, so
based on reliability of classical Paxos, every replica should
receive the same LEln (eventually). Before acknowledging
LEln+1 and the leader set in lease ln+ 1, replica si will not
execute any request with sequence index larger than LEln.

In a proof by contradiction we assume that replica si
has executed request req at sequence index sn (LEln−1 ≤
sn < LEln), but has not executed request req′ at sequence
index sn′ < sn. Either sn′ < LEln−1, then based on line
24 in Alg. 24, si must have confirmed that every leader in
lease ln′ < ln has passed LEln′ and si has received every
proposal (by FIFO assumption), i.e., ∀ln′ < ln and ∀sk ∈
configln′ : lastest[sk] ≥ LEln′ ; or sn′ ≥ LEln−1, then based
on line 24, si must have confirmed that every leader in ln
has passed sn, i.e., ∀sk ∈ configln : sn ≤ lastest[sk]. In
either case, no req′ exists or si must have executed req′.

5.3.2 Serializability
Then we prove that Dripple ensures serializability. More
specifically, we prove if eventually two replicas si and s′i
have executed all requests5 and no request is further issued,
then the execution order at these two replicas is equivalent
to the same sequential order.

At first, we construct a directed graph G = (V,E) based
on a minimum execution set M, where V = M and E

4. Line 24 in Alg. 2 is written in a combined mode.
5. This assumption is guaranteed by availability property of repli-

cated state machine deployed in each partition.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), DECEMBER 2016 9

contains all PRE relations between requests in V . Namely, if
PRE(req,req′) and req, req′ ∈ M, then there is an edge from
req to req′ in E. Then we prove:

Lemma 1. G = (V,E) is strongly connected.

A directed graph G = (V,E) is strongly connected if
∀u, v ∈ V , there is a path or “walk” from u to v, which is
composed by edges in E.

We prove it by contradiction. ∀req, req′ ∈ V , if there is
no path from req to req′, then we can assume there exists
a subset V1 ⊂ V that req can walk to (by edges in E) and
there exists another subset V2 ⊂ V that req can not walk to.
Obviously, req ∈ V1 and req′ ∈ V2. Furthermore, there is
no PRE relation from any request req1 in V1 to any request
req2 in V2, otherwise req2 should be included in V1. Hence,
it’s easy to see that V2 satisfies Def. 3 (1) as well. Therefore,
Def. 3 (2) is violated.

Then we prove

Lemma 2. if replica si has executed a collection C of k minimum
execution sets and replica s′i has executed a collection C ′ of k′

minimum execution sets, then C = C ′.

Assume ∃s ∈ C and ∃req, req′ ∈ M, i.e., by replica si
req and req′ are executed within the same minimum execu-
tion set M. Based on Lemma 1, there exists a dependency
path from req to req′ and vice versa. Obviously, ∃M′ ∈ C ′

satisfying req ∈ M′. Then based on Definition 3 (1), req′

must be in M′ (it’s impossible that req′ is executed prior to
M′ or after M′ since there is a dependency path from req′

to req and vice versa, and req ∈ M′).

Although C = C ′, different replicas may execute mini-
mum execution sets out of order. Now we prove by induc-
tion that

Lemma 3. the execution order at each replica incrementally forms
a Directed Acyclic Graph (DAG).

A DAG [30] is a directed graph in which there is no
directed cycle, i.e., there is no path that starts from any node
v ∈ V and goes through several edges in E and comes back
to v. By the property of linear extension of DAG, different
execution orders that follow the same DAG are equivalent,
even if independent requests are executed out of order.

We consider the state after executing i minimum exe-
cution sets (no order is required here) as a directed graph
G(Vi, Ei) (i ≥ 0), in which the set of nodes Vi contains all
executed requests and the set of edges Ei contains all PRE
relations among requests in Vi.

Each replica starts from a initial state with no request
executed. We denote the initial state as G(V0, E0), i.e., V0 =
∅ and E0 = ∅. Obviously, G(V0, E0) is a DAG.

We assume G(Vi, Ei) (i ≥ 0) is a DAG.
Upon the (i+ 1)th minimum execution set g = G(V,E)

is ready to execute, either |V | = 1 (i.e., there is only one
request in V), hence all of its directly preceding requests
have been executed already (i.e., in Vi); or |V | > 1, then g
is linearized deterministically into G(V,E′). By combining
Vi and V , and by combining Ei, E′, and the set of all PRE
relations from requests in Vi to requests in V , we form a new
graph G(Vi+1, Ei+1). It’s easy to observe that G(Vi+1, Ei+1)
is still a DAG, since we combine one DAG, i.e., G(Vi, Ei),

with another DAG, i.e., G(V,E′), plus the added edges are
only in one direction, i.e., from Vi to V .

By Lemma 2, replicas si and s′i have executed the same
collection of minimum execution sets. PRE relations within a
minimum execution set are decided deterministically based
on request identifiers. Whereas, PRE relations among differ-
ent minimum execution sets are determined by replicated
state machine in each partition. Then by Lemma 3 and by
property of DAG, the execution orders at si and s′i are
equivalent to the same sequential order.

6 EXPERIMENTAL EVALUATION

In this section we evaluate the performance of D2Clock-
RSM and compare it to state-of-the-art SMR protocols using
the Amazon EC2 worldwide cloud platform. We start by
presenting the experimental setup in Sec. 6.1. We then test
the perceived latency of Droopy enabled Clock-RSM (simply
Droopy) and compare it to native Clock-RSM and Paxos
under imbalanced workloads (Sec. 6.2). Finally, by enabling
Dripple as well, we compare D2Clock-RSM with state-of-
the-art protocols under three different types of balanced
workloads (in Sec. 6.3).

6.1 Experiment setup
Both replicas and clients are deployed in instances on Ama-
zon EC2 platform that comprises widely distributed data-
centers, interconnected by the Internet. In each datacenter
there is one virtual machine dedicated to one replica and
one virtual machine for all clients.

We run the experiments on mid-range virtual machines
named “c4.large” instances that contain 2 vCPUs, 3.75 GB
of memory. The round-trip latencies among 6 EC2 sites
(measured by ping utility) is shown in Fig. 5.

JP

AU

UW

UE

IR

102

157
103

70

76

149

FK

UE UW IR JP AU FK

UE 0 70 76 149 231 88

UW 0 145 102 157 161

IR 0 218 305 20

JP 0 103 240

AU 0 318

88

20

Fig. 5: Round-trip latencies (ms) among 6 Amazon EC2 sites
used in our experiments: US East (UE), US West (UW),
Ireland (IR), Japan (JP), Australia (AU) and Frankfurt (FK).

In Droopy, we set δ to 10 seconds and λ to 2 seconds, i.e.,
the length of each lease is 10 seconds, and 2 seconds before
expiration, each replica proposes a new configuration for
the next lease. We believe these two settings are sufficiently
small to demonstrate the usability of Droopy.

6.2 Imbalanced workloads
To emphasize the benefits we can obtain by enabling
Droopy, we first run Droopy enabled Clock-RSM under

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), DECEMBER 2016 10

UE AU
0

50

100

150

200

250

FK
 location

L
a
te

n
c
y
 (

m
s
)

Droopy

Clock−RSM

Paxos

(a) Average latency (bars) and 95%ile latency (lines
atop bars).

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

Number of requests

L
a

te
n

c
y
 (

m
s
)

Droopy

Clock−RSM

Paxos

(b) Latency change when the workload is moved from
site to site; the leader set is reconfigured as follows:
{UE}→{UE,FK}→{FK}→{FK,AU}→{AU}.

Fig. 6: Latency (in milliseconds, lower is better) of Droopy,
Clock-RSM and Paxos under imbalanced workloads when
t = 1.

imbalanced workloads, i.e., only clients at one site are issuing
requests at a time. We then compare Droopy to the native
Clock-RSM and Paxos. In this experiment, 40 clients at each
specific site issue requests of 64B to their source replica in
closed-loop.

We deploy the experiments at US East (UE), Frankfurt
(FK) and Australia (AU) for t = 1 case, and UE, US West
(UW), FK, Japan (JP) and AU for t = 2 case. For a fair
comparison, we position the single leader of Paxos in the
(geographical) middle of all replicas. Thus, when t = 1 the
single leader is located at UE; when t = 2 the single leader
is located at UW.

The results for t = 1 and t = 2 are shown in Fig. 6
and Fig. 7, respectively. Notice that, to clearly demonstrate
Droopy’s latency in a steady state, in Fig. 6a and Fig. 7a we
manually configure the leader set to the same site as the
workload (i.e., clients) locates, and we run the same experi-
ment site by site. Therefore, in this setup there is no need to
reconfigure the leader set. In Fig. 6b and Fig. 7b we automat-
ically change the location of active clients/workload from
site to site and show how the leader set is reconfigured and
its influence on latency. More specifically, upon 40 clients
located at one site have executed all requests, clients at
another site start issuing requests.

t = 1. In Fig. 6a we show the average latency and the 95%ile
latency at each site for all protocols. When the workload is
located at UE and FK, we observe that Droopy effectively
reduces latency compared to the native Clock-RSM. How-

UE UW JP AU
0

20

40

60

80

100

120

140

160

180

200

FK
 location

L
a
te

n
c
y
 (

m
s
)

Droopy

Clock−RSM

Paxos

(a) Average latency (bars) and 95%ile latency (lines
atop bars).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

Number of requests

L
a

te
n

c
y
 (

m
s
)

Droopy

Clock−RSM

Paxos

(b) Latency change when the workload is moved
from site to site; the leader set is recon-
figured as follows: {UE}→{UE,UW}→{UW}→
{UW,FK}→{FK}→{JP}→{JP,AU}→ {AU}.

Fig. 7: Latency of Droopy, Clock-RSM and Paxos under
imbalanced workloads when t = 2.

ever, there is no improvement at AU, since replica at AU
is positioned very far from another two replicas and AU
actually introduces delayed commit problem for UE and FK.
By comparing Fig. 6a with Fig. 5 we also observe that both
Paxos and Droopy achieve the optimal latency (i.e., a round-
trip delay from the source replica to a majority). The set of
UE, FK and AU can be considered as a special configuration
since UE (where the single leader of Paxos locates) is placed
between FK and AU, hence in any case it is (more) efficient
to replicate requests at UE.

Fig. 6b demonstrates more clearly how latency is affected
by workload movement and leader reconfiguration. Inter-
estingly, as shown in Fig. 6b, a latency spike occurs when
the workload is moved from FK to AU. This is because
the leader set has not yet been adjusted towards the new
workload, i.e., first the leader is placed at FK, then recon-
figured to {FK,AU} as an intermediate state, and finally
reconfigured to AU. No latency spike happened when we
moved the workload from UE to FK. This is because sending
requests from FK (where the new workload locates) to UE
(where the old leader locates) and making them replicated
by a majority (i.e., by UE and FK) is as efficient as a round-
trip communication from FK to UE (in case FK is the leader).
t = 2. In Fig. 7a, when the workload is deployed at UE, JP
and AU, we observe that Droopy’s latency is reduced com-
pared to the native Clock-RSM. In Clock-RSM, the latency
achieved at JP and AU is higher because of the delayed
commit problem introduced by FK. And, similarly to the
t = 1 case, replica AU causes the delayed commit problem

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), DECEMBER 2016 11

for the workload at UE.
Paxos has the higher latency compared to the other two

protocols, except when the workloads are deployed at UW
and FK. The reasons are different. UW achieves low latency
simply because the single leader (in Paxos) locates at the
same site. Whereas, for clients at FK, propagating requests to
the leader (UW) and making them replicated by a majority
(by UW, UE and FK in this case) is as efficient as making
requests proposed by FK (in Droopy and Clock-RSM) and
replicated by a majority (by UW, UE and FK), since UE is
positioned between UW and FK (as shown in Fig. 5).

Fig. 6a and Fig. 7a also verify our expectations that
(1) neither single-leader nor all-leader SMR can achieve
the minimum latency in all cases; and, (2) statically fixing
the leader set at one or more replicas cannot achieve the
minimum latency in all cases. For example, replica AU
should be excluded from the leader set when the workload
locates only at UE. However, AU should be included in the
leader set when the workload locates only at AU. These
two observations practically motivate Droopy, our leader
reconfiguration protocol.

In Fig. 7b, we also observe that a latency spike occurs
whenever the workload is moved from one site to another
(except for the movement from UW to FK, as for the same
reason explained in t = 1 case), due to the delay of leader
reconfiguration.

Partially imbalanced workloads. To more comprehensively
evaluate Droopy, we further deploy the three protocols
under partially imbalanced workloads, where 40 clients
at UE and 10 clients at AU issuing 64B requests to their
source replicas in closed-loop. In Fig. 8 we show the latency
distribution at two replicas (UE and AU) for each protocol.
Interestingly, under these workloads, Droopy reconfigures
the leader set into {UE,JP}, not exactly the sites where
the workloads are deployed (i.e., UE and AU). At site
UE, Droopy achieves much lower latency than Clock-RSM,
whereas at site AU Droopy has higher latency than Clock-
RSM.

80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Latency (ms)

C
D

F

Droopy UE

Droopy AU

Clock−RSM UE

Clock−RSM AU

Paxos UE

Paxos AU

Clock−RSM
AU

Paxos
UE

Clock−RSM
UE

Droopy
UE

Paxos
AU

Droopy
AU

Fig. 8: Latency distribution under partially imbalanced
workloads (t = 2), where 40 clients at UE and 10 clients
at AU issue requests. The single leader of Paxos locates at
UW. The leader set is reconfigured to {UE,JP} in Droopy.

This choice is made reasonably. If AU is one of the
leaders, then extra delay introduced by AU can increase
the latency at UE dramatically. Since 4 times of clients are
deployed at UE compared to that of AU, selecting JP as a

leader (instead of AU) can at the same time mitigate the
delayed commit problem and keep one of leaders close to
AU. Besides, we also observe from Fig. 8 that at AU Droopy
achieves similar latency compared to Paxos. This is because
requests from AU should be propagated to JP at first (as
the proxy of AU), then proposed by JP and replicated by
UW, and finally committed by AU. This commitment path
is similar in Paxos, albeit in the opposite direction: requests
from AU are at first propagated to UW (where the single
leader is placed), then proposed by UW and replicated by
JP, and finally committed by AU.

We further deploy the three protocols under another
partially imbalanced workloads, where 40 clients at UE and
5 clients at each other site issue requests to their source
replicas. The average and the 95%ile latency is shown in
Fig. 9. Although the workloads are deployed at every site
in this case, Droopy made the same choice: configuring its
leader set to {UE,JP}. By comparing the three protocols at
each site in Fig. 9 we can more clearly observe the “priority”
behind them: (1) Paxos optimizes the latency at a given
site (UW in this case); (2) Clock-RSM tries to “balance” the
latency at every site regardless of the workloads; and, (3)
Droopy tries to achieve the optimal average latency based
on previous workloads.

UE UW FK JP AU
0

20

40

60

80

100

120

140

160

180

200

Workload location

L
a

te
n

c
y
 (

m
s
)

Droopy

Clock−RSM

Paxos

Fig. 9: Average latency (bars) and 95%ile latency (lines atop
bars) when 40 clients at UE and 5 clients at each other site
issue requests. The single leader in Paxos is located at UW.
The leader set is configured to {UE,JP} in Droopy.

Spare replica. As discussed in [31], adding spare replicas
to a geo-replicated state machine can sometimes (depend-
ing on replica location and workload) dramatically reduce
latency, compared to the standard configuration where
n = 2t + 1. Obviously, this can also give Droopy more
choices in selecting a leader set. We add one more replica
(Ireland, IR) to t = 2 configuration, i.e., n = 6 at present,
and evaluate how this modification affects the performance
of Droopy, Clock-RSM and Paxos.

We deploy the three protocols under imbalanced work-
loads again. The average latency and the latency change
with the workload movement is shown in Fig. 10. At site
UE, FK, and IR we observe a more significant improvement
achieved by Droopy, compared to Fig. 7. This is because
introducing spare replica IR makes nearby replicas UE and
FK more efficiently to replicate their requests by t + 1

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), DECEMBER 2016 12

replicas6, which indirectly enlarges delayed commit caused
by distant replicas (AU and JP). Compared to Fig. 7a, the
latency of Paxos at UE is reduced as well because of the
same reason: requests proposed by UE can be replicated
by UW and IR more easily than by UW and FK (when
n = 2t+ 1).

UE UW JP AU
0

20

40

60

80

100

120

140

160

180

200

 location

L
a
te

n
c
y
 (

m
s
)

Droopy

Clock−RSM

Paxos

(a) Average latency (bars) and 95%ile latency (lines atop
bars).

0 500 1000 1500 2000
0

50

100

150

200

250

300

Number of Requests

L
a

te
n

c
y
 (

m
s
)

Droopy

Clock−RSM

Paxos

 ✁

 ✂

✄☎

✆✝

✞✟

✠

(b) Latency change when the workload is moved from
site to site; the leader set is reconfigured as follows:
{UE}→{UE,UW}→{UW}→{UW,FK}→{FK}→{FK,IR}→{IR}
→{IR,JP} →{JP}→{JP,AU}→ {AU}.

Fig. 10: Latency of Droopy, Clock-RSM and Paxos under
imbalanced workloads where t = 2 and n = 6.

Besides, in Clock-RSM the average latency at IR is higher
than we expect, based on the measurement in Fig. 5. The
round-trip latency from AU to IR (measured by ping utility)
is 305 ms, hence coordination cost in Clock-RSM, i.e., one-
way latency from AU to IR should be around 152 ms, rather
than 176 ms measured at site IR in Fig. 10a. This unexpected
higher latency is either because (1) physical clock at IR
is not tightly synchronized with those of other sites; or
because (2) one-way latency from some site (most possibly
AU) to IR is not equal to half of its round-trip value. We
can not trivially distinguish these two reasons since we
can not confirm if the physical clocks at these replicas are
tightly synchronized or not. However, this exceptional cost
further amplifies the importance of Droopy, i.e., removing
idle (and distant) replicas from the leader set, so that the

6. rather than by a majority in n = 2t+ 1 configuration; however, to
ensure intersacting quorums in Clock-RSM, either n+1−(t+1) = t+2
replicas should be involved in reconfiguration, which retrieves a most
recent state from previous epoches; or, a weighted replication can be
introduced as discussed in [31].

long-time coordination introduced by clock asynchrony can
be avoided.

6.3 Balanced workloads

Finally, we evaluate Droopy and Dripple enabled Clock-RSM
(i.e., D2Clock-RSM) under three types of balanced work-
loads, and compare D2Clock-RSM with state-of-the-art SMR
protocols (Paxos, native Clock-RSM, Mencius and EPaxos).
In each experiment, 40 clients at each site issue requests
simultaneously to their source replicas in closed-loop.

To explore request commutativity, we further prescribe
that each client issues 10% of multi-partition requests and
90% of one-partition requests, where the payload for each
partition is 64B. For each multi-partition request, the num-
ber of accessed partitions obeys uniform distribution, rang-
ing from 2 to 5. We believe these settings are representative
since from the perspective of applications, either most re-
quests access a very small portion of the whole state (e.g.,
large-scale transactional storage system [2]); or the whole
state is not suitable for partitioning. In the second case,
disabling Dripple is rather efficient.

We illustrate the t = 2 results in Fig 11. The single leader
in Paxos located at UW for a fair comparison. Note that
we did not enable the optimization in EPaxos that allows
replicas to respond to clients tentatively, upon a request
is replicated by a fast-quorum (but not yet executed). This
optimization can be applied only if the client does not expect
any application-specific reply. For example, PUT operations
in key-value store can be applied with this optimization, but
COMMIT operations in transactional storage system can not.

Localized workloads. We first run all protocols under lo-
calized workloads, where clients located at one site access
partitions distinct from other sites. We set the total number
of partitions to 1000 in D2Clock-RSM (in EPaxos we set 1000
objects). For example, clients at site UE access partitions 1
to 200 randomly, clients at UW access partitions 201 to 400
randomly, and so on. We believe 1000 partitions is sufficient
to demonstrate the usability of Dripple — to further provide
scalability, applications could further make use of existing
state-partition schemes [26].

The results under localized workloads are shown in
Fig. 11a. The leader set for each partition is reconfigured
to the source replica. D2Clock-RSM and EPaxos have very
similar performance and outperform other protocols at all
sites. Localized workload can be considered as the best
case for both D2Clock-RSM and EPaxos. D2Clock-RSM can
individually reconfigure the leader set in each partition to
its source replica. Whereas, in EPaxos, requests issued by
different sites have no conflict among each other, hence
every request can be executed as soon as the request is
replicated by a fast-quorum (when t ≤ 2 in EPaxos, a
fast-quorum is equivalent to a majority). At UE, JP and
AU D2Clock-RSM achieves lower latency than Clock-RSM
as expected, based on the Droopy experiment we tested in
Sec. 6.2.

More interestingly, at site UW D2Clock-RSM reduces la-
tency as well compared to the native Clock-RSM. This is the
improvement achieved by Dripple: dividing state into par-
titions can remove unnecessary dependencies across the re-
quests that access distinct partitions. For example, a request

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), DECEMBER 2016 13

UE UW FK JP AU
0

20

40

60

80

100

120

140

160

180

200

Replica location

L
a
te

n
c
y
 (

m
s
)

Paxos

Mencius

Clock−RSM

D
2
Clock−RSM

EPaxos

(a) Localized workloads.

UE UW FK JP AU
0

20

40

60

80

100

120

140

160

180

200

Replica location

L
a
te

n
c
y
 (

m
s
)

Paxos

Mencius

Clock−RSM

D
2
Clock−RSM

EPaxos

(b) Uniform workloads.

UE UW FK JP AU
0

50

100

150

200

250

300

350

400

Replica location

L
a

te
n

c
y
 (

m
s
)

Paxos

Mencius

Clock−RSM

D
2
Clock−RSM

EPaxos

(c) “Hot spot” workloads.

Fig. 11: Average latency (bars) and 95%ile latency (lines atop
bars) of D2Clock-RSM and state-of-the-art protocols under
balanced workloads.

req proposed by UW writes partition A, and simultaneously
another request req′ proposed by UE writes partition B,
then these two requests are committed independently in
D2Clock-RSM as they access distinct partitions. However,
in native Clock-RSM, if req′ is committed before req, UW
has to wait the commitment of req′ before executing req.

In Paxos the latency is dominated by the location of the
single leader, i.e., UW achieves the optimal latency, whereas
other sites have to suffer the additional message exchanges
that propagate requests to the remote leader.

Uniform workloads. Then we deploy all protocols under
uniform workloads, where each request randomly accesses
one (90% probability) or 2-5 partitions (10% probability).
The number of partitions in this workload is still 1000 (1000

objects for EPaxos).
The results are shown in Fig. 11b. D2Clock-RSM recon-

figures the leader set to all-leader configuration. In other
words, each partition is simply managed by a native Clock-
RSM. Under uniform workloads, the native Clock-RSM and
D2Clock-RSM achieve the very similar performance except
for the workload deployed at UW. The reason is very similar
to the one under localized workloads: Dripple removes un-
necessary dependencies across distinct partitions. Although
under uniform workloads partitions are randomly accessed,
among 1000 partitions it is very less likely that requests
proposed by UW have to wait some concurrent requests
proposed by other sites (such as UE). EPaxos in this case has
much higher 95%ile latency than other protocols since non-
commutative requests rely on another round-trip message
exchange among a majority to resolve conflicts.
“Hot spot” workloads. Finally, we deploy all protocols
under the workloads which contain only 5 partitions (5
objects for EPaxos), i.e., the scenario that some small portion
of state is accessed frequently by most requests. D2Clock-
RSM reconfigures the leader set into all-leader configura-
tion. In this case, EPaxos has its average latency increased
dramatically due to (1) the conflict resolution which relies
on one more round-trip message exchange, and (2) the
dense dependencies among concurrent requests (i.e., each
request has to wait for a lot of other requests before being
executed). These results are the worst case scenario for
EPaxos as discussed in the original paper [9]. Clock-RSM
and D2Clock-RSM under “hot spot” workloads achieve very
similar performance and outperform other protocols except
for Paxos at UW, where Paxos locates its single leader at the
same site and achieves the optimal latency.

7 CONCLUSION

We designed and implemented Droopy and Dripple, two sis-
ter approaches tailored for low-latency geo-replicated state
machine. Droopy dynamically reconfigures the set of leaders
based on previous workload and network condition. Dripple
in turn divides the state into partitions and coordinates
them wisely, so that the leader set of each partition can be
reconfigured (by Droopy) individually.

By experimental evaluation on globally deployed Ama-
zon EC2 sites we show that, Droopy efficiently reduces the
perceived latency for widely distributed clients under im-
balanced workloads and latencies among replicas are non-
uniform. Under balanced but localized workloads, Droopy
and Dripple enabled protocol outperforms existing all-leader
protocols and achieves the similar performance as that of a
leaderless protocol. Whereas, under uniform but request-
non-commutative workloads, our approaches do not affect
the performance of their native protocol and both outper-
form a leaderless protocol.

ACKNOWLEDGEMENTS

This work is supported in part by the EU H2020 project
SUPERCLOUD (grant No. 643964) and Swiss Secretariat for
Education, Research and Innovation (contract No. 15.0025).
Shengyun Liu’s work is supported in part by the National
Key Research and Development Program (2016YFB1000101)
and China Scholarship Council.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS), DECEMBER 2016 14

REFERENCES

[1] S. Liu and M. Vukolić, “How many planet-wide leaders should
there be?” SIGMETRICS Perform. Eval. Rev., vol. 43, no. 3, pp. 3–6,
Nov. 2015.

[2] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman
et al., “Spanner: Google’s globally-distributed database,” in Pro-
ceedings of the 10th USENIX conference on Operating Systems Design
and Implementation, ser. OSDI’12. Berkeley, CA, USA: USENIX
Association, 2012, pp. 251–264.

[3] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete,
“Mdcc: Multi-data center consistency,” in Proceedings of the 8th
ACM European Conference on Computer Systems, ser. EuroSys ’13.
New York, NY, USA: ACM, 2013, pp. 113–126.

[4] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: wait-
free coordination for internet-scale systems,” in Proceedings of the
2010 USENIX conference on USENIX annual technical conference, ser.
USENIXATC’10. Berkeley, CA, USA: USENIX Association, 2010,
pp. 11–11.

[5] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, pp. 133–169, May 1998.

[6] L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32,
no. 4, pp. 18–25, 2001.

[7] L. Lamport, “Generalized consensus and paxos,” Microsoft Re-
search, Tech. Rep. MSR-TR-2005-33, March 2005.

[8] P. Sutra and M. Shapiro, “Fast genuine generalized consensus,”
in 2011 IEEE 30th International Symposium on Reliable Distributed
Systems (SRDS), Oct 2011, pp. 255–264.

[9] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more
consensus in egalitarian parliaments,” in Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, ser. SOSP
’13. New York, NY, USA: ACM, 2013, pp. 358–372.

[10] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: Building effi-
cient replicated state machines for wans,” in Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’08. Berkeley, CA, USA: USENIX Association, 2008, pp.
369–384.

[11] J. Du, D. Sciascia, S. Elnikety, W. Zwaenepoel, and F. Pedone,
“Clock-rsm: Low-latency inter-datacenter state machine replica-
tion using loosely synchronized physical clocks,” in The 44th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), no. EPFL-CONF-198282, 2014.

[12] M. Herlihy and J. M. Wing, “Linearizability: A correctness con-
dition for concurrent objects,” ACM Trans. Program. Lang. Syst.,
vol. 12, no. 3, pp. 463–492, 1990.

[13] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1987.

[14] M. Vukolic, Quorum Systems:With Applications to Storage and Con-
sensus. Morgan & Claypool, 2012.

[15] M. S. Ardekani and D. B. Terry, “A self-configurable geo-replicated
cloud storage system,” in 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14). Broomfield, CO:
USENIX Association, Oct. 2014, pp. 367–381.

[16] L. Lamport, “Fast paxos,” Distributed Computing, vol. 19, pp. 79–
103, 2006, 10.1007/s00446-006-0005-x.

[17] G. Santos Veronese, M. Correia, A. Bessani, and L. C. Lung,
“Spin one’s wheels? byzantine fault tolerance with a spinning
primary,” in Reliable Distributed Systems, 2009. SRDS ’09. 28th IEEE
International Symposium on, Sept 2009, pp. 135–144.

[18] G. Santos Veronese, M. Correia, A. Bessani, and L. C. Lung,
“Ebawa: Efficient byzantine agreement for wide-area networks,”
in High-Assurance Systems Engineering (HASE), 2010 IEEE 12th
International Symposium on, Nov 2010, pp. 10–19.

[19] W. Wei, H. T. Gao, F. Xu, and Q. Li, “Fast mencius: Mencius with
low commit latency,” in INFOCOM, 2013 Proceedings IEEE, April
2013, pp. 881–889.

[20] F. B. Schneider, “Implementing fault-tolerant services using the
state machine approach: A tutorial,” ACM Comput. Surv., vol. 22,
no. 4, pp. 299–319, 1990.

[21] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM,
vol. 32, no. 2, pp. 374–382, Apr. 1985.

[22] “Network time protocol,” http://www.ntp.org/.
[23] L. Z. Leslie Lamport, Dahlia Malkhi, “Vertical paxos and primary-

backup replication,” Tech. Rep., May 2009.

[24] F. Pedone and A. Schiper, “Generic broadcast,” in Proceedings of the
13th International Symposium on Distributed Computing. London,
UK, UK: Springer-Verlag, 1999, pp. 94–108.

[25] P. J. Marandi, M. Primi, and F. Pedone, “High performance state-
machine replication,” in 2011 IEEE/IFIP 41st International Confer-
ence on Dependable Systems Networks (DSN), June 2011, pp. 454–465.

[26] C. Bezerra, F. Pedone, and R. van Renesse, “Scalable state-machine
replication,” in 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), June 2014, pp. 331–342.

[27] R. Halalai, P. Sutra, E. Riviere, and P. Felber, “Zoofence: Principled
service partitioning and application to the zookeeper coordination
service,” in 2014 IEEE 33rd International Symposium on Reliable
Distributed Systems (SRDS), Oct 2014, pp. 67–78.

[28] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live:
an engineering perspective,” in Proceedings of the 26th annual ACM
symposium on Principles of distributed computing, ser. PODC ’07.
New York, NY, USA: ACM, 2007, pp. 398–407.

[29] I. Moraru, D. G. Andersen, and M. Kaminsky, “Paxos quorum
leases: Fast reads without sacrificing writes,” in Proceedings of the
ACM Symposium on Cloud Computing, ser. SOCC ’14. New York,
NY, USA: ACM, 2014, pp. 22:1–22:13.

[30] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Intro-
duction to Algorithms, 2nd ed. McGraw-Hill Higher Education,
2001.

[31] J. Sousa and A. Bessani, “Separating the wheat from the chaff: An
empirical design for geo-replicated state machines,” in 2015 IEEE
34th Symposium on Reliable Distributed Systems (SRDS), Sept 2015,
pp. 146–155.

Dr. Shengyun Liu conducted his PhD research
at EURECOM and obtained a PhD degree in
Computer Science from Telecom ParisTech in
2015. He also received a MSc degree in Com-
puter Science from National University of De-
fense Technology (NUDT) in 2010. He is cur-
rently a researcher at National University of De-
fense Technology. His research interests include
Byzantine-fault tolerance, state machine replica-
tion and blockchain.

Dr. Marko Vukolić is a Research Staff Member
at IBM Research - Zurich. Previously, he was
a faculty at EURECOM and a visiting faculty at
ETH Zurich. He received his PhD in distributed
systems from EPFL in 2008 and his engineering
degree in telecommunications from University of
Belgrade in 2001. Dr. Vukolić is currently a steer-
ing committee member of Eurosys, was a PC
co-chair of the SOFSEM 2011 conference, and
a member of numerous program committees of
major conferences. His research interests lie in

the broad area of distributed algorithms and systems, including fault-
tolerance, blockchain and distributed ledgers, cloud computing secu-
rity and distributed storage. Postal address: IBM Research- Zurich,
C379, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland. E-mail:
mvu@zurich.ibm.com

http://www.ntp.org/

	Introduction
	Related work
	Paxos overview
	All-leader protocols (delayed commit)
	Leaderless protocols (with conflict resolution)

	System model
	Protocol Overview
	Droopy
	Dripple
	Fault-Tolerance

	Protocol Details
	Droopy
	Dripple
	Proof
	Linearizability
	Serializability

	Experimental evaluation
	Experiment setup
	Imbalanced workloads
	Balanced workloads

	Conclusion
	References
	Biographies
	Dr. Shengyun Liu
	Dr. Marko Vukolić

